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Abstract: Monitoring the condition of transformer oil is considered to be one of the preventive
maintenance measures and it is very critical in ensuring the safety as well as optimal performance of
the equipment. Various oil properties and contents in oil can be monitored such as acidity, furanic
compounds and color. The current method is used to determine the color index (CI) of transformer
oil produces an error of 0.5 in measurement, has high risk of human handling error, additional
expense such as sampling and transportations, and limited samples can be measured per day due to
safety and health reasons. Therefore, this work proposes the determination of CI of transformer oil
using ultraviolet-to-visible (UV-Vis) spectroscopy. Results show a good correlation between the CI
of transformer oil and the absorbance spectral responses of oils from 300 nm to 700 nm. Modeled
equations were developed to relate the CI of the oil with the cutoff wavelength and absorbance, and
with the area under the curve from 360 nm to 600 nm. These equations were verified with another set
of oil samples. The equation that describes the relationship between cutoff wavelength, absorbance
and CI of the oil shows higher accuracy with root mean square error (RMSE) of 0.1961.

Keywords: color; oil insulation; power transformers; ultraviolet-visible spectroscopy

1. Introduction

Power transformer is one of the main components in any transmission networks and they are
responsible for transmitting electric power over long distances with minimal power loss. It is essential
for power transformer to operate optimally in order to provide continuous and stable electricity supply
in assuring homes and businesses run smoothly with minimum disruptions. Any failures in power
transformers could lead to huge problems to both consumers and the power utilities. Therefore, it is
important to carefully maintain, inspect, and monitor the power transformer over times.

The lifetime of power transformer is generally related to the degradation of insulating materials
in power transformer. Although various sensors such as temperature sensor, pressure sensor, and
humidity sensor are installed for online monitoring, the output of these sensors cannot provide
clear indication on the conditions of the power transformer. One of the insulating materials is the
transformer oil which acts as an electrical insulator and also a coolant for the power transformer.
After years of services, the transformer oil is subjected to thermal and electrical stresses [1–3], hence
causing oxidative stress on the oil. With the presence of oxygen and moisture [4], polar compounds
and oil sludge are formed [5], and these oxidative by-products affect the quality of the transformer
oil. The quality of the oil can be reflected on the properties of the oil and its content, such as acidity,

Sensors 2018, 18, 2175; doi:10.3390/s18072175 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5750-2293
http://www.mdpi.com/1424-8220/18/7/2175?type=check_update&version=1
http://dx.doi.org/10.3390/s18072175
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2175 2 of 15

dielectric breakdown voltage, dissolved gases, and furanic compounds [6]. Thus, many diagnostic
methods were introduced and are capable of providing reliable assessment on the condition of power
transformer in order to detect early faults and avoid potential failures [7].

Conventionally, the quality of the transformer oil is assessed based on its properties using IEC
60422 standard [6]. Various properties are tested with different techniques. For instance, dissolved
gases are conventionally measured using gas chromatography (GC) [8], and interfacial tension
of the oil is typically measured using the Ring method [9]. Generally, these techniques involve
complex sample preparation, tedious measurement procedures, expensive instruments, and require
trained experts to conduct the measurements. Thus, researchers are proposing alternative solution
to assess the quality of the oil. Differential Scanning Calorimetry (DSC) method [10], dielectric
dissipation factor measurements [11], infrared (IR) spectroscopy [11], capacitance measurement [12],
and photoluminescence spectroscopy [13] have been proposed recently to evaluate the degradation of
the transformer oil. Recently, as an attractive and promising analytical tool, the optical spectroscopy
technique starts to emerge in assessing the degradation of transformer oil.

