Photoluminescence Induced in Mineral Oil by Ionizing Radiation
Abstract
:1. Introduction
2. Experimental
3. Fluorescence Measurements
4. Infrared and NMR Spectroscopy
5. Viscosity Measurements
6. Results and Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATR-FTIR | Attenuated total reflection Fourier transform infrared spectroscopy |
CTE | clustering-triggered emission |
HOMO | Highest occupied molecular orbital |
LUMO | Lowest unoccupied molecular orbital |
MO | Mineral oil |
NMR | Nuclear Magnetic Resonance |
PAH | polycyclic aromatic hydrocarbons |
PL | photoluminescence |
UV | ultraviolet |
References
- Krane, K.S. Introductory Nuclear Physics; John Wiley & Sons: Hoboken, NJ, USA, 1988; ISBN 978-0-471-80553-3. [Google Scholar]
- Momose, T.; Ishimaru, H. Radiation damages in TRISTAN vacuum systems. J. Vac. Sci. Technol. A 1991, 9, 2149–2157. [Google Scholar] [CrossRef]
- Vertes, M. Fluids for diffusion pumps. Vacuum 1993, 44, 769–781. [Google Scholar] [CrossRef]
- Pedroche, G.; Lopez-Revelles, A.J.; Kolsek, A.; Dremel, M.; Bansal, G.; Pearce, R.; Sanz, J.; Juarez, R. Nuclear analysis of the ITER torus cryopumps. Nucl. Fusion 2019, 59, 106045. [Google Scholar] [CrossRef]
- Nicholas, N.; Shaffer, B. All-metal scroll vacuum pumps for tritium processing systems. Fusion Sci. Technol. 2020, 76, 366–372. [Google Scholar] [CrossRef]
- Larsen, G.; Babineau, D. An evaluation of the global effects of tritium emissions from nuclear fusion power. Fusion Eng. Des. 2020, 158, 111690. [Google Scholar] [CrossRef]
- Thanua, N.; Kumbhar, G.B. Aging performance of transformer oil insulation—State of the art review. In Proceedings of the 2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Kozhikode, India, 3–5 December 2021; pp. 282–285. [Google Scholar]
- Gomna, A.; N’Tsoukpoe, K.E.; Le Pierrès, N.; Coulibaly, Y. Review of vegetable oils behaviour at high temperature for solar plants: Stability, properties and current applications. Sol. Energy Mater. Sol. Cells 2019, 200, 109956. [Google Scholar] [CrossRef]
- Guin, T.; McDonald, K.; Folkert, J.; Verst, C.; Gaillard, J.; DeVol, T.A.; Bliznyuk, V.N.; Larsen, G. Organic vacuum pump fluids for the vacuum pumping of fusion power plants. Fusion Sci. Technol. 2023. [Google Scholar]
- Dumitran, L.M.; Setnescu, R.; Notingher, P.V.; Badicu, L.V.; Setnescu, T. Method for lifetime estimation of power transformer mineral oil. Fuel 2014, 117, 756–762. [Google Scholar] [CrossRef]
- Degeratu, S.; Rotaru, P.; Rizescu, S.; Danoiu, S.; Bizdoaca, N.G.; Alboteanu, L.I.; Manolea, H.O. Condition monitoring of transformer oil using thermal analysis and other techniques. J. Therm. Anal. Calorim. 2015, 119, 1679–1692. [Google Scholar] [CrossRef]
- Alshehawy, A.M.; Mansour, D.-E.A.; Ghali, M.; Lehtonen, M.; Darwish, M.M.F. Photoluminescence Spectroscopy Measurements for Effective Condition Assessment of Transformer Insulating Oil. Processes 2021, 9, 732. [Google Scholar] [CrossRef]
- Perrier, C.; Beroual, A. Experimental investigations on insulating liquids for power transformers: Mineral, ester, and silicone oils. IEEE Electr. Insul. Mag. 2009, 25, 6–13. [Google Scholar] [CrossRef]
- Kaliappan, G.; Rengaraj, M. Aging assessment of transformer solid insulation: A review. Mater. Today Proc. 2021, 47, 272–277. [Google Scholar] [CrossRef]
- Kalathiripi, H.; Karmakar, S. Fault analysis of oil-filled power transformers using spectroscopy techniques. In Proceedings of the IEEE 19th International Conference on Dielectric Liquids (ICDL), Manchester, UK, 25–29 June 2017; pp. 1–5. [Google Scholar]
