Progress of Multidimensional Nano-Additives under Dry/Liquid Wear: A Review
Abstract
:1. Introduction
2. Zero-Dimensional Nano-Additives in Tribology
2.1. Contributions of 0D Nano-Additives on Lubrication Films under Dry Wear
2.2. Enhancements of 0D Nano-Additives on Lubrication Films under Liquid Wear
2.3. Wear Mechanisms of 0D Nano-Additives
3. One-Dimensional Nano-Additives in Tribology
3.1. Contributions of 1D Nano-Additives to Lubrication Films under Dry Wear
3.2. Enhancements of 1D Nano-Additives on Lubrication Films under Liquid Wear
3.3. Wear Mechanisms of 1D Nano-Additives
4. Two-Dimensional Nano-Additives in Tribology
4.1. Contributions of 2D Nano-Additives on Lubrication Films under Dry Wear
4.2. Enhancements of 2D Nano-Additives on Lubrication Films under Liquid Wear
4.3. Wear Mechanisms of 2D Nano-Additives
5. Three-Dimensional Nano-Additives in Tribology
5.1. Contributions of 3D Nano-Additives on Lubrication Films under Dry Wear
5.2. Enhancements of 3D Nano-Additives on Lubrication Films under Liquid Wear
5.3. Wear Mechanisms of 3D Nano-Additives
6. Conclusions and Prospect
- Various nanoparticles have demonstrated their effectiveness as additives for solid lubrication. The unique structural morphologies, superior molecular structures, and excellent chemical inertia of 0D nano-additives contribute to their exceptional tribological properties in friction pairs. Furthermore, the incorporation of 0D nano-additives can optimize coatings and enhance the wear-resistance, friction-reduction, and load-bearing capacities of lubricants. However, nanoparticles often agglomerate in matrix materials or lubricants, forming large aggregates that can create interface defects and stress concentrations, leading to the acceleration of wear and material failure. In addition, functionalized nanoparticles may lose their surface modifications under high temperatures or in extreme conditions, which limits their use in harsh environments. Despite these challenges, with advances in optimization techniques and safety assessments, 0D nano-additives continue to hold significant promise in the field of tribology.
- Representative studies have confirmed that the one-dimensional nanomaterial systems exhibit exceptional resistance to high-pressure-induced wear. This is because the introduction of the nanomaterial alters the primary wear mechanisms that occur during friction: a reputable “nano-rolling effect” transforms the surface contact type from being sliding contact to rolling contact; this is reflective of outstanding tribological properties under both dry and lubricated conditions. Additionally, the special toughening mechanisms can enhance the effective fracture toughness of composites. Thus, one-dimensional nanomaterial systems are deemed to be an ideal additive for anti-wear purposes. Unfortunately, 1D nanomaterials with high aspect ratios often become entangled in lubricants or matrix materials, thus impacting their performances at frictional interfaces. Additionally, their long-term stability under extreme conditions, such as high temperature, pressure, or chemical corrosion, remains a concern. These harsh environments may compromise the surface-modification layer, thereby limiting their applicability.
- The relatively low shear strength that occurs between the layers of two-dimensional nano-additives endows them with exceptional shear properties, facilitating active loading transfer even under extreme pressure, effectively reducing the run-in time. This in turn promotes the formation of high-performance tribofilms. Moreover, their mechanical properties, including the hardness and toughness of the coating structure, can be significantly enhanced by refining through two-dimensional nano-additives. At the same time, tribofilms at the contact interface can be formed to directly prevent contact between friction pairs. However, the practical applications face several limitations: sheet overlap easily occurs in the matrix. With regard to this problem, it is urgent that researchers develop effective dispersants and optimize the dispersion processes; these increase process complexity and may affect material properties. Additionally, synthesizing high-quality 2D nanomaterials requires precise condition control, often resulting in higher processing costs.
- Well-crafted three-dimensional nanomaterials not only inherit the primary properties of their components but also play a direct role in optimizing the mechanical and tribological behaviors for the substrate. Moreover, multidimensional interactions endow three-dimensional nanocomposites with unique advantages that can address issues such as the poor dispersion of a single nano-additives, the insufficient mechanical strength of metal matrices, and the induction of tribofilm formation. For instance, the incorporation of two-dimensional nano-additives plays a pivotal role in impeding the agglomeration of zero-dimensional nanomaterials; meanwhile, in order to enhance the surface properties of nanomaterials with other dimensions, zero-dimensional nanoparticles should be employed for modification. Currently, the achievements surrounding low friction and high wear resistance as well as strong adhesion in tribofilms are contingent upon the utilization of nano-mixtures with optimal dispersions. Nevertheless, applications of 3D nano-additives as nano-fillers are confronted with limitations and potential threats, which may bring health and environmental risks; this situation requires comprehensive evaluation and management.
- Many studies on the formation mechanisms of friction films show that well-designed functional nano-additives contribute to the regulation of nanostructures and the self-lubricating properties of tribofilms. Meanwhile, the design of new nano-additives and lubricating oils provides broad application prospects for development in various industries. However, the effects of nano-additives on tribological behaviors are complex because they are not immune to the defects and contamination threats that might reduce tribological performance and reproducibility. Thus, the complexities of the tribological properties of nanocomposites should be comprehensively evaluated to obviate the potential risks that might face their tribological applications. In our exploration of the potential of nano-additives, understanding the specific mechanisms and limitations of the formation of tribofilms is especially crucial. Tribofilms form through physical adsorption, chemical reactions, and mechanical mixing, and each of these mechanisms is faced with its own challenges: physical adsorption films can easily fail; chemical reaction films are difficult to control; and mechanical mixed films are often uneven. A deep comprehension of the pros and cons of these mechanisms is essential for developing more efficient nano-additives and lubrication systems; such an understanding will contribute to our ability to overcome performance instability, thereby expanding the potential applications of the composites across various industries.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, T.; Chen, N.; Fang, J.; Cai, G.; Wang, J.; Chen, B.; Liang, Q. Micro/nano carbon spheres as liquid lubricant additive: Achievements and prospects. J. Mol. Liq. 2022, 357, 119090. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Gupta, M.K.; Zhao, W.; Khan, A.M. Tool wear mechanisms and its influence on machining tribology of face milled titanium alloy under sustainable hybrid lubri-cooling. Tribol. Int. 2022, 170, 107497. [Google Scholar] [CrossRef]
- Mir, A.; Luo, X.; Llavori, I.; Roy, A.; Zlatanovic, D.L.; Joshi, S.N.; Goel, S. Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals. J. Mech. Behav. Biomed. Mater. 2022, 130, 105185. [Google Scholar] [CrossRef] [PubMed]
- Woydt, M. Material efficiency through wear protection—The contribution of tribology for reducing CO2 emissions. Wear 2022, 488–489, 204134. [Google Scholar] [CrossRef]
- Yao, J.; Fan, S.; Song, N.; Zhang, Y.; Zhang, S. Surface regulation of silicon dioxide nanoparticle and its tribological properties as additive in base oils with different polarity. Tribol. Int. 2024, 191, 109105. [Google Scholar] [CrossRef]