Optical spectroscopy studies the interaction of light by matter [14]. It is a non-destructive
test, which provides rapid result analysis, and it can be used for qualitative and quantitative
analysis [15]. The technique also gives high sensitivity measurements and does not require
complex sample preparation and calibration. For instance, Deepa et al. [16] uses multidimensional
fluorescence techniques like synchronous fluorescence spectroscopy (SFS) and excitation emission
matrix fluorescence (EEMF) to determine the unique characteristic of degraded transformer oil in the
spectrum. Kamenchuk et al. [17] have also applied nuclear magnetic resonance (NMR) in determining
the chemical composition of the degraded oils. To provide complementary interpretations and full
product description, Godinho et al. [18] combined data from three different optical sensing techniques,
which are the near-infrared (NIR), EEMF, and NMR spectroscopy, to evaluate the quality of the
transformer oil. Bakar et al. [9] have also proposed to measure the interfacial tension of transformer
oil using ultraviolet-to-visible (UV-Vis) spectroscopy which reflects the insulation aging activity
in the power transformer. Hussain et al. [19] have also made an evaluation of the state of the
transformer oil using the combination of UV-Vis, Fourier transformed infrared (FTIR), and NMR
spectroscopy techniques. Results show that each sensing technique is able to provide different analysis
in determining the degradation level of the transformer oil.

To assess the degradation level of transformer oil using optical sensing techniques, researchers
either determines the special characteristic of degraded transformer oil in the spectrum [16], or the
change in concentration of certain content in transformer oil, such as inhibitor content [17] and furanic
compounds [18], or the change in properties of transformer oil such as interfacial tension [20]. The
color of the transformer oil can also be used to assess the degradation level of the transformer oil [7,21].
Conventionally, using the American Society for Testing and Materials (ASTM) D 1500 standard
(Standard test method for ASTM Color of Petroleum Product (ASTM Color Scale) ) [22], the color of
the transformer oil is determined using a color comparator, and represented by a color index (CI) from
a scale. The scale contains 16 ASTM CI, with increment in steps of 0.5, starting from 0.5 for the lightest
color to 8.0 for the darkest color. However, this method has its disadvantages. Firstly, the step size of
0.5 CI is fairly large. If an exact match is not found for the sample, the darker of the two ASTM colors is
reported instead. In many cases, the sample does not fall exactly on the 16 values used in the ASTM D
1500. Secondly, this method relies on the manual visual inspection by an operator and the results may
also be affected by the quality of standard light source. Different operators working on an identical
oil sample could report a different CI. Likewise, in color measurement of palm oil, an operator is also
required to manually operate Lovibond®Tintometer [23] to determine the right color index of the palm
oil. Subsequently, operators that carry out this measurement also need to go for eye checking every
3–6 months due to safety and health issues. According to occupational safety and health guideline,
long exposure time with high intensity of visible light on the eye could pose health issues such as
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headache and eye-related problems. Finally, this issue leads to limited number of samples per day for
color index analysis as the operator is required to rest their eyes after testing each sample.

Hence, a more accurate, scientific and automated method in observing the color of the oil is
needed. Therefore, this paper proposes to use UV-Vis spectroscopy as an optical sensing technique to
determine the color index of transformer oil. The application of UV-Vis spectroscopy in sensing the
color of oil dated as early as 1999 where Chantrapornchai et al [24] studied on the spectral reflectance
and color of oil-in-water emulsions. Tan et al. [23] have proposed a prototype colorimeter that utilizes
UV-Vis spectroscopy to determine the color of palm oil and made comparison between their propose
method and the conventional method. UV-Vis spectroscopy also has been widely used in evaluating
olive oil since the components within such as chlorophyll and lutein are responsible for the color of
olive oil [25,26]. Besides palm oil and olive oil, researchers have also applied the UV-Vis spectroscopy
in determining the color in crude petroleum oil [27], hydraulic oil [28], automotive lubricating oil [29],
essential oil [30], pumpkin seed oil [31], and edible oils (sunflower oil, soya oil, corn oil, canola oil,
and olive oil) [32]. Moreover, Hadjadj et al. [21] have proposed the determination of the correlation
between proposed parameters, which are turbidity and dissolved decay product (DDP) value, and
the traditional parameters such as interfacial tension, acidity and color index of transformer oil using
UV-Vis spectroscopy. Results show a good correlation between the parameters, but the color index
is instead based on the 18 Gardner color scale in accordance with ASTM D 1544 [21]. We have also
demonstrated the possibility of determining the CI of transformer oil based on ASTM D 1500 using
UV-Vis spectroscopy [33]. In this work, the utilization of UV-Vis spectroscopy to determine the CI
of transformer oil is fully established through a detailed study on the optical spectral response of oil
samples with different CI. Furthermore, mathematical models that describe the relationship between
the optical response of the oil sample and its respective CI were formulated and verified.

