Classification of Lubricating Oil Types Using Mid-Infrared Spectroscopy Combined with Linear Discriminant Analysis–Support Vector Machine Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Samples
2.1.2. Experimental Instruments and Parameters
2.2. Methods
2.2.1. Spectral Data Pre-Processing
2.2.2. Dimensionality Reduction Using LDA Algorithm
2.2.3. SVM Algorithm
2.3. Construction of Calibration Set and Validation Set
2.3.1. K/S Algorithm
2.3.2. Specific Construction of Calibration Set and Validation Set
2.4. LDA-SVM Algorithm Steps
2.5. Experimental Design
3. Results and Discussion
3.1. PLS-DA Model
3.2. LDA Model
3.3. PCA-SVM Model Recognition Results
3.4. LDA-SVM Model
3.5. Comparison of Model Classification Results
4. Conclusions and Future Scope
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Liu, H.; Zhu, C.; Parker, R.G. Effects of lubrication on gear performance: A review. Mech. Mach. Theory 2020, 145, 103707. [Google Scholar] [CrossRef]
- Feng, K.; Pietro, B.; Wade, A.S.; Robert, B.R.; Zhan, Y.C.; Ren, J.; Peng, Z. Vibration-based updating of wear prediction for spur gears. Wear 2019, 426–427, 1410–1415. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.C.; Ni, Q. A novel gear fatigue monitoring indicator and its application to remaining useful life prediction for spur gear in intelligent manufacturing systems. Int. J. Fatigue 2023, 168, 107459. [Google Scholar] [CrossRef]
- Talbot, D.; Kahraman, A.; Li, S.; Singh, A.; Xu, H. Development and validation of an automotive axle power loss model. Tribol. Trans. 2016, 59, 707–719. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Battez, A.H.; González, R.; Monge, R.; Viesca, J.; García, A.; Martins, R.C.; Seabra, J.H. Torque loss and wear of fzg gears lubricated withwind turbine gear oils using an ionic liquid as additive. Tribol. Int. 2015, 90, 306–314. [Google Scholar] [CrossRef]
- Krantz, T.; Tufts, B. Pitting and bending fatigue evaluations of a new case-carburized gear steel. In Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007; p. 215009. [Google Scholar]
- Tian, G.Y.; Chu, X.L.; Yi, R.J. Lubrication Oil infrared Spectral Analysis Technology; Chemical Industry Press: Beijing, China, 2014; Volume 20, pp. 119–121. [Google Scholar]
- Martins, R.; Seabra, J.; Magalhães, L. Micropitting of austempered ductile iron gears: Biodegradable ester vs. mineral oil. Rev. Assoc. Port. Anál. Exp. Tensões. 2006, 13, 55–65. [Google Scholar]
- Adebogun, A.; Hudson, R.; Breakspear, A.; Warrens, C.; Gholinia, A.; Matthews, A.; Withers, P. Industrial gear oils: Tribological performance and subsurface changes. Tribol. Lett. 2018, 66, 65. [Google Scholar] [CrossRef] [Green Version]
- Brandão, J.; Meheux, M.; Ville, F.; Seabra, J.; Castro, J. Comparative overview of five gear oils in mixed and boundary film lubrication. Tribol. Int. 2012, 47, 50–61. [Google Scholar] [CrossRef]
- Bhaumik, S.; Prabhu, S.; Singh, K.J. Analysis of tribological behavior of carbon nanotube based industrial mineral gear oil 250 cSt viscosity. Adv. Tribol. 2014, 2014, 341365. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Yan, J.; Ji, H. Fabrication of GNS/MoS2 composite with different morphology and its tribological performance as a lubricant additive. Appl. Surf. Sci. 2019, 469, 226–235. [Google Scholar] [CrossRef]
- Zhao, Z.Y. The Lubricant Quality Near-Infrared and Raman Spectroscopy Testing Methods; East China Jiaotong University: Shanghai, China, 2013. [Google Scholar]
- Gao, Z.F.; Zeng, L.B.; Shi, L.; Li, K.; Yang, Y.Z.; Wu, Q.S. Development of a portable Mid-Infrared Rapid Analyzer for oil concentration in water Based on MEMS Linear sensor Array. Spectrosc. Spectr. Anal. 2014, 34, 1711–1715. [Google Scholar]
- Yu, H.W.; Wang, X.X.; Li, J.X.; Zhang, Y.X. Study on the structures of New engine oil and used Engine oil by multi-demensional infrared Spectroscopy. LuBricating Oil 2021, 36, 37–41. [Google Scholar]
- Li, H.; Li, J.F.; Xie, L.Q.; Ren, Z.P.; Ding, Y.Q. Analysis of organic component distribution and inorganic mineral composition of tank bottom sludge in change qing oil field. Anal. Instrum. 2021, 52, 52–59. [Google Scholar]
- Zhang, F.Y.; Lang, X.J.; Zhang, D.H.; Liu, J.; Zhang, Y. Determination of soot content in-service Engine oil by Fourier Transform infrared Specrometry. LuBricating Oil 2021, 35, 45–48+59. [Google Scholar]
- Mohammadia, M.; Khorrami, K.M.; Hamid, V.; Karimi, A.; Sadrara, M. Classification and determination of sulfur content in crude oil samples by infrared spectrometry. Infrared Phys. Technol. 2022, 127, 104382. [Google Scholar] [CrossRef]