- Hienuki, S.; Mitoma, H.; Ogata, M.; Uchida, I.; Kagawa, S. Environmental and energy life cycle analyses of passenger vehicle systems using fossil fuel-derived hydrogen. Int. J. Hydrogen Energy 2021, 46, 36569–36580. [Google Scholar] [CrossRef]
- Yuan, X.-H.; Yan, G.-D.; Li, H.-T.; Liu, X.; Su, C.-Q.; Wang, Y.-P. Research on energy management strategy of fuel cell–battery–supercapacitor passenger vehicle. Energy Rep. 2022, 8, 1339–1349. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, S.; Wu, Y.; Yan, R.; Li, Y.; Guo, X. Study on a Two-dimensional nanomaterial reinforced wormlike micellar system. J. Mol. Liq. 2022, 346, 118236. [Google Scholar] [CrossRef]
- Rodichev, A.; Novikov, A.; Gorin, A.; Tokmakova, M. Analysis of the wear resistance of a hard anti-friction coating, applied to a plain bearing, under the conditions of boundary friction. Transp. Res. Procedia 2021, 57, 573–580. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Y.; Zhao, H.; Li, S.; Ni, J.; Li, X. Influence of hardness of nanoparticle additive in PTFE solid lubricant on tribological properties of GCr15 steel with bionic texture. Tribol. Int. 2023, 189, 108915. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Cao, C.; Li, H.; Fan, X.; Xu, X.; Zhu, M. Solid-liquid phase change of choline chloride type deep eutectic solvents towards lubrication regime. J. Mol. Liq. 2022, 365, 120162. [Google Scholar] [CrossRef]
- Yang, K.; Yuan, J.; Zhang, Y.; Liu, R.; Feng, W.; Shang, G.; Yan, H. Synergy of hyperbranched polysiloxane and MoS2/rGO heterostructured particles for enhancing polyimide bonded solid lubricating coatings. Prog. Org. Coat. 2022, 173, 107183. [Google Scholar] [CrossRef]
- Liu, Y.; Sipe, J.M.; Xu, W.; Zhu, X.; Bai, L.; Xu, D.; Li, G.; Liang, H.; Wiesner, M.R. Study on the mechanisms for the influence of nanomaterials on the separation performance of nanocomposite membrane from a modeling perspective. Desalination 2022, 532, 115740. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Zheng, J.; Wang, X.; Xia, S.; Van der Bruggen, B. A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J. Membr. Sci. 2022, 661, 120952. [Google Scholar] [CrossRef]
- Boateng, G.O.; Adams, E.A. A multilevel, multidimensional scale for measuring housing insecurity in slums and informal settlements. Cities 2023, 132, 104059. [Google Scholar] [CrossRef]
- Houshi, M.N.; Aakyiir, M.; Stephen, S.; Wang, R.; Kuan, H.-C.; Meng, Q.; Ma, J. A green and solvent-free method for simultaneously producing graphene nanoplatelets, nanoscrolls, and nanodots and functionalizing their surface for epoxy nanocomposites. Smart Mater. Manuf. 2023, 1, 100018. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Wang, J.; He, Y.; Yuan, J.; Men, X. Well-aligned MXene@MoS2/Carbon nanofiber aerogels reinforced epoxy composites with splendid thermal and tribological performance. Carbon 2023, 213, 118222. [Google Scholar] [CrossRef]
- Sang, L.V. Graphene nanospheres and their mechanical and tribological responses. Tribol. Int. 2023, 188, 108853. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Y.; Zhang, X.; Guan, X.; Zhang, C.; Wu, W.; Fan, C. Facile synthesis of self-nitrogen-doped carbon spheres for high-efficient photocatalytic CO2 reduction to CO. Mater. Lett. 2024, 358, 135887. [Google Scholar] [CrossRef]
- Kumar, N.; Gajraj, V.; Rameshbabu, R.; Mangalaraja, R.V.; Joshi, N.C.; Priyadarshi, N. Redox additive electrolyte assisted promising pseudocapacitance from strictly 1D and 2D blended structures of MnO2/rGO. Mater. Charact. 2022, 189, 111991. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X. Effect of morphology on tribological properties of Fe3O4 as lubricant additive: Nanospheres, nanowires and nanosheets. Tribol. Int. 2024, 191, 109201. [Google Scholar] [CrossRef]
- Biswas, S.; Kumbhakar, P.; Kobayashi, T. Viscosity sensing by low power optical self phase modulation in two dimensional copper oxide nanostructures. Optik 2022, 252, 168546. [Google Scholar] [CrossRef]
- Thennarasi, A.; Vasu, K. One and two-dimensional control growth of MoSe2−x nanostructures. Mater. Today Commun. 2022, 32, 103934. [Google Scholar] [CrossRef]
- Umar, M.I.A.; Dahlan, D.; Nurdin, M.; Oyama, M.; Umar, A.A. Two-dimensional crystal growth in ZnO nanostructures directed by poly vinylpyrrolidone. Mater. Lett. 2021, 304, 130649. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, L.; Dong, C.; Liu, J.; Yang, B.; Chen, Y.; Hu, Z. Two-dimensional semiconductor heterojunction nanostructure for mutually synergistic sonodynamic and chemoreactive cancer nanotherapy. Chem. Eng. J. 2022, 431, 134017. [Google Scholar] [CrossRef]
- Dao, T.L.K.; Tieu, A.K.; Tran, B.H. Insights of nanostructure and nanomechanical properties of the tribofilm derived from CoAl-hexametaphosphate layered double hydroxide on sliding steel surfaces. Tribol. Int. 2023, 189, 109007. [Google Scholar] [CrossRef]
- Sathish Kumar, T.; Ashok, B.; Senthil Kumar, M.; Vignesh, R.; Saiteja, P.; Ramachandra Bhat Hire, K.; Harshal Tote, M.; Pandey, R.; Jadhav, A.; Gupta, A.; et al. Biofuel powered engine characteristics improvement through split injection parameter multivariate optimization with titanium based nano-particle additives. Fuel 2022, 322, 124178. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Xie, Q.; Liu, J.; Sun, S.; Zhou, M.; Zhang, Y. pH-Regulated host-guest architecture in molybdenum Dioxide/Carbon sphere composites for flexible solid-state supercapacitors. Chem. Eng. J. 2024, 481, 148558. [Google Scholar] [CrossRef]
- Kalin, M.; Kogovšek, J.; Remškar, M. Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 2012, 280–281, 36–45. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, X.; Lu, G.; Chen, Y.; Yang, Z.; Wu, C.; Xue, Y.; Ibrahim, A.M.M. Friction and wear behaviors of TC4 alloy with surface microporous channels filled by Sn-Ag-Cu and Al2O3 nanoparticles. Surf. Coat. Technol. 2020, 387, 125552. [Google Scholar] [CrossRef]
- Pourmirzaagha, H.; Rouhi, S. Molecular dynamic simulations of the heat transfer in double-layered graphene/silicene nanosheets. Phys. B Condens. Matter 2023, 666, 415079. [Google Scholar] [CrossRef]
- Arshad, M.U.; Wei, C.; Li, Y.; Li, J.; Khakzad, M.; Guo, C.; Wu, C.; Naraghi, M. Mechanics—Microstructure relations in 1D, 2D and mixed dimensional carbon nanomaterials. Carbon 2023, 204, 162–190. [Google Scholar] [CrossRef]
- Wang, W.; Gong, P.; Hou, T.; Wang, Q.; Gao, Y.; Wang, K. Tribological performances of BP/TiO2 nanocomposites as water-based lubrication additives for titanium alloy plate cold rolling. Wear 2022, 494–495, 204278. [Google Scholar] [CrossRef]
- Hussain, M.; Rao, P.N.; Singh, D.; Jayaganthan, R.; Goel, S.; Saxena, K.K. Insight to the evolution of nano precipitates by cryo rolling plus warm rolling and their effect on mechanical properties in Al 6061 alloy. Mater. Sci. Eng. A 2021, 811, 141072. [Google Scholar] [CrossRef]
- Arjunan, A.; Ramasamy, S.; Kim, J.; Kim, S.-K. Co3O4 nanoparticles-embedded nitrogen-doped porous carbon spheres for high-energy hybrid supercapacitor electrodes. J. Energy Storage 2023, 68, 107758. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Z.; Xu, Y.; Yin, P.; Yang, L.-X.; Wang, F.; Guo, X.; Liu, G.; Yang, Z.-L. Simple preparation of two-dimensional lamellar ammonium cobalt phosphate materials derived from ZIF-L and its application in supercapacitors. J. Alloys Compd. 2022, 927, 167030. [Google Scholar] [CrossRef]
- Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol. 2022, 19, 2657–2694. [Google Scholar] [CrossRef]
- Navada, M.K.; Rai, R.; A, G.; Patil, S. Synthesis and characterization of size controlled nano copper oxide structures for antioxidant study and as eco-friendly lubricant additive for bio-oils. Ceram. Int. 2022, 49, 10402–10410. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, S.; Tang, Y.; Li, W.; Hai, L.; Zhang, X.; Li, Y.; Gao, F. Wearable electrochemical glucose sensor of high flexibility and sensitivity using novel mushroom-like gold nanowires decorated bendable stainless steel wire sieve. Anal. Chim. Acta 2024, 1288, 342148. [Google Scholar] [CrossRef]
- Rathore, D. Chapter 1—Nanocomposites: An introduction. In Nanotechnology in the Automotive Industry; Song, H., Nguyen, T.A., Yasin, G., Singh, N.B., Gupta, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–14. [Google Scholar] [CrossRef]