2. Materials and Methods

2.1. Sampling and Sample Design

For the purpose of this study, transformer oil samples were sampled from different operating
transformers. The transformer oil used in these power transformers are generally naphthenic-based
transformer oil without additives (uninhibited), produced by Hyrax, Petronas or Shell. The transformer
oil product typically contains 55% naphthenic carbons, 38% paraffinic carbons and 7% aromatic carbons,
and it fulfills the performance requirement set by the (International Electrotechnical Commission) IEC
60296 standard. The procedure of collecting and transporting these samples adhere strictly to the
IEC 60475 standard [34]. This is to ensure that there was no contamination and mislabeled of the oil
samples that would affect the analysis. By taking this into account, two 1 litre amber glass bottles
were prepared for transformer oil sampling. One bottle of the sample was sent to an accredited lab
for conventional analysis, while the other bottle was used for the purpose of this study. This was
done to guarantee that there was minimal time gap between the conventional lab analysis and the
experiment of this study. In accordance to the ASTM D 1500 standard, the conventional analysis
involves a color comparator to measure the color index of oil samples and report them with one of
the 16 ASTM color index. Throughout this paper, the color index measurement carried out at the
accredited lab in accordance to the ASTM D 1500 standard will be referred to as conventional analysis
or conventional measurement.

2.2. Optical Measurement Setup

The samples sent for the purpose of this study were measured for their absorbance spectrum
to the range of 200 nm to 800 nm. The measurements were carried out using Agilent Cary
5000 Ultraviolet-to-Visible-to-Near-Infrared (UV-Vis-NIR) spectrophotometer (Agilent Technologies,
Petaling Jaya, Malaysia). The Cary 5000 is a double beam spectrophotometer that can operate in the
range of 200 nm to 3300 nm. The general operation of a double spectrophotometer can be found
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in [35]. Approximately 3 mL of oil sample and clean uninhibited transformer oil are transferred using
a 5-mL disposable plastic pipette into quartz cuvette which has an outer cell dimension of 12 mm
× 12 mm × 44 mm, with an optical path-length of 10 mm. The clean oil serves as the reference for
the measurement. For each oil sample, the optical spectrum measurements were repeated 3 times to
ensure its consistency and repeatability. During the spectrum scan, the light beam passes through both
oil sample and reference sequentially and optical transmittance was recorded. The absorbance values
were calculated by applying the Beer-Lambert Law [36] as in Equation (1).

Abs = −log10(Sλ − Bλ / Rλ − Bλ) = ελ • c • l, (1)

where, Abs is the absorbance, Sλ is the transmittance of light passing through the sample in sampling
slot, Rλ is the transmittance of light passing through the sample in reference slot, Bλ is the baseline, ελ

is the absorbance coefficient of the absorbing sample at a certain wavelength, c is the concentration of
the absorbing sample, and l is the path-length traversed by the light.

2.3. Initial Results and Modification

Figure 1 shows the absorbance spectral response together with the noise of oil samples with CI of
1.5, 3.0, 5.0 and 6.5.

Figure 1. Initial optical absorbance spectrums of four oil samples with different color indices (CI) based
on ASTM D 1500.

