Microstructure, Mechanical, and Tribological Properties of SiC-AlN-TiB2 Multiphase Ceramics
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Testing and Characterization
3. Results and Discussion
3.1. Phase Composition
3.2. Microstructure
3.2.1. FESEM Data
3.2.2. TEM Data
3.3. Mechanical Properties
3.4. Tribological Properties
3.4.1. CoF and WRs
3.4.2. Morphology of Worn Surface
3.4.3. Tribo-Oxides on the Worn Surface
3.4.4. Wear Mechanism
4. Conclusions
- AlN particles were diffused throughout the SiC surface to form a solid solution layer (~50 nm), which effectively reduced the grain boundary energy and improved the sintering performance. Y2O3 reacted with Al2O3 on the surface of AlN to form the intercrystalline phase YAM, which promoted the densification of multiphase ceramics. TiB2 and SiC exhibited good interfacial compatibility.
- The maximum mechanical characteristics (a density of 98.3%, hardness of 28 GPa, fracture toughness of 5.7 MPa·m1/2, and bending strength of 553 MPa) were achieved in the S1-2000 specimen at a TiB2 content of 10 vol.%.
- The average CoF values of SiC multiphase ceramics at 25 °C and 600 °C were mainly in the range of 0.4–0.5. The WRs were in the order of 10−5 mm3/N·m at 25 °C, decreasing by 36% at 600 °C. The wear mechanism changed from abrasion at 25 °C to a tribo-chemical reaction at 600 °C. The lubricious oxides of TiB2 enabled the improvement of the wear resistance of SiC ceramics at 600 °C.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, H.J.; Wei, H.K.; Ren, S.H.; Sun, L.J. Enhanced mechanical/electrical properties of in situ synthesized SiC-TiB2 ceramic composites by reactive hot-pressing sintering. Ceram. Int. 2024, 50, 38808–38814. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Cheng, C. Effect of TiB2 content on microstructure and mechanical properties of SiC composite ceramics by solid-state spark plasma sintering. J. Aust. Ceram. Soc. 2024, 60, 971–978. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Zhang, Z. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review. J. Eur. Ceram. Soc. 2021, 41, 4671–4688. [Google Scholar] [CrossRef]
- Ren, K.K.; Ren, Q.X.; Yin, Z.Q.; Li, Y.S. Li2O addition as a means of achieving low-temperature densification of SiC ceramic. Ceram. Int. 2024, 50, 39440–39447. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Baharvandi, H.R.; Ehsani, N.; Khajehzadeh, M.; Tamadon, A. Pressureless sintering of LPS-SiC (SiC-Al2O3-Y2O3) composite in presence of the B4C additive. Ceram. Int. 2019, 45, 13536–13545. [Google Scholar] [CrossRef]
- Huang, A.; Zhu, S.; Liu, L. Influence of adding TiB2 on structure and mechanical properties of SiC-based composite ceramics. J. Chin. Ceram. Soc. 2017, 45, 23–929. [Google Scholar]
- Hu, J.L.; Xiao, H.; Guo, W.M. Effect of AlN-Y2O3 addition on the properties and microstructure of in-situ strengthened SiC-TiB2 composites prepared by hot pressing. Ceram. Int. 2024, 40, 1065–1071. [Google Scholar] [CrossRef]
- Strecker, K.; Ribeiro, S.; Camargo, D. Liquid phase sintering of silicon carbide with AlN/Y2O3, Al2O3/Y2O3 and SiO2/Y2O3 additions. Mater. Res. 1999, 2, 249–254. [Google Scholar] [CrossRef]
- Liang, H.; Yao, X.; Zhang, H.; Liu, X.; Huang, Z. Friction and wear behavior of pressureless liquid phase sintered SiC ceramic. Mater. Des. 2015, 65, 370–376. [Google Scholar] [CrossRef]
- Yadav, R.; Lee, H.; Meena, A.; Sharma, Y.J.T.I. Effect of alumina particulate and E-glass fiber reinforced epoxy composite on erosion wear behavior using Taguchi orthogonal array. Tribol. Int. 2022, 175, 107860. [Google Scholar] [CrossRef]
- Yadav, R.; Meena, A.; Lee, S.Y.; Park, S.J. Experimental tribological and mechanical behavior of aluminium alloy 6061 composites incorporated ceramic particulates using Taguchi analysis. Tribol. Int. 2024, 192, 109243. [Google Scholar] [CrossRef]