- Ren, H.; Chen, W.-S.; Chen, J.-D.; Yang, J.-P.; Zhang, Y.-F.; Hou, H.-Y.; Tian, S.; Ge, H.-R.; Li, Y.-Q.; Tang, J.-X. Unraveling the electrical energy loss in silver nanowire electrodes for flexible and Large-Area organic solar cells. Chem. Eng. J. 2024, 481, 148498. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Sun, Y.; Phuhongsung, P. Improving 3D/4D printing characteristics of natural food gels by novel additives: A review. Food Hydrocoll. 2022, 123, 107160. [Google Scholar] [CrossRef]
- Sedelnikova, M.B.; Sharkeev, Y.P.; Tolkacheva, T.V.; Uvarkin, P.V.; Chebodaeva, V.V.; Prosolov, K.A.; Bakina, O.V.; Kashin, A.D.; Shcheglova, N.A.; Panchenko, A.A.; et al. Additively manufactured porous titanium 3D–scaffolds with antibacterial Zn-, Ag- calcium phosphate biocoatings. Mater. Charact. 2022, 186, 111782. [Google Scholar] [CrossRef]
- Solis, D.M.; Czekanski, A. 3D and 4D additive manufacturing techniques for vascular-like structures—A review. Bioprinting 2022, 25, e00182. [Google Scholar] [CrossRef]
- Yu, P.; Li, G.; Zhang, L.; Zhao, F.; Guo, Y.; Pei, X.-Q.; Zhang, G. Role of SiC submicron-particles on tribofilm growth at water-lubricated interface of polyurethane/epoxy interpenetrating network (PU/EP IPN) composites and steel. Tribol. Int. 2021, 153, 106611. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, X.; Liu, Y.; Huang, J.; Wu, S.; Zhou, P.; Li, H. Onion-like carbon nanoparticles as additives in lubricant oil deform inelastically during the wear testing for improved lubrication performances. Mater. Chem. Phys. 2024, 314, 128836. [Google Scholar] [CrossRef]
- Amiri, M.K.; Zahmatkesh, S.; Sarmasti Emami, M.R.; Bokhari, A. Curve fitting model of Polycarbonate Al2O3-nanoparticle membranes for removing emerging contaminants from wastewater: Effect of temperature and nanoparticles. Chemosphere 2023, 322, 138184. [Google Scholar] [CrossRef]
- Cao, Y.; Nasr, S.; Kumar Singh, P.; Fateh, M.; Ameen, H.; Abed, A.M.; Anwar Khan, S.; Yousuf Usmani, A.; Ali, R.; Aouaini, F.; et al. Combination effect of Fe3O4 and Al2O3 nanoparticles on natural convection inside an inclined enclosure: CFD numerical approach. Ain Shams Eng. J. 2023, 14, 102285. [Google Scholar] [CrossRef]
- Suryawanshi, S.R.; Dond, D.K.; Chavan, H.A. Influence of nanoparticle additives on vibration characteristics in fluid film lubricated journal bearing using real time analysis. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Suh, J.; Chun, Y.B.; Jin, H.H.; Kang, S.H.; Han, H.N. Control of the grain structure and wear behavior of a Y2O3 nanoparticle dispersed Stellite 6 alloy fabricated by laser-directed energy deposition. J. Alloys Compd. 2024, 1002, 175326. [Google Scholar] [CrossRef]
- Del Río, J.M.L.; Mariño, F.; López, E.R.; Gonçalves, D.E.P.; Seabra, J.H.O.; Fernández, J. Tribological enhancement of potential electric vehicle lubricants using coated TiO2 nanoparticles as additives. J. Mol. Liq. 2023, 371, 121097. [Google Scholar] [CrossRef]
- Ghavidel, N.; Allahkaram, S.R.; Naderi, R.; Barzegar, M.; Bakhshandeh, H. Corrosion and wear behavior of an electroless Ni-P/nano-SiC coating on AZ31 Mg alloy obtained through environmentally-friendly conversion coating. Surf. Coat. Technol. 2020, 382, 125156. [Google Scholar] [CrossRef]
- Huang, P.-C.; Hou, K.-H.; Hong, J.-J.; Lin, M.-H.; Wang, G.-L. Study of fabrication and wear properties of Ni–SiC composite coatings on A356 aluminum alloy. Wear 2021, 477, 203772. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, T.; Ye, M.; Liu, D.; Liu, S. The regulation of the microstructure, luminescence and lubricity of multi-element doped carbon nanodots with alkylated diquaternary 1, 4-Diazabicyclo[2.2.2]octane derived dicationic ionic liquids inserted in carbon skeleton. Carbon 2019, 150, 319–333. [Google Scholar] [CrossRef]
- Varalakshmi, M.V.; Venugopal Reddy, V. A study on the effect of the addition of copper nanoparticles on the tribological performance of Polyalphaolefin synthetic oil. Mater. Today Proc. 2022, 66, 643–647. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Qiu, Y.; Guo, R.; Xu, F.; Liu, S.; Ye, Q.; Zhou, F. Nitrogen-doped porous carbon nanospheres derived from hyper-crosslinked polystyrene as lubricant additives for friction and wear reduction. Tribol. Int. 2022, 169, 107458. [Google Scholar] [CrossRef]
- Ghahremani, A.; Abdullah, A.; Fallahi Arezoodar, A. Wear behavior of metal matrix nanocomposites. Ceram. Int. 2022, 48, 35947–35965. [Google Scholar] [CrossRef]
- Wang, Z.; Niu, F.; Wang, Z.; Li, J.; Sun, T.; Zhu, Y. Friction and wear characteristics of agglomerated diamond abrasives and lapping performance of fixed agglomerated diamond pads. Wear 2021, 470–471, 203598. [Google Scholar] [CrossRef]
- Zhang, W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide. Adv. Colloid Interface Sci. 2022, 301, 102604. [Google Scholar] [CrossRef]
- Das, P.; Banerjee, S.; Das, N.C. 23—Polymer-graphene composite in aerospace engineering. In Polymer Nanocomposites Containing Graphene; Rahaman, M., Nayak, L., Hussein, I.A., Das, N.C., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 683–711. [Google Scholar] [CrossRef]
- Teles, F.; Martins, G.; Antunes, F. Fire retardancy in nanocomposites by using nanomaterial additives. J. Anal. Appl. Pyrolysis 2022, 163, 105466. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wei, D.B.; Wu, P.F.; Cao, J.W.; Shijia, C.R.; Qu, X.H. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear 2020, 444–445, 203182. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, Y.; He, Y.; Xiao, L.; Xu, P.; Puglia, D.; Ma, P. Preparation of toughened poly(lactic acid)-poly(ε-caprolactone)-lignin nanocomposites with good heat- and UV-resistance. Ind. Crops Prod. 2022, 183, 114965. [Google Scholar] [CrossRef]
- Tran, N.V.; Tieu, A.K.; Zhu, H.T.; Ta, H.T.T.; Sang, P.T.; Le, H.M.; Ta, T.D. Insights into the tribochemistry of sliding iron oxide surfaces lubricated by sodium silicate glasses: An ab initio molecular dynamics study. Appl. Surf. Sci. 2020, 528, 147008. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wei, D.B.; Wu, P.F.; Cao, J.W.; Shijia, C.; Qu, X.H.; Fu, K.X. Effect of graphite type on the contact plateaus and friction properties of copper-based friction material for high-speed railway train. Wear 2019, 432, 202927. [Google Scholar] [CrossRef]
- Khan, A.M.; Wu, H.X.; Ma, Q.; Chung, Y.W.; Wang, Q.J.N. Relating Tribological Performance and Tribofilm Formation to the Adsorption Strength of Surface-Active Precursors. Tribol. Lett. 2019, 68, 9. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.G.; Li, G.T.; Zhao, F.Y.; Che, Q.L.; Wang, C.; Zhang, G. Tuning the tribofilm nanostructures of polymer-on-metal joint replacements for simultaneously enhancing anti-wear performance and corrosion resistance. Acta Biomater. 2019, 87, 285–295. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, K.; Ye, J.; Li, X.; Zhao, X.; Qu, T.; Liu, Q.; Gao, B. The effects of filler type on the friction and wear performance of PEEK and PTFE composites under hybrid wear conditions. Wear 2022, 490–491, 204178. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, L.; Zhang, G.; Wang, T.; Wang, Q. Comparative study of tribochemistry of ultrahigh molecular weight polyethylene, polyphenylene sulfide and polyetherimide in tribo-composites. J. Colloid Interface Sci. 2018, 514, 615–624. [Google Scholar] [CrossRef]
- Sidebottom, M.A.; Pitenis, A.A.; Junk, C.P.; Kasprzak, D.J.; Blackman, G.S.; Burch, H.E.; Harris, K.L.; Sawyer, W.G.; Krick, B.A. Ultralow wear Perfluoroalkoxy (PFA) and alumina composites. Wear 2016, 362–363, 179–185. [Google Scholar] [CrossRef]
- Chang, Z.; Ge, Y.; Sun, L.; Wang, W.; Zhou, J. The micro-zones formation of Zr-based bulk metallic glass composite fabricated by laser 3D printing. J. Manuf. Process. 2022, 76, 167–174. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, X.; Yang, Z.; Wu, C.; Lu, G.; Xue, Y. Tribological property and frictional noise performance of titanium alloys with Sn–Ag–Cu and TiC filled into surface dimples. Tribol. Int. 2020, 144, 106121. [Google Scholar] [CrossRef]
- Amenta, F.; Bolelli, G.; D’Errico, F.; Ottani, F.; Pedrazzi, S.; Allesina, G.; Bertarini, A.; Puddu, P.; Lusvarghi, L. Tribological behaviour of PTFE composites: Interplay between reinforcement type and counterface material. Wear 2022, 510, 204498. [Google Scholar] [CrossRef]