Initial results show that noises can be observed at the peak absorbance of the oil samples with CI
of 3.0 or higher, and the spectral response saturates at Abs > 5. Referring to Equation (1), if the ratio
of Sλ to Rλ is extremely low, Abs will be extremely high, resulting in noises due to the fluctuation
of Sλ. In order to increase the ratio of Sλ to Rλ, Sλ has to be increased or Rλ has to be decreased.
Sλ cannot be increased further as the brightness of the light source in the spectrometer affects both
sample and reference sides. Therefore, Rλ needs to be decreased to remove the noises. To reduce Rλ,
a neutral density (ND) filter (model: FNDU-20C02-0.1), which provides significant optical attenuation
(Transmittance = 1%–3%) in the UV-Vis region, was applied at the reference slot of the spectrometer.
The noises can also be reduced by decreasing l, which means a shorter path-length cuvette is used.
However this method reduces the interaction of light with the oil samples, thus reducing the sensitivity
of the measurement. Due to the shortcomings of a shorter path-length, the ND filter was chosen to
reduce the measurement noise. The outcome is shown in Figure 2, where the noises at the peaks (top)
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of absorbance spectral response of the same four oil samples in Figure 1, are eliminated and clear
smooth optical absorbance spectrum can be observed.

Figure 2. Optical absorbance spectrums of four oil samples with different CI based on ASTM D
1500 after applying ND filter.

3. Final Results and Data Analysis

3.1. Absorbance Spectra of Transformer Oil Samples

The oil samples were re-measured with the application of the ND filter. Figure 3 shows the
absorbance spectral response of several oil samples with increasing CI.

Figure 3. Optical absorbance spectrum of transformer oils with increasing CI based on ASTM D 1500.

Figure 3 shows clearly that there is a direct relationship between the absorbance spectral response
of the oil samples and their CI. The optical bandwidth of the spectrum at a certain Abs will be referred
as the cutoff wavelength (CW) throughout the paper. For instance, the dotted line across the graph and
marker x represents the cutoff wavelength (CW) at Abs = 1.0, for oil sample with CI of 2.0, which is
437 nm. It can be observed that the lowest CI of 1.0 shows the lowest peak absorbance and the shortest
CW at Abs = 1.0, while the highest CI of 7.5 shows the highest peak absorbance and the longest CW at
Abs = 1.0. It is worth noting that the sample with CI of 0.0 represents the new uninhibited transformer
oil and it is used as a reference only.
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3.2. Mathematical Modeling

Further analysis on Figure 3 shows that different variables can be used to correlate with CI.
If a different Abs is chosen, the CW value will change accordingly. Figure 4a shows the plot of CI
against CW for Abs = 0.5, 1.0 and 1.5 respectively. Referring to [21], Hadjadj et al. calculates the
integration of the area under the graph (Area) from 360 nm to 600 nm to determine the DDP value in
accordance to the ASTM D 6802 [37], and then relating it with the 18 Gardner color index in accordance
with ASTM D 1544 [21]. Similarly, the same method can also be applied to correlate Area with 16 ASTM
CI based on ASTM D 1500. Figure 4b shows the plot of CI against Area.

Figure 4. (a) CW verses CI of transformer oil samples at Abs = 0.5; 1.0 and 1.5, (b) Area verses CI of
transformer oil samples.

Based on Figure 4a, a linear relationship can be observed between the CI and CW at Abs = 0.5,
1.0 and 1.5. Likewise, a linear relationship can also be observed between CI and Area in Figure 4b.
In order to measure the strength of the correlation between the variables, Pearson product-moment
correlation coefficient (r) of the data was calculated. The r value determines the strength and direction
of the linear relationship between two variables [38]. Generally, r > 0 indicates a positive relationship
while r < 0 indicates a negative relationship. Table 1 shows a guideline in determining the strength of
relationship for absolute value of r [39].

Table 1. Guideline for interpretation of strength of relationship for absolute values of correlation.