- Batista, D.A.; Patriarca, P.A.; Trindade, E.M.; Wilhelm, H.M. Colorimetric methodology for monitoring the cellulose insulating paper degradation in electrical equipments filled with mineral oil. Cellulose 2008, 15, 497–505. [Google Scholar] [CrossRef]
- Hadjadj, Y.; Fofana, I.; Sabau, J.; Briosso, E. Assessing insulating oil degradation by means of turbidity and UV/VIS spectrophotometry measurements. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2653–2660. [Google Scholar] [CrossRef]
- Georgiev, A.; Karamancheva, I.; Topalova, L. Determination of oxidation products in transformer oils using FT-IR spectroscopy. J. Mol. Struct. 2008, 872, 18–23. [Google Scholar] [CrossRef]
- Santos, J.C.O.; Souza, A.G.; Santos, I.M.G.; Sobrinho, E.V.; Conceiçao, M.M. Thermodynamic and kinetic parameters on thermal degradation of automotive mineral lubricant oils determined using thermogravimetry. J. Therm. Anal. Cal. 2005, 79, 461–467. [Google Scholar] [CrossRef]
- Ganlim, C.D.; Dutta, N.K.; Roy Choudhury, N.; Kehoe, D.; Matisons, J. Evaluation of kinetic parameters of thermal oxidative decomposition of base oils by conventional, isothermal and modulated TGA, and pressure DSC. Thermochim. Acta 2002, 392, 357–369. [Google Scholar] [CrossRef]
- Wicaksono, B.; Kong, H.; Markova, L.V.; Han, H.-G. Application of fluorescence emission ratio technique for transformer oil monitoring. J. Int. Meas. Confed. 2013, 46, 4161–4165. [Google Scholar] [CrossRef]
- Alshehawy, A.M.; Mansour, D.-E.A.; Ghali, M. Condition assessment of aged transformer oil using photoluminescence-based features. In Proceedings of the IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Kozhikode, India, 3–5 December 2021; pp. 282–285. [Google Scholar]
- Li, Q.; Wang, X.; Huang, Q.; Li, Z.; Tang, B.Z.; Mao, S. Molecular-level enhanced clusterization- triggered emission of nonconventional luminophores in dilute aqueous solution. Nat. Commun. 2023, 14, 409. [Google Scholar] [CrossRef]
- Leong, Y.S.; Ker, P.J.; Jamaludin, M.Z.; Nomanbhay, S.; Ismail, A.; Abdullah, F.; Looe, H.M.; Lo, C.K. UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. Sensors 2018, 18, 2175. [Google Scholar] [CrossRef] [Green Version]
- Leybonol LVO 500; Product No. 3 00333299. Available online: https://www.leyboldproducts.us/products/oils-greases-lubricants/lubricant-leybonol/396/leybonol-lvo-500?c=1815 (accessed on 25 April 2023).
- Smith, J. The Effect of Radiation and Dose on Diffusion Pump Oils. Masters’ Thesis, Clemson University, Clemson, SC, USA, 2023. [Google Scholar]
- Tang, J.X. Measurements of fluid viscosity using a miniature ball drop device. Rev. Sci. Instrum. 2016, 87, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Irradiation of polyethylene: Some aspects of crosslinking and oxidative degradation. Radiat. Phys. Chem. 1999, 56, 375–380. [Google Scholar] [CrossRef]
- Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy; VCH Verlagsgesellschaft: Weinheim, Germany, 1991; pp. 37–72. [Google Scholar]
- Bley, T.; Pignanelli, E.; Schütze, A. Multi-channel IR sensor system for determination of oil degradation. J. Sens. Sens. Syst. 2014, 3, 121–132. [Google Scholar] [CrossRef]
- Macian, V.; Tormos, B.; Gomez, Y.A.; Salavert, J.M. Proposal of an FTIR methology to monitor oxidation level in used engine oils: Effects of thermal degradation and fuel dilution. Tribol. Trans. 2012, 55, 872–882. [Google Scholar] [CrossRef]
- Deng, J.; Jia, H.; Xie, W.; Wu, H.; Li, J.; Wang, H. Nontraditional organic/polymeric luminogens with red-shifted fluorescence emissions. Macromol. Chem. Phys. 2022, 223, 2100425. [Google Scholar] [CrossRef]
- Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W.Z. Nonconventional luminophores: Characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616. [Google Scholar] [CrossRef]