- Bin Yaqub, T.; Vuchkov, T.; Bruyere, S.; Pierson, J.F.; Cavaleiro, A. A revised interpretation of the mechanisms governing low friction tribolayer formation in alloyed-TMD self-lubricating coatings. Appl. Surf. Sci. 2022, 571, 151302. [Google Scholar] [CrossRef]
- Chung, J.O.; Go, S.R.; Kim, J.H.; Choi, J.G.; Kim, H.R.; Choi, H.B. Effect of MoS2 on transfer film formation and friction coefficients in NAO friction material. Ind. Lubr. Tribol. 2019, 71, 221–231. [Google Scholar] [CrossRef]
- Sun, N.; Cheng, Y.; Zhu, T.; Wang, H.; Pan, L.; Liao, N.; Li, Y.; Xie, Z. Tribological properties and wear resistance mechanism of WC-ZrO2-Al2O3 ceramics. J. Alloys Compd. 2023, 960, 171069. [Google Scholar] [CrossRef]
- Liu, H.; Hsu, S.M. Modeling of microfracture-induced wear and wear transition in sliding of polycrystalline alumina ceramics. Wear 1996, 195, 169–177. [Google Scholar] [CrossRef]
- Peeters, S.; Barlini, A.; Jain, J.; Gosvami, N.N.; Righi, M.C. Adsorption and decomposition of ZDDP on lightweight metallic substrates: Ab initio and experimental insights. Appl. Surf. Sci. 2022, 600, 153947. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, H.; Tan, H.; Chen, W.; Zhu, S.; Cheng, J.; Zhang, Y.; Yang, J. Effects of graphite contents on the microstructure evolution, mechanical properties and high temperature tribological behavior of Cu–Ni–Al/Gr solid-lubricating composites. Tribol. Int. 2023, 179, 108193. [Google Scholar] [CrossRef]
- Liu, Y.; Shuai, C.; Lu, G.; Yang, X.; Hu, X. Tribological characteristics and mechanism of nitrile butadiene rubber coated with typical liquid lubricants. Polym. Test. 2022, 115, 107724. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, X.; Guo, Z.; Xu, Y.; Rao, X.; Yuan, C. Synergetic effects of surface textures with modified copper nanoparticles lubricant additives on the tribological properties of cylinder liner-piston ring. Tribol. Int. 2023, 178, 108085. [Google Scholar] [CrossRef]
- Huang, S.; Wu, H.; Jiang, Z.; Huang, H. Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. J. Manuf. Process. 2021, 71, 625–644. [Google Scholar] [CrossRef]
- Wu, C.; Hong, Y.; Ni, J.; Teal, P.D.; Yao, L.; Li, X. Investigation of mixed hBN/Al2O3 nanoparticles as additives on grease performance in rolling bearing under limited lubricant supply. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130811. [Google Scholar] [CrossRef]
- Al-Sallami, W.; Parsaeian, P.; Dorgham, A.; Neville, A. Oil-soluble ionic liquid to lubricate silicon. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1995–2006. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, F.; Barber, G.C.; Zou, Q.; Wang, J.; Guo, S.; Yuan, Y.; Jiang, Q. Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear 2022, 490–491, 204206. [Google Scholar] [CrossRef]
- Gou, R.; Chen, J.; Luo, X.; Li, K. Tribofilm formation mechanism and friction behavior of polycrystalline diamond compact after cobalt leaching added molybdenum disulfide nanoparticles in different base oils. Int. J. Refract. Met. Hard Mater. 2023, 111, 106101. [Google Scholar] [CrossRef]
- Chang, Q.Y.; Wang, B.; Gao, K. Pressure-dependent anti-wear mechanisms of synthetic magnesium silicate hydroxide nanoparticles. Tribol. Int. 2019, 135, 230–236. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Liu, A.; Wu, C.; Li, W. Tribological performance of silicone oil based Al2O3 nano lubricant for an Mg alloy subjected to sliding at elevated temperatures. Tribol. Int. 2022, 175, 107779. [Google Scholar] [CrossRef]
- Opia, A.C.; Kameil, A.H.M.; Syahrullail, S.; Johnson, C.A.N.; Izmi, M.I.; Mamah, S.C.; Ali, A.I.; Rahim, A.B.A.; Veza, I. Tribological behavior of organic formulated anti-wear additive under high frequency reciprocating rig and unidirectional orientations: Particles transport behavior and film formation mechanism. Tribol. Int. 2022, 167, 107415. [Google Scholar] [CrossRef]
- Pawar, R.V.; Hulwan, D.B.; Mandale, M.B. Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. J. Clean. Prod. 2022, 378, 134454. [Google Scholar] [CrossRef]
- Loo, D.L.; Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T.; Rashid, T.; Pottmaier, D.; Sher, F. Effect of nanoparticles additives on tribological behaviour of advanced biofuels. Fuel 2023, 334, 126798. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Y.; Wan, Y.; Zhang, L.; Yang, D.; Gao, X.; Yu, Q.; Wang, D. Investigation on anti-wear and corrosion-resistance behavior of steel-steel friction pair enhanced by ionic liquid additives under conductive conditions. Tribol. Int. 2023, 177, 108002. [Google Scholar] [CrossRef]
- Dwivedi, A.; Kumar, A.; Goel, V. A consolidated decision-making framework for nano-additives selection in battery thermal management applications. J. Energy Storage 2023, 59, 106565. [Google Scholar] [CrossRef]
- Vignesh, P.; Jayaseelan, V.; Pugazhendiran, P.; Prakash, M.S.; Sudhakar, K. Nature-inspired nano-additives for Biofuel application—A Review. Chem. Eng. J. Adv. 2022, 12, 100360. [Google Scholar] [CrossRef]
- Han, Y.; Hao, D.; Gao, P.; Wen, P.; Fan, M. Tailoring an inorganic-organic double layer tribofilm for high-performance ionic liquid magnesium alloy lubricants. Tribol. Int. 2023, 179, 108197. [Google Scholar] [CrossRef]
- Hu, Z.; Fan, X.; Diao, D. Facilitation of sp2 nanocrystallites on the formation of transfer films for stable low friction with in-situ TEM nanofriction study. Tribol. Int. 2022, 174, 107713. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Zhang, H.; He, W.; Zhang, G.a.; Lu, Z. Effect of silicon-doping on the wide-temperature tribological behavior and lubrication mechanism of WC/a-C film. Wear 2023, 516–517, 204614. [Google Scholar] [CrossRef]
- Chen, A.; Wang, S.; Cai, W.; Mu, Z.; Chen, Y. Tunable synthesis, characterization, and CMP performance of dendritic mesoporous silica nanospheres as functionalized abrasives. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128322. [Google Scholar] [CrossRef]
- Nabhan, A.; Taha, M.; Ghazaly, N.M. Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA). Polym. Test. 2023, 117, 107848. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, R.; Song, H.; Jia, X. Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives. Appl. Surf. Sci. 2018, 428, 630–639. [Google Scholar] [CrossRef]
- Ma, H.Z.; Bai, H.; Zhang, L.; Cheng, D.S. Effect of Ni-Coated Multi-Walled Carbon Nanotubes on the Properties of Ni-B Composite Coatings on Aluminium Alloys. Int. J. Electrochem. Sci. 2022, 17, 22127. [Google Scholar] [CrossRef]
- Islam, A.; Pandey, K.K.; Singh, P.; Kumar, R.; Dommeti, S.G.; Keshri, A.K. Microstructural, mechanical and tribological properties of carbon nanotubes reinforced plasma sprayed molybdenum disulphide composite coatings. Ceram. Int. 2022, 48, 32757–32766. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Huo, Y.; Li, F.; Tang, L. Molecular dynamics simulation of mechanical and tribological properties of nitrile butadiene rubber with different length and content carbon nanotubes. Mater. Today Commun. 2023, 36, 106693. [Google Scholar] [CrossRef]
- Hu, C.; Qi, H.; Yu, J.; Zhang, G.; Zhang, Y.; He, H. Significant improvement on tribological performance of polyimide composites by tuning the tribofilm nanostructures. J. Mater. Process. Technol. 2020, 281, 116602. [Google Scholar] [CrossRef]
- Li, X.; Jia, X.; Xiao, Q.; Li, Y.; Wang, S.; Yang, J.; Song, H.; Zhang, Z. CuO nanowires uniformly grown on carbon cloth to improve mechanical and tribological properties of polyimide composites. Mater. Chem. Phys. 2022, 281, 125852. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, F.; Zhang, J.; Myshkin, N.K.; Zhang, G. Significant friction and wear-reduction role of attapulgite nanofibers compounded in PEEK-Based materials. Compos. Sci. Technol. 2022, 230, 109449. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Yang, C.; Wang, P.; Xing, S.; Zhong, D.; Zhou, X. Effects of graphene and CNTs reinforcement on the friction mechanism of nitrile butadiene rubber under water lubrication conditions. Wear 2022, 500–501, 204334. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, Y.; Yang, Y.; Wu, M.; Yang, G. Formation mechanism of wear-resistant composite film by Span 80-decorated halloysite nanotubes. Ceram. Int. 2022, 48, 23897–23907. [Google Scholar] [CrossRef]