Absolute Value of r, |r| Strength of Relationship

0–0.19 Very Weak
0.20–0.39 Weak
0.40–0.59 Moderate
0.60–0.79 Strong
0.80–1.00 Very Strong

The calculated r values between CI and CW in Figure 4a are 0.9867, 0.9799 and 0.9772 for Abs =
0.5, 1.0 and 1.5 respectively. Based on Figure 4b, the calculated r between CI and Area is 0.9835. All four
correlation coefficients are very close to 1 and it shows a very strong positive linear correlation. Thus,
linear regression models can be formed based on the data in Figure 4a,b. However, it is worth noting
that different linear models could be formed if different Abs is chosen for data in Figure 4a. Therefore a
model that describes the relationship between CI, CW and Abs was formulated.

A 3-dimentional plot was generated to study the relationship between CI, CW and Abs. Three
regression methods, which were Linear, Paraboloid and Gaussian regressions, were applied to the
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collected data to determine the method that provides the best fit. To evaluate the performance of the
regression methods, the coefficient of determination (R2), adjusted R2, and standard error of estimate
(S) were calculated. R2 provides a descriptive measure of how well the regression line makes the
prediction [38] while the adjusted R2 is a modified version of R2 that has been adjusted for the number
of predictors in the model [40]. The range of both R2 and adjusted R2 are between 0 and 1, where
0 indicates that the measured data is far from the regression line while 1 indicates that all measured
data is on the regression line. S measures the average distance that the measured data fall from the
regression line. A smaller S value generally indicates that the data are closer to the regression line.
Table 2 shows the analysis results of the three regression methods used.

Table 2. Regression analysis results for linear, paraboloid and Gaussian.

Regression Method R2 Adjusted R2 S

Linear 0.9563 0.9553 0.3670
Paraboloid 0.9651 0.9635 0.3317
Gaussian 0.9802 0.9793 0.2499

Based on Table 2, Gaussian regression shows the highest R2 and adjusted R2, and the lowest S
value compared to linear and paraboloid regressions. Therefore, Gaussian regression was chosen for
the mathematical model. Figure 5 shows a 3-dimentional plot of CW vs. CI vs. Abs of the transformer
oil with the Gaussian regression plane.

Figure 5. Graph of CW vs. CI of transformer oil samples vs. Abs (Red Circles with black borders) with
Gaussian regression (White plane).

According to the results of the Gaussian regression analysis, the mathematical model that describes
the relationship between the CW, CI and Abs of transformer oil is as Equation (2).

CI = 14.4682e−0.5[( Abs − 2.1818
1.642 )

2
+( CW − 714.2849

157.9937 )
2
]. (2)

Furthermore, linear regression was applied to the collected data in Figure 4b to describe the
relationship between CI and Area, and it is plotted in Figure 6.
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Figure 6. Area vs. CI of transformer oil samples with linear regression line (dotted line).

According to the results of the linear regression analysis, the regression is able to produce a R2

value of 0.9412, adjusted R2 value of 0.9412, and S value of 55.8578. The mathematical model that
describes the relationship between the Area and CI of transformer oil is as Equation (3).

CI = (9.017 × 10−3) Area, (3)

3.3. Verification of Mathematical Modeling

To validate the mathematical models of Equations (2) and (3), a second set of transformer oil
samples were sampled. The oil samples were then sent for conventional lab analysis to determine the
color index in accordance to ASTM D 1500 standard. The optical absorbance of the oil samples was
also measured using Cary 5000.

For the verification of Equation (2), the CW of each absorbance spectral response of the oil samples
at Abs values of 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 were collected, and the estimated CI were
calculated using Equation (2). The difference between the measured CI and the calculated CI were
then calculated and analyzed to determine the average difference and maximum absolute difference at
different Abs values. Table 3 shows an example of the calculated CI using Equation (2), CI measured
using ASTM D 1500 and their differences for each sample at Abs = 0.75.

Based on Table 3, the results show that the calculated CI is close to the measured CI value for each
sample. The standard deviation and standard error for CI = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were calculated.
The maximum absolute difference between the calculated and measured CI is 0.4 and the average
absolute difference is 0.1632. The maximum absolute difference between the calculated and measured
CI, and the average absolute difference at different Abs values were calculated and plotted in Figure 7.