- Dorkar, N.V.; Kim, Y.W.B.; Kumar, V.M. Influence of temperature, impact angle and h-BN content on the erosive wear behavior of hot-pressed SiC-BN composites. Wear 2020, 458, 203447. [Google Scholar] [CrossRef]
- Prakasarao, C.S.; Malik, V.K.; Kumar, B.V.M. Development of spark plasma sintered conductive SiC-TiB2 composites for EDM applications. Int. J. Appl. Ceram. Technol. 2022, 19, 1367–1378. [Google Scholar]
- Kovalčíková, A.; Kurek, P.; Balko, J.; Dusza, J. Effect of the counterpart material on wear characteristics of silicon carbide ceramics. Int. J. Refract. Met. Hard Mater. 2014, 44, 12–18. [Google Scholar] [CrossRef]
- Chodisetti, S.P.; Kumar, B.V.M. Tailoring friction and wear properties of titanium boride reinforced silicon carbide composites. Wear 2023, 526–527, 204886. [Google Scholar] [CrossRef]
- Zhou, S.; Liang, J.; Hu, H.; Xiao, H. In situ preparation of a SiC-TiB2 composite and its wear fracture mechanism at high temperatures. J. Mater. Sci. 2022, 57, 6249–6265. [Google Scholar] [CrossRef]
- Prakasarao, C.S.; Kalin, M.; Venkata, M.K.B. Influence of TiB2 and wear conditions on friction and wear behaviour of SiC ceramics in reciprocating sliding. J. Eur. Ceram. Soc. 2024, 44, 2704–2719. [Google Scholar] [CrossRef]
- Yin, S.P.; Zhang, Z.H.; Cheng, X.W.; Wang, H. Spark plasma sintering of B4C-TiB2-SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceram. Int. 2018, 44, 21626–21632. [Google Scholar] [CrossRef]
- Orozco, V.G.; Beltrán, A.S.; Beltrán, M.S.; Prieto, H.M.; Guel, I.E.; Sánchez, R.M.; Duarte, J.M.M. Microstructural and mechanical characterization of Al banocomposites using GCNs as a reinforcement fabricated by induction sintering. Int. J. Mol. Sci. 2023, 24, 5558. [Google Scholar] [CrossRef]
- Gong, M.Y.; Zhang, H.; Hai, W.X.; Liu, M.L.; Chen, Y.H. High Strength of SiC-AlN-TiB2-VC Multiphase Ceramics Induced by Interface Reactions. Ceram. Int. 2024, 50, 45016–45024. [Google Scholar] [CrossRef]
- Anstis, G.R.; Chantikul, P.; Lawn, B.R. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Z.H.; Hai, W.X. Microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics. J. Eur. Ceram. Soc. 2021, 41, 7498–7506. [Google Scholar] [CrossRef]
- Zhou, L.; Li, H.; Zheng, Y. Effects of annealing treatment on the microstructure and mechanical properties of the AlN-SiC-TiB2 ceramic composites prepared by SHS-HIP. J. Alloy. Comp. 2013, 552, 499–503. [Google Scholar] [CrossRef]
- An, L. The Mechanical Properties and Corrosion Resistance of AlN-SiC Ceramic Composites. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
- Pan, Y.; Tan, S.; Jiang, D. In-situ characterization of SiC-AlN multiphase ceramics. J. Mater. Sci. 1999, 34, 5357–5360. [Google Scholar] [CrossRef]
- Kobayashi, R.; Tatami, J.; Chen, I.W. High temperature mechanical properties of dense AlN-SiC ceramics fabricated by spark plasma sintering without sintering additives. J. Am. Ceram. Soc. 2011, 94, 4150–4153. [Google Scholar] [CrossRef]
- Shih, C.J.; Meyers, M.A.; Nesterenko, V.F. Damage evolution in dynamic deformation of silicon carbide. Acta Mater. 2000, 48, 2399–2420. [Google Scholar] [CrossRef]
- Mantzari, A.; Marinova, M.; Andreadou, A. On the microstructure and the polytype transformation in 3C-SiC crystals grown by LPE on (001) substrates at different growth conditions. Am. Inst. Phys. 2010, 1292, 79–82. [Google Scholar]
- Zheng, L.; Li, F.; Zhou, Y. Preparation, microstructure, and mechanical properties of TiB2 using Ti3AlC2 as a sintering aid. J. Am. Ceram. Soc. 2012, 95, 2028–2034. [Google Scholar] [CrossRef]
- Dehghani, H.; Khodaei, M.; Yaghobizadeh, O.; Ehsani, N.; Baharvandi, H.R.; Alhosseini, S.H.N.; Javi, H. The effect of AlN-Y2O3 compound on properties of pressureless sintered SiC ceramics-A review. Int. J. Refract. Meth. 2021, 95, 105420. [Google Scholar] [CrossRef]