- Pei, X.; Hu, L.; Liu, W.; Hao, J. Synthesis of water-soluble carbon nanotubes via surface initiated redox polymerization and their tribological properties as water-based lubricant additive. Eur. Polym. J. 2008, 44, 2458–2464. [Google Scholar] [CrossRef]
- Li, L.; Wu, C.; Ling, Y.; Hou, C.; Zhang, Q.; Li, Y.; Shi, H.; Wang, H.; Li, C.; Yin, S. A nanobrush-shearing strategy enabling the alignment of 1D nanomaterials for synchronous electrochromic actuators and controlled growth of neural stem cells. Mater. Today Nano 2022, 20, 100256. [Google Scholar] [CrossRef]
- Akram, W.; Chen, Q.; Xia, G.; Fang, J. A review of single electrode triboelectric nanogenerators. Nano Energy 2023, 106, 108043. [Google Scholar] [CrossRef]
- Valandro, L.F.; Cadore-Rodrigues, A.C.; Dapieve, K.S.; Machry, R.V.; Pereira, G.K.R. A brief review on fatigue test of ceramic and some related matters in Dentistry. J. Mech. Behav. Biomed. Mater. 2023, 138, 105607. [Google Scholar] [CrossRef]
- Song, B.; Zhu, X.; Wang, W.; Wang, L.; Pei, X.; Qian, X.; Liu, L.; Xu, Z. Toughening of melamine–formaldehyde foams and advanced applications based on functional design. J. Ind. Eng. Chem. 2022, 119, 130–152. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Zhang, F.; He, P.; Shi, W.; Tan, Y. Oxidation resistance behavior of SiC nanowires/Si layer on the C/SiC composites. Mater. Charact. 2023, 197, 112653. [Google Scholar] [CrossRef]
- Ariffin, M.A.b.; Muhamad, M.R.b.; Raja, S.; Jamaludin, M.F.; Yusof, F.; Suga, T.; Liu, H.; Morisada, Y.; Fujii, H. Friction stir alloying of AZ61 and mild steel with Cu-CNT additive. J. Mater. Res. Technol. 2022, 21, 2400–2415. [Google Scholar] [CrossRef]
- Yin, B.B.; Huang, J.S.; Ji, W.M.; Liew, K.M. Exploring frictional performance of diamond nanothread reinforced polymer composites from the atomistic simulation and density functional theory. Carbon 2022, 200, 10–20. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Wang, Y.; He, Y.; Yang, M.; Li, P.; Yuan, J. Synergistic effects of Ti3C2Tx @SiCnws nanofluids and bio-inspired interfacial modification for optimizing tribological behaviors of fabric liners. Tribol. Int. 2022, 176, 107879. [Google Scholar] [CrossRef]
- Qanbarian, M.; Qasemian, A.; Arab, B.; Ebrahiminejad, S. Explosive boiling of argon on a copper surface coated with graphene/CNT/Cu nanowire; a molecular dynamics study. Int. Commun. Heat Mass Transf. 2022, 135, 106134. [Google Scholar] [CrossRef]
- Zahid, A.; Ahmed, S.; Irfan, M. Experimental investigation of nano materials applicability in Hot Mix Asphalt (HMA). Constr. Build. Mater. 2022, 350, 128882. [Google Scholar] [CrossRef]
- Rajamohan, N.; Bosu, S.; Rajasimman, M.; Varjani, S. Environmental remediation of selenium using surface modified carbon nano tubes—Characterization, influence of variables, equilibrium and kinetic analysis. Environ. Res. 2023, 216, 114629. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Y.; Chia, L. Effects of carbon nanotube (CNT) geometries on the dispersion characterizations and adhesion properties of CNT reinforced epoxy composites. Compos. Struct. 2022, 296, 115942. [Google Scholar] [CrossRef]
- Awotunde, M.A.; Babalola, B.J.; Olubambi, P.A.; Chen, D.L. Recrystallization mechanisms during high-temperature XRD and oxidation behavior of CNT-reinforced NiAl composites. Corros. Sci. 2022, 204, 110384. [Google Scholar] [CrossRef]
- Hassan, A.; Alsubaie, N.; Alharbi, F.M.; Alhushaybari, A.; Galal, A.M. Scrutinization of Stefan suction/blowing on thermal slip flow of ethylene glycol/water based hybrid ferro-fluid with nano-particles shape effect and partial slip. J. Magn. Magn. Mater. 2023, 565, 170276. [Google Scholar] [CrossRef]
- Tomala, A.; Ripoll, M.R.; Kogovšek, J.; Kalin, M.; Bednarska, A.; Michalczewski, R.; Szczerek, M. Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribol. Int. 2019, 129, 137–150. [Google Scholar] [CrossRef]
- Wang, S.; Ren, G.; Li, W.; Wang, B.; Wei, F.; Liang, Z.; Chen, D. A green modification technology of carbon nanotubes toward enhancing the tribological properties of aqueous-based lubricants. Tribol. Int. 2023, 180, 108268. [Google Scholar] [CrossRef]
- Jiang, H.; Hou, X.; Ma, Y.; Su, D.; Qian, Y.; Ahmed Ali, M.K.; Dearn, K.D. The tribological performance evaluation of steel-steel contact surface lubricated by polyalphaolefins containing surfactant-modified hybrid MoS2/h-BN nano-additives. Wear 2022, 504–505, 204426. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kordijazi, A.; Rohatgi, P.K.; Nosonovsky, M. Machine learning models of the transition from solid to liquid lubricated friction and wear in aluminum-graphite composites. Tribol. Int. 2022, 165, 107326. [Google Scholar] [CrossRef]
- Wu, J.; Xi, Y.; Shi, Y. Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 2020, 72, 104659. [Google Scholar] [CrossRef]
- Yan, X.; Yang, Z.; Wang, R.; Xiang, W.; Yang, Z.; Sun, C.; Yu, Q.; Cai, M.; Yu, B. Effect of steric hindrance on lubrication and corrosion resistance of oil soluble ionic liquids. Tribol. Int. 2023, 177, 107925. [Google Scholar] [CrossRef]
- Larsson, E.; Donzel-Gargand, O.; Heinrichs, J.; Jacobson, S. Tribofilm formation of a boric acid fuel additive—Material characterization; challenges and insights. Tribol. Int. 2022, 171, 107541. [Google Scholar] [CrossRef]
- Mittal, P.; Rai, H.; Kumari, S.; Khatri, O.P.; Gosvami, N.N. Efficient friction and wear reduction of Al-Si alloy via tribofilms generated from synergistic interaction of ZDDP and chemically functionalized h-BN additives. Appl. Surf. Sci. 2022, 595, 153520. [Google Scholar] [CrossRef]
- Takayasu, S.; Umezawa, O.; Hashimoto, K. Tribofilm properties and microcrack morphologies for a carburized SCM420 steel under high-pressure rolling sliding contact fatigue with lubricants containing high sulfur- and phosphorus-additives. Wear 2022, 502–503, 204397. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, L.; Yan, M.; He, C.; Zhang, J.; Mou, J.; Wu, D.; Ren, Y. Strategies for improving friction behavior based on carbon nanotube additive materials. Tribol. Int. 2022, 176, 107875. [Google Scholar] [CrossRef]
- Zhang, K.; Huo, L.; Duan, J.; Lu, X.; Men, X.; Xu, C.; Zhou, H. MoS2 nanowires as additives of PFPE for enhanced tribological properties under high vacuum. J. Phys. Chem. Solids 2021, 156, 110172. [Google Scholar] [CrossRef]
- Han, B.; Chen, Y.; Tan, C.; Jiang, M.; Bi, J.; Feng, J.; Chen, X.; Chen, L.; Zhang, L.; Liu, X.; et al. Microstructure and wear behavior of laser clad interstitial CoCrFeNi high entropy alloy coating reinforced by carbon nanotubes. Surf. Coat. Technol. 2022, 434, 128241. [Google Scholar] [CrossRef]
- Gao, C.; Fan, S.; Zhang, S.; Zhang, P.; Wang, Q. Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires. Appl. Surf. Sci. 2018, 444, 364–376. [Google Scholar] [CrossRef]
- Miao, X.; Li, Z.; Liu, S.; Hou, K.; Wang, J.; Yang, S. Ionic bridging strengthened MXene/GO nanocomposite films with extraordinary mechanical and tribological properties. Appl. Surf. Sci. 2023, 625, 157181. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, K.; Gao, Y.; Han, S.; Ju, J.; Ren, T.; Zhao, X. Multifunctional GO-based hydrogel coating on Ti-6Al-4 V Alloy with enhanced bioactivity, anticorrosion and tribological properties against cortical bone. Tribol. Int. 2023, 184, 108423. [Google Scholar] [CrossRef]
- Zhao, X.; Che, Y.; Mo, Y.; Huang, W.; Wang, C. Fabrication of PEI modified GO/MXene composite membrane and its application in removing metal cations from water. J. Membr. Sci. 2021, 640, 119847. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Li, B.; Yang, Q. Investigation of shape memory and heat transfer properties of graphene oxide (GO) reinforced shape memory epoxy resin composites. Mater. Today Commun. 2023, 34, 105170. [Google Scholar] [CrossRef]
- Chen, H.J.; Zheng, Z.W.; Yu, H.X.; Liu, X.L.; Qiao, D.; Feng, D.P.; Song, Z.H.; Zhang, J. High performance composite films assembled on metal substrates with graphene oxide. Surf. Coat. Technol. 2022, 441, 128527. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Fang, F. Fabrication of high-performance nickel/graphene oxide composite coatings using ultrasonic-assisted electrodeposition. Ultrason. Sonochem. 2020, 62, 104858. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, D.; Zhang, L.; He, R.; Li, G.; Myshkin, N.K.; Zhang, G. Significance of g-C3N4 nanosheets for enhancing tribological performance of epoxy subjected to starved lubrication. Tribol. Int. 2022, 174, 107762. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Yang, M.; Yuan, J.; Li, P.; Guo, F.; Men, X. One-step synthesis of g-C3N4 nanosheets to improve tribological properties of phenolic coating. Tribol. Int. 2019, 132, 221–227. [Google Scholar] [CrossRef]