Based on Figure 7, Abs of 0.75 produced the least average absolute difference (0.1632), and the Abs
of 0.75, and 1.0 produced the lowest maximum absolute difference (0.4).

For the verification of Equation (3), the area under the graph from 360 nm to 600 nm for the second
set of oil samples were recorded and the estimated CI were calculated using Equation (3). Likewise,
the difference between the measured CI and the calculated CI were then calculated and analyzed to
determine the average difference and maximum absolute difference. Table 4 shows the calculated CI
using Equation (3), CI measured using ASTM D 1500 and their differences for each sample.
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Table 3. Verification data for 42 oil samples (S1–S42) at Abs = 0.75 using Equation (2).

Sample Measured
CI 1

Measured Cutoff
Wavelength (nm)

Calculated
CI 2

Difference
in CI 3

Standard
Deviation

Standard
Error

S1 0.5 352 0.7 0.2

0.0733 0.033
S2 0.5 357 0.8 0.3
S3 0.5 346 0.6 0.1
S4 0.5 361 0.8 0.3
S5 0.5 345 0.6 0.1

S6 1.0 371 0.9 −0.1

0.1174 0.053
S7 1.0 370 0.9 −0.1
S8 1.0 379 1.0 0.0
S9 1.0 385 1.1 0.1

S10 1.0 389 1.2 0.2

S11 1.5 427 1.9 0.4

0.2238 0.100
S12 1.5 409 1.5 0.0
S13 1.5 402 1.4 −0.1
S14 1.5 425 1.9 0.4
S15 1.5 425 1.9 0.4

S16 2.0 447 2.4 0.4

0.1839 0.082
S17 2.0 447 2.4 0.4
S18 2.0 440 2.2 0.2
S19 2.0 440 2.2 0.2
S20 2.0 428 1.9 −0.1

S21 2.5 451 2.5 0.0

0.0777 0.035
S22 2.5 458 2.7 0.2
S23 2.5 456 2.6 0.1
S24 2.5 453 2.5 0.0
S25 2.5 452 2.5 0.0

S26 3.0 467 2.9 −0.1

0.1723 0.077
S27 3.0 477 3.2 0.2
S28 3.0 477 3.2 0.2
S29 3.0 471 3.0 0.0
S30 3.0 464 2.8 −0.2

S31 3.5 487 3.5 0.0 - -
S32 3.5 495 3.8 0.3 - -
S33 4.0 504 4.1 0.1 - -
S34 4.0 495 3.8 −0.2 - -
S35 4.5 511 4.3 −0.2 - -
S36 4.5 513 4.4 −0.1 - -
S37 5.0 523 4.8 −0.2 - -
S38 5.5 538 5.3 −0.2 - -
S39 5.5 536 5.2 −0.3 - -
S40 6.5 568 6.4 −0.1 - -
S41 7.0 582 7.0 0.0 - -
S42 7.5 592 7.3 −0.2 - -

1 Color index based on measurement in accordance of ASTM D 1500, 2 Color index calculated based on Equation
(2), 3 Difference in CI = Calculated CI – Measured CI.

Based on Table 4, the results show that the calculated CI is close to the measured CI value for
each sample. The standard deviation and standard error were also calculated for CI = 0.5, 1.0, 1.5, 2.0,
2.5 and 3.0. The maximum absolute difference between the calculated and measured CI is 1.8 and the
average absolute difference is 0.4647.

For further verification, the Root Mean Square Error (RMSE) for results in Tables 3 and 4 are
calculated and compared. Generally, RMSE is the standard deviation of the difference between the
actual value, y and the estimated value, ŷ as shown in Equation (4) [41]. RMSE is able to measure how
much the actual data varies around the regression line.

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)
2, (4)

where n is the total number of samples.
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In this analysis, y represents the measured CI value, and ŷ represents the calculated CI value.
RMSE values were calculated for both verification data in Tables 3 and 4. Table 5 summarizes the
maximum absolute differences, average absolute differences and RMSE values for both Equations (2)
and (3).

