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Abstract: To realize the classification of lubricating oil types using mid-infrared (MIR) spectroscopy,
linear discriminant analysis (LDA) was used for the dimensionality reduction of spectrum data, and
the classification model was established based on the support vector machine (SVM). The spectra of
the samples were pre-processed by interval selection, Savitzky–Golay smoothing, multiple scattering
correction, and normalization. The Kennard–Stone algorithm (K/S) was used to construct the
calibration and validation sets. The percentage of correct classification (%CC) was used to evaluate
the model. This study compared the results obtained with several chemometric methods: PLS-DA,
LDA, principal component analysis (PCA)-SVM, and LDA-SVM in MIR spectroscopy applications.
In both calibration and verification sets, the LDA-SVM model achieved 100% favorable results. The
PLS-DA analysis performed poorly. The cyclic resistance ratio (CRR) of the calibration set was
classified via the LDA and PCA-SVM analysis as 100%, but the CRR of the verification set was not as
good. The LDA-SVM model was superior to the other three models; it exhibited good robustness and
strong generalization ability, providing a new method for the classification of lubricating oil types by
MIR spectroscopy.

Keywords: mid-infrared spectra; lubricating oil; LDA-SVM; Kennard–Stone algorithm

1. Introduction

Lubricating oils play a crucial role in industrial practices, serving various functions to
ensure the smooth operation of machinery. In the process of mechanical operation, if some
parts of the machine do not have the lubrication effect of lubricants, dry friction will occur,
causing machine damages. According to experimental data, considerable heat generated
by dry friction in a short period of time can melt the metal and even damage the machine.
The major working principle is as follows: Lubricating oil which exists between working
parts of a machine produces the membrane that can reduce the resistance of the parts in
actual work by wrapping an oil film on their surface. Oil films are produced by lubricating
oil. Toughness and strength are important indicators for lubricants to play a role. The
main aims of gear lubrication are to diminish friction, increase efficiency, reduce wear and
contact fatigue of the interacting tooth surfaces, and improve durability [1]. According to
the literature [2,3], the gear transmission systems with and without lubrication are very
different. A major reduction in energy waste and emissions of mechanical systems can be
seen with the optimized performance of lubricating oil [4–6].

Lubricating oil mainly comprises basic oil, which governs its basic properties, and
additives that enhance the performance of basic oil, providing certain new functions [7]. As
seen from data shown in [8–12], lubricants with different types of additives are supposed
to lead to different effects.
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It is challenging to distinguish the types of lubricating oil solely from their appearance
because of the similarities of their constituents: basic oil and small additives. In the process
of using lubricating oil, once the label is defaced or lost, it will lead to misuse, which will
lead to engine failure, equipment failure, performance gradation, and even accidents. The
lubricating oils and the unknown additive types and contents are qualitatively classified
and analyzed using physical and chemical methods. Traditional methods, such as Ra-
man spectroscopy [13], physical and chemical characterization, and gas chromatography,
are time-consuming and expensive. The composition of lubricating oil is complex, with
various types of additives and wide-ranging mid-infrared (MIR) spectroscopy features.
Different additives have their own characteristic peaks in the MIR spectra, but because the
characteristic peaks seriously overlap, it is challenging to distinguish different lubrication
oils directly using MIR, and chemometric methods are required. In recent years, MIR
spectroscopy has been widely used in the determination of oil concentration in water [14],
molecular structure analysis of new and in-use engine oils [15], analysis of oil sludge [16],
determination of soot content in engine oil [17], qualitative and quantitative analysis of
sulfur content in crude oil [18], and the detection of oil pollution [19].

Recent research studies on both crude oil and lubricating oil through the method of
infrared spectroscopy combined with chemometrics, such as the chemometric strategy
based on pattern recognition which has been developed for clustering and the classification
of crude oils of Iran, can be seen in the literature [20]. GC-FID and FT-IR fingerprints
were considered for fingerprint analysis, and the potential of PCA/HCA for clustering
and PLS-DA/CP-ANN for classification were studied. A hybrid optimization method for
feature band selection of the middle infrared spectrum based on binary particle swarm
optimization (BPSO) and the genetic algorithm (GA) has been developed by Xia Yanqiu
et al. [21]. Firstly, the basic classification model of oil additive species recognition by the
K nearest neighbor algorithm (KNN) and random forest algorithm (RF) is established.
Then, the GA-BPSO hybrid optimization algorithm is used to screen the characteristic band
region in the whole band range of the spectrum. O. Galtier et al. [22] compared the results
which were obtained by several chemometric methods, SIMCA, PLS2-DA, PLS2-DA with
SIMCA, and PLS1-DA, in two infrared spectroscopic applications, which were optimized
by selecting spectral ranges containing discriminant information. In the first application,
mid-infrared spectra of crude petroleum oils were classified according to their geographical
origins. In the second application, near-infrared spectra of French virgin olive oils were
classified in five registered designations of origins (RDOs). In both cases, the PLS1-DA
classification indicated a 100% good result. An extreme learning machine was used to train
and test the model constructed by the infrared spectral data of the mixed additives, and the
greedy algorithm and genetic algorithm were used to optimize the input band, while the
optimization results were compared. The test results showed both effective identification of
the type and prediction of the content of lubricant additives [23]. Owing to the characteristic
that the MIR spectroscopy of lubricating oils provides both linear and nonlinear information,
the linear discriminant analysis–support vector mechanism (LDA-SVM) model is proposed,
which uses LDA for supervised dimensionality reduction, SVM for classification, and
provides a theoretical basis for the rapid classification of lubricating oils.