- Douglas, R.K.; Nawar, S.; Alamar, M.C.; Coulon, F.; Mouazen, A.M. The application of a handheld mid-infrared spectrometry for rapid measurement of oil contamination in agricultural sites. Sci. Total Environ. 2019, 665, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Fatemeh, S.H.N.; Hadi, P. Pattern recognition analysis of gas chromatographic and infrared spectroscopic fingerprints of crude oil for source identification. Microchem. J. 2020, 153, 104326. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Wang, C.; Feng, X. GA-BPSO Hybrid Optimization of Middle Infrared Spectrum Feature Band Selection of Lubricating Oil Additive Type Identification Technology. Tribology 2022, 42, 42–152. [Google Scholar]
- Galtier, O.; Abbas, O.; Le, D.Y. Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions. Vib. Spectrosc. 2011, 55, 132–140. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Xu, D.W.; Feng, X.; Cai, M.R. Identification and Content Prediction of Lubricating Oil Additives Based on Extreme Learning Machine. Tribology 2020, 40, 97–106. [Google Scholar]
- He, Z.X.; Wu, M.T.; Zhao, X.Y.; Zhang, S.Y.; Tan, J.R. Representative null space LDA for discriminative dimensionality reduction. Pattern Recognit. 2021, 111, 107664. [Google Scholar] [CrossRef]
- Şahin, D.Ö.; Kural, E.O.; Akleylek, S.; Kılıç, E. Permission-based Android malware analysis by using dimension reduction with PCA and LDA. J. Inf. Secur. Appl. 2021, 63, 102995. [Google Scholar] [CrossRef]
- Amiri, V.; Nakagawa, K. Using a linear discriminant analysis (LDA) based nomenclature system and self-organizing maps (SOM) for spatiotemporal assessment of groundwater quality in a coastal aquifer. J. Hydrol. 2021, 603, 127082. [Google Scholar] [CrossRef]
- Xiong, Y.; Cheng, C.H.; Wu, J.H. Research on Premise Selection Technology Based on Machine Learning Classification Algorithm. Netinfo Secur. 2021, 21, 9–16. [Google Scholar]
- Lu, W.P.; Yan, X.F. Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring. Chin. J. Chem. Eng. 2021, 36, 128–137. [Google Scholar] [CrossRef]
- Han, S.; Li, N.; Xue, L.; Hasi, W.L.J. Study on Classification and Identification of Arsenic Mineral Drugs by Raman Spectroscopy Combined with PCA-SVM. J. Anal. Sci. 2022, 38, 224–228. [Google Scholar]
- Chen, C.H.; Zhong, Y.S.; Wang, X.Y.; Zhao, Y.K.; Dai, F. Feature Selection Algorithm for Identification of Male and Female Cocoons Based on SVM Bootstrapping Re Weighted Sampling. Spectrosc. Spectr. Anal. 2022, 72, 1173–1178. [Google Scholar]
- Li, H.; Wang, J.X.; Xing, Z.N.; Shen, G. Influence of Improved Kennard/Stone Algorithm on the Calibration Transfer in Near-Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2011, 31, 362–365. [Google Scholar]
Sample Types | Calibration Set | Validation Set | Sum of Sample |
---|---|---|---|
Gear oil | 8 | 5 | 13 |
Diesel engine oil | 25 | 16 | 41 |
Gasoline engine oil | 8 | 5 | 13 |
All-purpose engine oil | 20 | 13 | 33 |
Hydraulic oil | 13 | 9 | 22 |
Total number of samples | 74 | 46 | 120 |
Sample (Unit) | Data Sets | Number of Samples | Maximum | Minimum | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Lubricating oils | Calibration set | 74 | 6.0 | −0.065 | 0.070 | 0.163 |
Validation set | 46 | 1.732 | −0.063 | 0.064 | 0.117 |
Decomposition Method | Calibration Sets (%CC) | Validation Sets (%CC) |
---|---|---|
SVD | 100 | 95 |
sqlr | 95 | 97 |
eigen | 95 | 97 |
Model | Parameter | Calibration Sets (%CC) | Validation Sets (%CC) |
---|---|---|---|
PLS-DA | LV = 22 | 86% | 78% |
LDA | Decomposition method = SVD | 100% | 95% |
PCA-SVM | PC = 2, kernel = RBF | 100% | 94% |
LDA-SVM | PC = 4, kernel = poly | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, S.; Gao, M.; Zuo, Y. Classification of Lubricating Oil Types Using Mid-Infrared Spectroscopy Combined with Linear Discriminant Analysis–Support Vector Machine Algorithm. Lubricants 2023, 11, 268. https://doi.org/10.3390/lubricants11060268
Xu J, Liu S, Gao M, Zuo Y. Classification of Lubricating Oil Types Using Mid-Infrared Spectroscopy Combined with Linear Discriminant Analysis–Support Vector Machine Algorithm. Lubricants. 2023; 11(6):268. https://doi.org/10.3390/lubricants11060268
Chicago/Turabian StyleXu, Jigang, Shujun Liu, Ming Gao, and Yonggang Zuo. 2023. "Classification of Lubricating Oil Types Using Mid-Infrared Spectroscopy Combined with Linear Discriminant Analysis–Support Vector Machine Algorithm" Lubricants 11, no. 6: 268. https://doi.org/10.3390/lubricants11060268
APA StyleXu, J., Liu, S., Gao, M., & Zuo, Y. (2023). Classification of Lubricating Oil Types Using Mid-Infrared Spectroscopy Combined with Linear Discriminant Analysis–Support Vector Machine Algorithm. Lubricants, 11(6), 268. https://doi.org/10.3390/lubricants11060268