Table 4. Verification data for 42 oil samples (S1–S42) using Equation (3).

Sample Measured
CI 1 Area 2 Calculated

CI 3
Difference

in CI 4
Standard
Deviation

Standard
Error

S1 0.5 11.7707 0.1 −0.4

0.0480 0.021
S2 0.5 11.3844 0.1 −0.4
S3 0.5 4.0164 0.0 −0.5
S4 0.5 16.6769 0.2 −0.3
S5 0.5 4.6769 0.0 −0.5

S6 1.0 48.885 0.4 −0.6

0.0872 0.039
S7 1.0 37.4572 0.3 −0.7
S8 1.0 46.276 0.4 −0.6
S9 1.0 56.0387 0.5 −0.5
S10 1.0 62.8738 0.6 −0.4

S11 1.5 148.5237 1.3 −0.2

0.2465 0.110
S12 1.5 103.449 0.9 −0.6
S13 1.5 83.9942 0.8 −0.7
S14 1.5 138.809 1.3 −0.2
S15 1.5 136.7029 1.2 −0.3

S16 2.0 236.6137 2.1 0.1

0.3090 0.138
S17 2.0 236.3961 2.1 0.1
S18 2.0 198.7913 1.8 −0.2
S19 2.0 209.3838 1.9 −0.1
S20 2.0 153.3042 1.4 −0.6

S21 2.5 246.3 2.2 −0.3

0.1903 0.085
S22 2.5 296.6479 2.7 0.2
S23 2.5 274.906 2.5 0.0
S24 2.5 264.5622 2.4 −0.1
S25 2.5 246.69 2.2 −0.3

S26 3.0 503.8327 4.5 1.5

0.6625 0.296
S27 3.0 355.9228 3.2 0.2
S28 3.0 374.7372 3.4 0.4
S29 3.0 343.9266 3.1 0.1
S30 3.0 313.9438 2.8 −0.2

S31 3.5 435.9306 3.9 0.4 - -
S32 3.5 580.9014 5.2 1.7 - -
S33 4.0 538.9002 4.9 0.9 - -
S34 4.0 430.8067 3.9 −0.1 - -
S35 4.5 547.1639 4.9 0.4 - -
S36 4.5 345.1915 3.1 −1.4 - -
S37 5.0 572.1769 5.2 0.2 - -
S38 5.5 805.9143 7.3 1.8 - -
S39 5.5 624.9499 5.6 0.1 - -
S40 6.5 743.9695 6.7 0.2 - -
S41 7.0 821.1863 7.4 0.4 - -
S42 7.5 901.6618 8.1 0.6 - -

1 Color index based on measurement in accordance of ASTM D 1500, 2 Integration of area under the graph from
360 nm to 600 nm, 3 Color index calculated based on Equation (3), 4 Difference in CI = Calculated CI – Measured CI.
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Figure 7. Plot of average absolute difference and maximum absolute difference at different Abs value.

Table 5. Maximum absolute difference, average absolute difference, and RMSE value for
verification data.

Abs Maximum Absolute
Difference

Average Absolute
Difference RMSE

For Equation (2)

0.25 0.8 0.3413 0.3972
0.50 0.6 0.1752 0.2235
0.75 0.4 0.1632 0.1961
1.00 0.4 0.1798 0.2144
1.25 0.6 0.2247 0.2747
1.50 0.8 0.2350 0.2981
1.75 0.9 0.2493 0.3163
2.00 0.9 0.2574 0.3249

For Equation (3) - 1.8 0.4647 0.6274

4. Discussion

As described in Section 2.2, the oil samples were measured for at least 3 times to ensure that the
spectrophotometer can produce consistent and repeatable results. Based on the obtained optical
absorbance spectrum, the standard deviation among the calculated CI for each oil sample was
computed. For all the samples that were measured for their repeatability, it was found that the
standard deviation was in the range of 0 to 0.013.