- Yu, B.; Wang, K.; Pang, X.; Wu, G.; Pu, J.; Zhao, H. Tribological properties of alkylated reduced graphene oxide as lubricant additive. Tribol. Int. 2022, 165, 107273. [Google Scholar] [CrossRef]
- Wu, L.; Zhong, Y.; Yuan, H.; Liang, H.; Wang, F.; Gu, L. Ultra-dispersive sulfonated graphene as water-based lubricant additives for enhancing tribological performance. Tribol. Int. 2022, 174, 107759. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Wang, D. PEI-RGO nanosheets as a nanoadditive for enhancing the tribological properties of water-based lubricants. Tribol. Int. 2019, 140, 105851. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, G.; Chen, Z.; Yi, M.; Zhang, J.; Li, Z.; Xu, C. Hexagonal boron nitride (h-BN) nanosheets as lubricant additive to 5CB liquid crystal for friction and wear reduction. Mater. Lett. 2022, 307, 131007. [Google Scholar] [CrossRef]
- Hoviatdoost, A.; Naderi, M.; Ghazitabar, A.; Gholami, F. Fabrication of high-performance ultralight and reusable graphene aerogel/cellulose fibers nanocomposite to remove organic pollutants. Mater. Today Commun. 2023, 34, 105077. [Google Scholar] [CrossRef]
- McHugh, J.G.; Mouratidis, P.; Jolley, K. Dataset for stacking-mediated diffusion of ruthenium nanoclusters in bilayer graphene and graphite. Data Brief 2022, 45, 108702. [Google Scholar] [CrossRef]
- Chen, S.J.; Zhang, Q.; Nguyen, H.D.; Ren, Y.; Liu, Y.; Wang, W.; Gao, W.; Ren, J.; Sagoe-Crentsil, K.; Duan, W. Direct 2D cement-nanoadditive deposition enabling carbon-neutral hydrogen from natural gas. Nano Energy 2022, 99, 107415. [Google Scholar] [CrossRef]
- Pavlíková, M.; Kapicová, A.; Záleská, M.; Pivák, A.; Jankovský, O.; Lauermannová, A.-M.; Lojka, M.; Faltysová, I.; Slámová, J.; Pavlík, Z. Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditives. J. Build. Eng. 2022, 50, 104122. [Google Scholar] [CrossRef]
- Xiao, N.; Chen, Y.; Lin, H.; liaquat, H.; Zhang, F.; Yang, K. Multidimensional nanoadditives in tribology. Appl. Mater. Today 2022, 29, 101641. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Wang, J.; Yang, S. Iron ions induced self-assembly of graphene oxide lubricating coating with self-adapting low friction characteristics. Carbon 2023, 201, 1151–1159. [Google Scholar] [CrossRef]
- Guo, W.; Bai, Q.; Dou, Y.; Chen, S.; Wang, H. Molecular dynamics simulation of frictional strengthening behavior of graphene on stainless steel substrate. Carbon 2022, 197, 183–191. [Google Scholar] [CrossRef]
- Kim, J.-I.; Lee, W.-Y.; Tokoroyama, T.; Murashima, M.; Umehara, N. Friction characteristics of amorphous carbon coating against various 3d-transition metals. Tribol. Int. 2022, 174, 107690. [Google Scholar] [CrossRef]
- Wang, H.; Bai, Q.; Chen, S.; Dou, Y.; Guo, W. Nanoscale mechanism of suppression of friction and wear of the diamond substrate by graphene. Mater. Today Commun. 2022, 33, 104894. [Google Scholar] [CrossRef]
- Moazami-Goudarzi, M.; Nemati, A. Tribological behavior of self lubricating Cu/MoS2 composites fabricated by powder metallurgy. Trans. Nonferrous Met. Soc. China 2018, 28, 946–956. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Qin, L.; Guo, Z.; Lu, Z.; Zhao, X.; Dong, H.; Xiao, Q. Friction and wear properties of a novel interface of ordered microporous Ni-based coating combined with MoS2 under complex working conditions. Tribol. Int. 2023, 189, 108970. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A. MXenes and MXene-based nanomaterials for corrosion protection. Mater. Lett. 2022, 335, 133789. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Tong, H.; Zou, R. Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. iScience 2022, 26, 105824. [Google Scholar] [CrossRef]
- Solangi, N.H.; Mubarak, N.M.; Karri, R.R.; Mazari, S.A.; Kailasa, S.K.; Alfantazi, A. Applications of advanced MXene-based composite membranes for sustainable water desalination. Chemosphere 2022, 314, 137643. [Google Scholar] [CrossRef]
- Sun, L.; Sun, N.; Liu, Y.; Jiang, C. Anisotropic frictional properties between Ti3C2Tx MXene/SiO2 layer-dependent heterojunctions. J. Sci. Adv. Mater. Devices 2021, 6, 488–493. [Google Scholar] [CrossRef]
- Li, N.; Lou, T.-J.; Wang, W.; Li, M.; Jing, L.-C.; Yang, Z.-X.; Chang, R.-Y.; Li, J.; Geng, H.-Z. MXene-PANI/PES composite ultrafiltration membranes with conductive properties for anti-fouling and dye removal. J. Membr. Sci. 2023, 668, 121271. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Xu, Q.; Xue, G.; Yu, H.; Wang, X.; Lu, J.; Cui, G.; Gu, G. Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating. Prog. Org. Coat. 2022, 165, 106673. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Wei, C.; Zhou, D.; Li, B.; Mochalin, V.N.; Wu, C. Friction between MXenes and other two-dimensional materials at the nanoscale. Carbon 2022, 196, 774–782. [Google Scholar] [CrossRef]
- Li, M.; Song, Z.; Gong, M.; Mo, D.; Wang, L.; Dusza, J.; Zhang, C. WC+Co+graphene platelet composites with improved mechanical, tribological and thermal properties. Ceram. Int. 2021, 47, 30852–30859. [Google Scholar] [CrossRef]
- Chen, H.; Ba, Z.; Qiao, D.; Feng, D.; Song, Z.; Zhang, J. Study on the tribological properties of graphene oxide composite films by self-assembly. Tribol. Int. 2020, 151, 106533. [Google Scholar] [CrossRef]
- Kamboj, S.; Thakur, A. Applications of Graphene-Based Composites—A Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Yuan, K.; Li, Q.; Ni, W.; Zhao, L.; Wang, H. Graphene stabilized loess: Mechanical properties, microstructural evolution and life cycle assessment. J. Clean. Prod. 2023, 389, 136081. [Google Scholar] [CrossRef]
- Duan, L.; Jia, D.; Zhan, S.; Zhang, W.; Yang, T.; Tu, J.; Liu, J.; Li, J.; Duan, H. Copper phosphate nanosheets as high-performance oil-based nanoadditives: Tribological properties and lubrication mechanism. Tribol. Int. 2023, 179, 108077. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Zhou, S.; Huang, J.; Zhao, G.; Liu, Y. Improving tribological performance of porous oil-impregnated GO/PA6 composites with double lubrication structure. Diam. Relat. Mater. 2022, 126, 109062. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Z.; Hao, J.; Liu, W. Two strategies to improve the lubricating performance of WS2 film for space application. Tribol. Int. 2022, 175, 107825. [Google Scholar] [CrossRef]
- Ma, W.; Li, T.; Li, W.; Tang, H.; Zhang, L.; Yu, Y.; Qiao, Z. Ti3C2Tx MXenes—An effective and long-storable oil lubricant additive. Tribol. Int. 2023, 180, 108273. [Google Scholar] [CrossRef]
- Tang, G.; Wu, Z.; Su, F.; Wang, H.; Xu, X.; Li, Q.; Ma, G.; Chu, P.K. Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus. Nano Lett. 2021, 21, 5308–5315. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Li, J.; Yi, S.; Ge, X.; Zhang, X.; Luo, J. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide. ACS Appl. Mater. Interfaces 2021, 13, 31947–31956. [Google Scholar] [CrossRef]
- Wang, J.; Han, B.; Wang, C.; Neville, A.; Morina, A. Study on the effect of graphene/Fe3O4 film on friction and wear performance under water lubrication. Diam. Relat. Mater. 2022, 130, 109429. [Google Scholar] [CrossRef]
- Cai, T.; Zhan, S.; Yang, T.; Jia, D.; Tu, J.; Li, Y.; Li, J.; Duan, H. Influence mechanism of organic-modified α-zirconium phosphate on tribological properties of UHMWPE. Wear 2023, 512–513, 204548. [Google Scholar] [CrossRef]
- Zeng, Q.; Ning, Z.; Pang, Z.; Wang, Z.; Zheng, C. Self-assembled multilayer WS2/GO films on amorphous silicon coating for enhancing the lubricating properties. Appl. Surf. Sci. 2023, 624, 157184. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Y.; Huang, X.; Sun, H.; Jiang, S.; Liu, J.; Ortiz, A. Interlayer graphene oxide/binary ionic liquids composite lubricating films with improved load-carrying and anti-wear properties. Thin Solid Film. 2022, 760, 139432. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Yue, Z.; Zhu, M. Mechanism on heterogeneous transfer film formed by diamond-like carbon film under molybdenum disulfide hybrid polyethylene glycol lubrication. Carbon 2023, 210, 118030. [Google Scholar] [CrossRef]