- Liao, P.; Huang, J.; Yan, Y.; Tang, B.Z. Clusterization-triggered emission (CTE): One for all, all for one. Mater. Chem. Front. 2021, 5, 6693. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, D.; Su, Z.; Bryce, M.R. Recent advances in oligomers/polymers with unconventional chromophores. Mater. Chem. Front. 2021, 5, 60. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Willis, M.; Yao, Y.; Huang, J.; Wang, B.; Yu, Y.; Zhang, S. Simple method to supply organic nanoparticles with excitation- wavelength-dependent photoluminescence. Langmuir 2020, 36, 3193–3200. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K.Z.; Reckmeier, C.; Rogach, A.L.; Stolarczyk, J.K.; Urban, A.S.; Feldmann, J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 2015, 15, 6030–6035. [Google Scholar] [CrossRef] [PubMed]
- Ehrat, F.; Bhattacharyya, S.; Schneider, J.; Löf, A.; Wyrwich, R.; Rogach, A.L.; Stolarczyk, J.K.; Urban, A.S.; Feldmann, J. Tracking the source of carbon dot photoluminescence: Aromatic domains versus molecular fluorophores. Nano Lett. 2017, 17, 7710–7716. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Rizvi, S.Q.A.; Migdal, C.; DiNicola, K. Oxidation of Lubricants and Fuels. In Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 2nd ed.; Totten, G.E., Ed.; ASTM International Manual Series, MNL37-2ND; ASTM: West Conshohocken, PA, USA, 2019; pp. 1363–1403. [Google Scholar] [CrossRef]
- Nasieka, I.; Kovalenko, N.; Kutniy, V.; Rybka, A.; Nakonechnyj, D.; Sulima, S.; Strelchuk, V. Photoluminescence-based material quality diagnostics in the manufacturing of CdZnTe ionizing radiation sensors. Sens. Actuators A 2013, 203, 176–180. [Google Scholar] [CrossRef]
- Sobrinho, J.A.; Monteiro, J.H.K.S.; Davolos, M.R.; Cebim, M.A.; Pires, A.M. Photoluminescence and Scintillation Modulation Upon UV/X-ray-Induced Photochromism in Europium Tungstate Phosphors. Chem. Sel. 2017, 2, 3538–3548. [Google Scholar] [CrossRef]
Sample | Dose [MGy] | Emission Peak Max λmax [nm] | Excitation Max. * λexc [nm] | Color | Aggregate State |
---|---|---|---|---|---|
Original | None | 300 | 270 | Colorless transparent | Viscous liquid |
Gamma irradiated | 2 | 375 | 320 | Slightly yellowish | Viscous liquid |
4 | 375 | 320 | Yellowish | Highly viscous liquid | |
6 | 389 | 330 | Amber | Highly viscous liquid | |
Neutron irradiated | 0.17 | 367 | 310 | Slightly yellow | Viscous liquid |
0.34 | 367 | 320 | yellow | Viscous liquid | |
0.68 | 372 | 320 | Yellow-amber semitransparent | Highly viscous liquid | |
1.7 | 460 | 400 | Amber | Sticky wax | |
3.3 | 470 | 420 | Amber | Tough solid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bliznyuk, V.N.; Smith, J.; Guin, T.; Verst, C.; Folkert, J.; McDonald, K.; Larsen, G.; DeVol, T.A. Photoluminescence Induced in Mineral Oil by Ionizing Radiation. Lubricants 2023, 11, 287. https://doi.org/10.3390/lubricants11070287
Bliznyuk VN, Smith J, Guin T, Verst C, Folkert J, McDonald K, Larsen G, DeVol TA. Photoluminescence Induced in Mineral Oil by Ionizing Radiation. Lubricants. 2023; 11(7):287. https://doi.org/10.3390/lubricants11070287
Chicago/Turabian StyleBliznyuk, Valery N., Jonas Smith, Tyler Guin, Chris Verst, James Folkert, Kori McDonald, George Larsen, and Timothy A. DeVol. 2023. "Photoluminescence Induced in Mineral Oil by Ionizing Radiation" Lubricants 11, no. 7: 287. https://doi.org/10.3390/lubricants11070287
APA StyleBliznyuk, V. N., Smith, J., Guin, T., Verst, C., Folkert, J., McDonald, K., Larsen, G., & DeVol, T. A. (2023). Photoluminescence Induced in Mineral Oil by Ionizing Radiation. Lubricants, 11(7), 287. https://doi.org/10.3390/lubricants11070287