In addition, for a particular CI, five different oil samples were measured and the standard deviation
and standard error were calculated, as shown in Tables 3 and 4. Due to the lack of oil samples with
CI > 3.0 from operating power transformers, only one or two samples with CI > 3.0 were measured.
The difficulty in getting oil samples with CI > 3.0 was because oil samples with CI > 3.0 indicate a
critical level in other properties such as acidity and interfacial tension, thus the oil will be sent for
oil reclamation to restore the quality of the transformer oil. Nevertheless, for CI ≤ 3.0, the standard
deviation and standard error were calculated. Based on Table 3, the standard deviation ranges from
0.0733 to 0.2238, with the maximum percentage of standard deviation from the average value of 13%.
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It is important to note that not all the oil samples for this experiment were chosen such that their CI
were determined with direct matching to the color disk. This means that the color of the oil samples
could be intermediate between two standard ASTM colors. Moreover, considering that the conventional
method could also cause an error of 0.5 due to its large step size, the measured CI also has an error of
0.5. Even with a large error, the regression is able to produce a maximum absolute difference of 0.4, and
an average absolute difference of 0.1632. However, the modeled equation can be further improved by
inputting more training samples with wider range of CI.

Results from Table 5 suggested that the determination of CI using Equation (2) should be done
using the CW at Abs of 0.75 in order to obtain the lowest maximum absolute difference of 0.4, the least
average absolute difference of 0.1632, and the smallest RMSE value of 0.1961. On the other hand,
the results show that Equation (3) produces CI with a maximum absolute difference of 1.8, an average
absolute difference of 0.4647 and RMSE value of 0.6274.

It is clear that using optical spectroscopy to determine the CI of the transformer oil will provide
significant advantages over the conventional method. It is able to provide a smaller error due to higher
resolution while the conventional method produces an error of 0.5. Moreover, the proposed technique
does not require a human observer to measure the CI, and thus human error is eliminated.

In addition, there is also a possibility that this technique can be applied and developed into a
small portable handheld measuring device for on-site measurement or online monitoring. Since the
interested range of wavelength is within the visible light region, a miniature UV-Vis spectrometer with
a visible light source can be easily obtained at a reasonably low price. With a sample holder, a simple
measuring prototype can be built. A microcontroller can also be incorporated for data processing and
users interface. Figure 8 shows a simple block diagram of the measuring prototype. This prototype
can be readily used by a maintenance operator for on-site CI measurement by extracting 3 mL of oil
sample, inserting it in a cuvette, and placing the cuvette in the prototype. Besides transformer oil,
the prototype can also be used for quick color measurement of other oils such as engine oil, biodiesel
oil, and olive oil.

Figure 8. Simple block diagram of potential portable measuring prototype.

5. Conclusions

This work was carried out to explore the optical properties of transformer oil using optical
detection. It focuses on the determination of CI of the transformer oil using optical spectroscopy.
The existing method of determining CI of the transformer oil was first researched and it was found
that the technique has accuracy issues, and relies on manual observations. The existing technique has
the disadvantages of causing an error of 0.5 during measurement due to its large measurement step
size, and the requirement of a human observer. Therefore, this paper proposes a new optical technique
to quantify the CI of transformer oil.

Results have shown that there is a strong, positive linear correlation between the CW of the
spectral response at a certain Abs and the CI of the transformer oil, and also between area under
the curve from 360 nm to 600 nm and the CI of the transformer oil. Two mathematical models were
formed and verified using a second set of oil samples. It was found that the equation that describes the
relationship between CW of the spectral response at a certain Abs and the CI of the transformer oil
shows smaller maximum absolute difference of 0.4, average absolute difference of 0.1632, and RMSE
value of 0.1961 at Abs = 0.75.

This proposed new technique of determining the color index of transformer oil has several
advantages over the current method as it has the possibility to be performed on-site, and has a higher
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accuracy by minimizing the risk of human error and having a higher resolution. It also has the potential
to be applied to other products such as engine oil, biodiesel fuel and olive oil.
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