- Pan, J.; Sun, W.; Dong, C.; Gu, X.; Xu, S.; Zhang, K. Robust high-performance self-lubrication of nanostructured Mo-S-Cu-B film. Appl. Surf. Sci. 2023, 623, 157076. [Google Scholar] [CrossRef]
- Li, Z.; Feng, D.; Li, B.; Xie, D.; Mei, Y. FDM printed MXene/MnFe2O4/MWCNTs reinforced TPU composites with 3D Voronoi structure for sensor and electromagnetic shielding applications. Compos. Sci. Technol. 2023, 231, 109803. [Google Scholar] [CrossRef]
- Han, D.S.; Yan, G.; Wang, C.S. Influence of multi-walled carbon nanotubes (MWCNTs) content on metal friction and wear in thermally cracked carbon black (CBp) formulation system during mixing. Polym. Test. 2022, 113, 107674. [Google Scholar] [CrossRef]
- Biradar, R.; Patil, S. A review of tensile, hardness, wear, and microstructural characteristics of friction stir welded/processed composites. Mater. Today Proc. 2022, 82, 8–13. [Google Scholar] [CrossRef]
- Iqbal, A.; Hassan, T.; Gao, Z.; Shahzad, F.; Koo, C.M. MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: A review. Carbon 2023, 203, 542–560. [Google Scholar] [CrossRef]
- Dong, Y.-R.; Sun, W.-C.; Liu, X.-J.; Jia, Z.-W.; Guo, F.; Ma, M.; Ruan, Y.-Y. Effect of CNTs concentration on the microstructure and friction behavior of Ni-GO-CNTs composite coatings. Surf. Coat. Technol. 2019, 359, 141–149. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Chen, B.; Guo, S.; Li, J.; Li, C. One-step hydrothermal synthesis of reduced graphene oxide/zinc sulfide hybrids for enhanced tribological properties of epoxy coatings. Surf. Coat. Technol. 2017, 326, 87–95. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, W. Coupling hybrid of HBN nanosheets and TiO2 to enhance the mechanical and tribological properties of composite coatings. Prog. Org. Coat. 2020, 148, 105881. [Google Scholar] [CrossRef]
- Cui, Y.; Xue, S.; Chen, X.; Bai, W.; Liu, S.; Ye, Q.; Zhou, F. Fabrication of two-dimensional MXene nanosheets loading Cu nanoparticles as lubricant additives for friction and wear reduction. Tribol. Int. 2022, 176, 107934. [Google Scholar] [CrossRef]
- Vardhaman, B.S.A.; Amarnath, M.; Ramkumar, J. Experimental investigations to enhance the tribological behaviour of biodegradable oil by using manganese doped ZnO/FMWCNTs nanomaterials as lubricant additive. Diam. Relat. Mater. 2022, 127, 109155. [Google Scholar] [CrossRef]
- Wei, Q.; Fu, T.; Yue, Q.; Liu, H.; Ma, S.; Cai, M.; Zhou, F. Graphene oxide/brush-like polysaccharide copolymer nanohybrids as eco-friendly additives for water-based lubrication. Tribol. Int. 2021, 157, 106895. [Google Scholar] [CrossRef]
- Ouyang, T.; Shen, Y.; Yang, R.; Liang, L.; Liang, H.; Lin, B.; Tian, Z.Q.; Shen, P.K. 3D hierarchical porous graphene nanosheets as an efficient grease additive to reduce wear and friction under heavy-load conditions. Tribol. Int. 2020, 144, 106118. [Google Scholar] [CrossRef]
- Sui, Y.; Lu, F.; Liu, X.; Zhang, Y.; Sun, X.; Liu, C. A novel hexagonal YFeO3 3D nanomaterial with room temperature ferromagnetic properties prepared by self-assembling method. Results Mater. 2021, 10, 100186. [Google Scholar] [CrossRef]
- Tewari, C.; Tatrari, G.; Kumar, S.; Pandey, S.; Rana, A.; Pal, M.; Sahoo, N.G. Green and cost-effective synthesis of 2D and 3D graphene-based nanomaterials from Drepanostachyum falcatum for bio-imaging and water purification applications. Chem. Eng. J. Adv. 2022, 10, 100265. [Google Scholar] [CrossRef]
- Huang, Y.; Han, Y.; Sun, J.; Zhang, Y.; Han, L. Dual nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials integrated with a smartphone portable electrochemical system for point-of-care non-enzymatic glucose diagnosis. Mater. Today Chem. 2022, 24, 100895. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, J.; Zhang, L.; Zhang, Q.; Xu, X.; Xiong, Y.; Ying, Y.; Fu, Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv. Colloid Interface Sci. 2023, 311, 102828. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zeng, X.; Yan, X.; Xie, F.; Fahlman, B.D.; Wang, C.; Li, W. High aspect ratio copper nanowires and copper nanoparticles decorated by reduced graphene oxide for flexible transparent conductive electrodes. Appl. Surf. Sci. 2022, 604, 154597. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Yang, M.; Li, P.; Wang, Y.; He, Y.; Yuan, J. Novel design of MXene@UiO-66-NH2 hybrid nanofluids towards promoting the mechanical and tribological performance of fabric composites. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107122. [Google Scholar] [CrossRef]
- Rajabi, H.; Jafari, S.M.; Feizy, J.; Ghorbani, M.; Mohajeri, S.A. Preparation and characterization of 3D graphene oxide nanostructures embedded with nanocomplexes of chitosan- gum Arabic biopolymers. Int. J. Biol. Macromol. 2020, 162, 163–174. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, W.; Ma, L.; Zhu, J.; Wang, H.; Hou, K.; Wang, J.; Yang, S. A feasible construction strategy of GO-based hetero-film with long service life at multi-environments: Effective friction transfer application. Tribol. Int. 2022, 168, 107455. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, J.; Chen, J.; Yan, H.; Zhang, Y.; Huang, J.; Zhao, G.; Zhang, Q.; Liu, Y. Polydopamine/polyethyleneimine co-crosslinked graphene oxide for the enhanced tribological performance of epoxy resin coatings. J. Mater. Sci. Technol. 2023, 136, 13–20. [Google Scholar] [CrossRef]
- Chen, B.; Dong, Z.; Li, J.; Zhang, M.; Zhang, K. ZnO nanowires-decorated h-BN hybrid for enhancing the tribological properties of epoxy resin. Prog. Org. Coat. 2021, 161, 106493. [Google Scholar] [CrossRef]
- Nomède-Martyr, N.; Vitulin, M.; Joseph, H.; Thomas, P. Moringa oil with graphite and hexagonal boron nitride particles as additives for lubrication. Diam. Relat. Mater. 2022, 124, 108930. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Cong, H.; Wang, R.; Yang, J.; Li, X.; Zhao, Y.; Wang, H. A review: G-C3N4 as a new membrane material. J. Environ. Chem. Eng. 2022, 10, 108189. [Google Scholar] [CrossRef]
- Miao, X.; Liu, S.; Ma, L.; Yang, Y.; Zhu, J.; Li, Z.; Wang, J. Ti3C2-graphene oxide nanocomposite films for lubrication and wear resistance. Tribol. Int. 2022, 167, 107361. [Google Scholar] [CrossRef]
- Lava Kumar, P.; Lombardi, A.; Byczynski, G.; Narayana Murty, S.V.S.; Murty, B.S.; Bichler, L. Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review. Prog. Mater. Sci. 2022, 128, 100948. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, Y.; Fei, J.; Li, H. Facile fabrication of PEI/BN/PDA hierarchical structure for boosting tribological performances of carbon fiber/resin composites matched with copper dual disk. Tribol. Int. 2022, 172, 107641. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Kong, H.; Li, Y.; Xin, X.; Wang, C.; Liang, Q.; Wang, Y. Lanthanide complexes functionalized carbon dot nanocomposites as lubricant additives for improving tribological performance. Mater. Lett. 2023, 333, 133697. [Google Scholar] [CrossRef]
- Huang, S.; Li, X.; Yu, B.; Jiang, Z.; Huang, H. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. J. Mater. Process. Technol. 2020, 277, 116444. [Google Scholar] [CrossRef]
- Xie, H.; Wei, Y.; Jiang, B.; Tang, C.; Nie, C. Tribological properties of carbon nanotube/SiO2 combinations as water-based lubricant additives for magnesium alloy. J. Mater. Res. Technol. 2021, 12, 138–149. [Google Scholar] [CrossRef]
- Liang, H.; Fu, C.; Yin, T.; Liu, M.; Gao, K.; Zhang, B.; Hua, X.; Fu, Y.; Bu, Y. Stable macroscopic liquid superlubricity induced by asymmetric contact of a mixture of unequal-diameter nanosphere additives. Ceram. Int. 2023, 49, 18728–18734. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Luo, J. Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2016, 489, 400–406. [Google Scholar] [CrossRef]
- Habchi, W.; Sperka, P.; Bair, S. Is Elastohydrodynamic Minimum Film Thickness Truly Governed by Inlet Rheology? Tribol. Lett. 2023, 71, 96. [Google Scholar] [CrossRef]
- Zhang, G.; Häusler, I.; Österle, W.; Wetzel, B.; Jim, B. Formation and function mechanisms of nanostructured tribofilms of epoxy-based hybrid nanocomposites. Wear 2015, 342–343, 181–188. [Google Scholar] [CrossRef]