- Medraj, M. High temperature neutron diffraction study of the Al2O3-Y2O3 system. J. Eur. Ceram. Soc. 2006, 26, 3515–3524. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Liu, M.; Huang, Y.; Huang, Z. Microstructure and mechanical properties of B4C-TiB2-SiC composites fabricated by spark plasma sintering. Ceram. Int. 2020, 46, 3793–3800. [Google Scholar] [CrossRef]
- Borrero-Lopez, O.; Ortiz, A.L.; Guiberteau, F. Effect of microstructure on sliding-wear properties of liquid-phase-sintered α-SiC. J. Am. Ceram. Soc. 2005, 88, 2159–2163. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.K.; Kumar, B.V.M. Tribological characteristics of SiC ceramics sintered with a small amount of yttria. Ceram. Int. 2015, 10, 14780–14789. [Google Scholar] [CrossRef]
- Cramer, C.L.; McMurray, J.W.; Lance, M.J.; Lowden, R.A. Reaction-bond composite synthesis of SiC-TiB2 by spark plasma sintering/field-assisted sintering technology (SPS/FAST). J. Eur. Ceram. 2020, 40, 988–995. [Google Scholar] [CrossRef]
- Sreemany, M.; Ghosh, T.B.; Pai, B.C.; Chakraborty, M. XPS studies on the oxidation behavior of SiC particles. Mater. Res. Bull. 1998, 33, 189–198. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.; Gerson, A.R.; Smart, R.S. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Ténégal, F.; de la Rocque, A.G.; Dufour, G.; Sénémaud, C.; Doucey, B.; Bahloul-Hourlier, D.; Goursat, P.; Mayne, M.; Cauchetier, M. Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect. J. Electron Spectrosc. Relat. Phenom. 2000, 109, 241–248. [Google Scholar] [CrossRef]
- Katrib, A.; Hemming, F.; Wehrer, P. The multi-surface structure and catalyticproperties of partially reduced WO3, WO2 and WC+O2 or W+O2 as characterized by XPS. J. Electron Spectrosc. 1995, 76, 195–200. [Google Scholar] [CrossRef]
- Skopp, A.; Woydt, M. Ceramic and ceramic composite materials with improved friction and wear properties. Tribol. Trans. 1995, 38, 233–242. [Google Scholar] [CrossRef]
Sample | Measured Density /g/cm3 | Relative Density /% | Vickers’ Hardness /GPa | Fracture Toughness /MPa·m1/2 | Bending Strength /MPa |
---|---|---|---|---|---|
S2-1950 | 3.16 | 91.06 | 21.9 ± 0.9 | - | - |
S2-2000 | 3.31 | 95.38 | 25.3 ± 1.0 | 5.13 ± 0.4 | - |
S2-2050 | 3.31 | 95.50 | 26.8 ± 1.6 | 5.12 ± 0.6 | - |
S2-2100 | 3.32 | 95.56 | 27.2 ± 1.1 | 4.95 ± 0.6 | - |
S1-1900 | 3.31 | 95.28 | 26.7 ± 1.4 | 5.10 ± 0.4 | 438 ± 22 |
S1-1950 | 3.34 | 96.11 | 26.8 ± 0.7 | 5.39 ± 0.6 | 450 ± 54 |
S1-2000 | 3.41 | 98.27 | 28.3 ± 1.6 | 5.74 ± 0.5 | 553 ± 22 |
S1-2050 | 3.32 | 95.53 | 27.0 ± 1.2 | 4.95 ± 0.3 | 444 ± 43 |
S1-2100 | 3.34 | 96.56 | 27.1 ± 1.6 | 4.98 ± 1.2 | 467 ± 29 |
Sample | Average CoF | Average WRs/(mm3/N·m) |
---|---|---|
S1-1900 | 0.45 | 3.62 × 10−5 |
S1-1950 | 0.46 | 6.63 × 10−5 |
S1-2000 | 0.51 | 6.81 × 10−5 |
S1-2050 | 0.42 | 7.18 × 10−5 |
S1-2100 | 0.47 | 8.02 × 10−5 |
Sample | Average CoF | Average WRs/(mm3/N·m) |
---|---|---|
S1-2000 | 0.47 | 2.46 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, M.; Zhang, H.; Hai, W.; Liu, M.; Chen, Y. Microstructure, Mechanical, and Tribological Properties of SiC-AlN-TiB2 Multiphase Ceramics. Lubricants 2024, 12, 412. https://doi.org/10.3390/lubricants12120412
Gong M, Zhang H, Hai W, Liu M, Chen Y. Microstructure, Mechanical, and Tribological Properties of SiC-AlN-TiB2 Multiphase Ceramics. Lubricants. 2024; 12(12):412. https://doi.org/10.3390/lubricants12120412
Chicago/Turabian StyleGong, Maoyuan, Hai Zhang, Wanxiu Hai, Meiling Liu, and Yuhong Chen. 2024. "Microstructure, Mechanical, and Tribological Properties of SiC-AlN-TiB2 Multiphase Ceramics" Lubricants 12, no. 12: 412. https://doi.org/10.3390/lubricants12120412
APA StyleGong, M., Zhang, H., Hai, W., Liu, M., & Chen, Y. (2024). Microstructure, Mechanical, and Tribological Properties of SiC-AlN-TiB2 Multiphase Ceramics. Lubricants, 12(12), 412. https://doi.org/10.3390/lubricants12120412