- Wang, R.; Deng, J.; Zhang, Z.; Lu, Y.; Meng, Y.; Wu, J. Microstructure and wear performance of electro-sprayed self-lubricating Ni3Al/Cr3C2-MoS2 composite films. Surf. Coat. Technol. 2021, 428, 127862. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Zhang, L.; Sheng, X. Construction of a high-performance anti-corrosion and anti-wear coating based on the MXene@PTA-Zn(II): Electrochemical/tribological investigations. Prog. Org. Coat. 2023, 182, 107706. [Google Scholar] [CrossRef]
- Bian, S.; Yu, L.; Xu, J.; Xu, J. Impact of Ag on the microstructure and tribological behaviors of adaptive ZrMoN–Ag composite lubricating films. J. Mater. Res. Technol. 2022, 19, 2346–2355. [Google Scholar] [CrossRef]
- Ouyang, T.; Tang, W.; Pan, M.; Tang, J.; Huang, H. Friction-reducing and anti-wear properties of 3D hierarchical porous graphene/multi-walled carbon nanotube in castor oil under severe condition: Experimental investigation and mechanism study. Wear 2022, 498–499, 204302. [Google Scholar] [CrossRef]
- Xia, R.; Lou, D.; Younes, H.; Haiston, J.; Chen, H.; Hong, H. Synergistic effect of hexagonal boron nitride and carbon nanofibers on tribological behavior of nanolubricant. Tribol. Int. 2023, 177, 107957. [Google Scholar] [CrossRef]
- He, D.; Shang, L.; Li, W.; Cheng, B.; Zhai, H.; Zhang, X.; Lu, Z.; Zhang, G. Friction-induced reconstruction of sliding interface and low friction mechanism of WC/a-C films. Mater. Des. 2023, 226, 111640. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Sayles, R.S.; Kadiric, A. Film formation and friction in grease lubricated rolling-sliding non-conformal contacts. Tribol. Int. 2017, 109, 505–518. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, S.; Hou, K.; Miao, X.; Li, Z.; Wang, J. Tribological properties of MoSx/rGO nanohybrids as additives in deep eutectic solvent. Tribol. Int. 2023, 186, 108652. [Google Scholar] [CrossRef]
Frictional State | Matrix | Reinforcement | Test Conditions | Tribological Results | Ref. | |
---|---|---|---|---|---|---|
COF | Wear | |||||
Dry friction | TC4 alloy | 6 wt% Al2O3 nanoparticles | Si3N4 ball (ball-on-disk; 10 N; 400 °C) | 0.185 | Wear rate: 3.6 × 10−5 mm3 N−1 m−1 | [30] |
Co-based Satellite 6 alloy | 0.6 wt% Nano-Y2O3 | Alumina disk (pin-on-disk, 10 N, 0.1 m/s, 25 °C) | ~0.650 | Specific wear rate: 1.35 × 10−5 mm3 N−1 m−1 | [50] | |
Ni-P coating | 1 g L−1 Nano-SiC | AISI52100 steel pin and AZ31 alloy disk (pin-on-disk; 300 °C) | 0.380 | Wear rate: 4.2 × 10 −5 mm3 N−1 m−1 | [52] | |
Ni coating | 8 vol% Nano-SiC | Silicon nitride ball and A356 aluminum alloy disk (ball-on-disk; 100 N; 20 Hz) | 0.095 | Wear rate: 1.13 × 10−6 mm3/N m | [53] | |
Liquid friction | PEG oil | 1.0 wt% CDs-PF6 | GCr15 steel balls (Four-ball tester, 392 N, 1200 rpm, 75 °C) | 0.030 | Wear loss: 0.199 × 10−3 mm3 | [54] |
PAO8 oil | 0.35 wt% TiO2-OA | 100 Cr6 steel ball and 100 Cr6 steel disc (ball-on-disc, 120 °C, 213 rpm) | 0.098 | Wear scar diameter: 2.89 × 10−4 mm | [51] | |
PAO4 oil | 1.0 wt% Cu nanoparticles | AISI5120 steel balls (Four-ball tester, 392 N, 1200 rpm, 75 °C) | 0.065 | The smallest wear scar diameter | [55] | |
Base oil | 0.06 wt% N@MCNs nanospheres | AISI52100 steel balls and AISI52100 steel disks (ball-on-disk, 150 N, 50 °C, 25 Hz) | 0.110 | Wear volume: 6.05 × 104 μm3 | [56] |
Frictional State | Matrix | Reinforcement | Test Conditions | Tribological Results | Ref. | |
---|---|---|---|---|---|---|
COF | Wear | |||||
Dry friction | Ni-B coating | 0.6 g/L Ni-coated MWCNT | ZrO2 balls (rotary tribo-tester, 350 r/min, 45 °C, current density, 2.5 A/dm2) | 0.486 | Wear capacity: 1.546 × 10−2 mm3 | [101] |
PI | 1.0 wt% CNTs | GCr15 steel ball (ball-on-disc, 10 N, 20 mm/s, 0.12 GPa) | 0.050 | Wear rate: 1.0 × 10−6 mm3/Nm | [104] | |
PI | CuO nanowires | Steel ball and 45# steel disk (ball-on-disk, 3 N, 200 r/min) | ~0.250 | Wear scar width: 0.365 mm | [105] | |
PEEK | 10 CF/5 ATP | GCr15 bearing steel disc (pin-on-disc, 1 m/s, 3 h, 3 Mpa) | ~0.150 | Specific wear rates: 0.6 × 10−6 mm3/Nm | [106] | |
Liquid friction | PAO | 5 wt% MWNTs | AISI52100 steel balls and DIN 100Cr6 steel disks (ball-on-disc, 10 N, 0.005 m/s) | ~0.068 | Wear loss: ~3 × 10−5 mm3 | [29] |
NBR | CNTs | ZCuSn10Zn2 copper alloy ring (10 N; 3.3 m/s constant-temperature) | ~0.048 | Wear volume: 0.32 mm3 | [107] | |
Base Oil | 0.6 wt% M-HNTs | Cr12MoV cold-working die steel pin and 45# steel disk (pin-on-disk, 80 N, 500 rpm, 0.6 m/s, RT) | 0.129 | Wear volume: 0.29 mm3 | [108] | |
Water-based lubricant | 0.2 wt% MWCNTs-g-PAM | GCr15 bearing steel balls (four ball friction and wear tester; 392 N; 1450 rpm; RT) | ~0.044 | Wear scar diameter: ~0.254 mm | [109] |
Frictional State | Matrix | Reinforcement | Test Conditions | Tribological Results | Ref. | |
---|---|---|---|---|---|---|
COF | Wear | |||||
Dry friction | Aluminum alloy | APS-GO-POCl3 composite film | GCr15 steel ball (2 N, 1 Hz, 2 mm) | ~0.150 | Wear volume: 1.002 × 106 μm3 | [141] |
Ni coating | 0.4 g/L GO | Bearing steel ball (ball-on-disk, 1 N, 40 rpm, RT) | ~0.320 | Wear track: 0.320 × 103 μm3 | [142] | |
Epoxy | 5 vol% g-C3N4 nanosheet | GCr15 steel ring (plate-on-ring, 100 N, 0.05 m/s) | 0.570 | Wear rate: 15.64 × 10−6 mm3/Nm | [143] | |
Phenolic coating | 1 wt% g-C3N4 nanosheet | SISI-1045 block (ring-on-block, 320 N, 2.5 m/s) | ~0.125 | Wear rate: 2.2 × 10−17 m3/Nm | [144] | |
Liquid friction | GTL8 oil-based lubricant | 0.075 mg/mL ODA-RGO | SAE52100 steel balls and 316 L disk (ball-on-disk, 10 N, 2 Hz; 30 min) | ~0.100 | Wear rate: ~7.5 × 10−6 mm N−1 m−1 | [145] |
Water-based lubricant | 0.2 wt.% SGO | 40CrNiMoA pin and M50NiL disk (pin-on-disk; 1 N; 650 MPa; 160 rpm; RT) | 0.370 | Wear scar diameter: 463 µm | [146] | |
Pure water | 0.05 wt% PEI-RGO | GCr15 bearing steel ball and 201 stainless steel disk (ball-on-disk, 4 N; 3 Hz) | ~0.268 | Wear track width: 164.2 μm | [147] | |
Liquid crystal | 0.010 wt% h-BN nanosheets | GCr15 steel ball and GCr15 steel disk (ball-on-disk, 2 N, 200 rpm) | 0.049 | Wear scar diameter: 129 μm | [148] |
Frictional State | Matrix | Reinforcement | Test Conditions | Tribological Results | Ref. | |
---|---|---|---|---|---|---|
COF | Wear | |||||
Dry friction | Rubber | CBp/MWCNTs hybrid | Tribometer (5 N, 70 r/min, 1 Hz, 150 °C) | ~1.400 | Wear width: 1.272 × 10−3 mm | [184] |
Ni coating | 0.04 g/L CNTs/GO | Si3N4 ball and AZ91D magnesium alloys disk (ball-on-disk, 3 N, 10 mm, 10 min) | ~0.060 | Wear loss: 0.44 × 10−6 kg/m | [187] | |
Epoxy coating | RGO/ZnS hybrid | GCr15 steel ball (ball-on-disk, 15 N, 0.033 m/s, 30 min) | ~0.055 | Wear rate: ~2.08 ×10−6 mm3/Nm | [188] | |
EP coating | HBN-TiO2 hybrid | GCr15 steel ball (10 N, 2 Hz, 5 mm, 30 min) | ~0.520 | Wear rate: 4.6 × 10−4 mm−3 N−1 m−1 | [189] | |
Liquid friction | PAO oil | 0.50 wt% MXene@Cu | AISI52100 steel ball and AISI52100 steel disk (ball-on-disk, 25 Hz, 50 °C) | 0.110 | Wear volume: ~1.190 μm3 | [190] |
Castor oil | 0.10 wt% MnZnO/FMWCNTs | Steel ball and bronze disk (ball-on-disk, 40 N, 10 Hz, 30 min) | ~0.025 | Wear volume: ~0.023 mm3 | [191] | |
Water-based lubrication | GO/Chitosan-g-PNIPAM nanohybrid | Steel ball and 316 L stainless steel disk (ball-on-disk, 100 N, 25 Hz) | 0.130 | Wear rate: 5.1 × 10−2 mm3 N−1 m−1 | [192] | |
Lithium grease | 0.3 wt% 3D HPGS | GCr15 steel ball (four-ball tribo-tester, 700 N,1200 rpm, RT, 30 min) | 0.065 | Wear volume: 0.194 mm3 | [193] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, N.; Wu, C.; Yang, K.; Tang, J. Progress of Multidimensional Nano-Additives under Dry/Liquid Wear: A Review. Lubricants 2024, 12, 332. https://doi.org/10.3390/lubricants12100332
Xiao N, Wu C, Yang K, Tang J. Progress of Multidimensional Nano-Additives under Dry/Liquid Wear: A Review. Lubricants. 2024; 12(10):332. https://doi.org/10.3390/lubricants12100332
Chicago/Turabian StyleXiao, Na, Chao Wu, Kang Yang, and Jun Tang. 2024. "Progress of Multidimensional Nano-Additives under Dry/Liquid Wear: A Review" Lubricants 12, no. 10: 332. https://doi.org/10.3390/lubricants12100332
APA StyleXiao, N., Wu, C., Yang, K., & Tang, J. (2024). Progress of Multidimensional Nano-Additives under Dry/Liquid Wear: A Review. Lubricants, 12(10), 332. https://doi.org/10.3390/lubricants12100332