2. Materials and Methods
2.1. Materials
2.1.1. Samples

A total of 120 Lubricating oil samples (Figure 1) from different lubricating oil manu-
facturers were analyzed using MIR spectroscopy to identify their types: gear oil, n = 13;
diesel oil, n = 41; gasoline engine oil, n = 12; general engine oil, n = 33; hydraulic oil, n = 21.
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2.2. Methods
2.2.1. Spectral Data Pre-Processing

Spectral data pre-processing was mainly performed to select the spectral data range
and eliminate electrical noise, sample background light, and stray light from the spectral
data. The pre-processing method of spectral data greatly influences the stability and
generalization ability of the model. In this study, the spectral data pre-processing method
was as follows:

(1) Wave number range. Different types of lubricating oils have characteristic peaks in
the photon region and fingerprint region of the MIR spectrum, according to the characteris-
tics of the lubrication oil spectrum. The spectral data used in this study consisted of three
ranges: 3743.7–3386.9, 1969.3–1612.4, and 1259.5–902.7 cm−1 [7]. Figure 3 shows the MIR
spectrum of the original data of the experimental samples. The spectral data in the three
black boxes were selected for modeling.

(2) Smooth processing. The Savitzky–Golay convolution smoothing method was used
to remove random noise in the spectrum and improve the signal-to-noise ratio.

(3) Multiplicative scatter correction (MSC). MSC was used to eliminate the spectral
differences caused by different scattering levels, thereby enhancing the correlation between
the spectra and data. Assuming the spectrum x(1×m), the MSC algorithm was as fol-
lows: 1© the average spectrum x of the samples was calculated; 2© linear regression was
performed on x and x, x = b0 + xb, and the least squares method was used to determine b0
and b; 3© (x− b0)/b0.

(4) Normalization. Also known as vector normalization, for a spectrum, first its aver-
age absorbance value was calculated, the average value from the spectrum was subtracted,
and then the sum of the squares of the spectrum was divided. Normalization can eliminate
spectral variations caused by small optical path differences. The normalization calculation
formula was as follows:

x′k =
xik − x√
∑n

i=1 x2
ik

(1)

x is mean of the vector, xik is a value of normalization, x′k is the result of normalization.
Figure 4 shows a flow chart of spectral data pre-processing. The spectral ranges

were optimized and selected first and subsequently smoothed; then, MSC and finally
normalization were performed.
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2.2.2. Dimensionality Reduction Using LDA Algorithm

LDA, proposed by Fisher in 1936, is a supervised dimensionality reduction technology
and is widely used in feature extraction. The LDA algorithm predominantly involves
projecting the sample data with large dimensions to the best classification vector area to
identify the data and narrow the feature range, and after the projection, it ensures that the
data have a large inter-class distance and small intra-class distance; that is, the samples can
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be well separated within this range. Each sample of its dataset has a class output. This
is different from principal component analysis (PCA). LDA uses the Fisher discriminant
criterion, so it is also known as Fisher’s linear discriminant. The LDA algorithm is widely
used in the field of pattern recognition [24–28].

(1) Principle of LDA. Assuming d-dimensional (d features) spectral samples
X = [X1, . . . , Xn] ∈ Rn×N , Xi(i = 1, . . . , N) ∈ Rn represents the i-th sample, and N rep-
resents the total number of samples. Xij ∈ Rn(i = 1, . . . , c; j = 1, . . . , NI) represents the j-th
sample in class i, Ni represents the number of samples of the i-th class, and c represents the
number of sample classes. The mean of all samples is:

x =
1
N

N

∑
i=1

xi (2)

Let the sample mean of the i-th class be xi(i = 1, 2, . . . , c), then we have

x =
c

∑
i=1

Ni
N

xi (3)

Dimensionality reduction using LDA is used to reduce high-dimensional spatial
feature information to a low-dimensional feature space according to the existing category
information. The LDA results show that samples of the same type are clustered together,
and samples of different types are separated as much as possible. The inter-class and
intra-class distances are expressed in the form of discrete matrices, and the change matrix
Wopt was solved using Fisher’s criterion. Fisher’s criterion is expressed as follows:

J(W) = argmax

∣∣WTSbW
∣∣

|WTSwW|
(4)

As in (4), Sb is an inter-class discrete matrix, and its specific expression is:

Sb =
c

∑
i=1

Ni
N

(xi − x)(xi − x)T (5)

As in (4), Sw is an intra-class discrete matrix, and its expression is:

Sw =
c

∑
i=1

Ni

∑
j=1

1
N

Ni
N
(

xij − x
)(

xij − x
)T (6)

Equation (4) is the generalized Rayleigh entropy of matrix Sb relative to matrix Sw.
Using the properties of the generalized Rayleigh entropy, the optimal solution for calcu-
lating J(W) is Wopt = (w1, w2, w3 . . . , wd), where w1, w2, w3 . . . , wd are the eigenvectors
corresponding to the first d non-zero eigenvalues of S−1

w Sb.
(2) The steps of LDA are as follows:
1© Intra-class divergence matrix Sw was calculated;
2© Inter-class divergence matrix Sb was calculated;
3©Matrix S−1

w Sb was calculated;
4©The largest d eigenvalues of S−1

w Sb and the corresponding eigenvectors (w1, w2, . . . , wd)
were calculated to obtain the optimal solution Wopt;

5© zi = WT
optxi was calculated for each sample xi in the sample set;

6© The output sample set D = {(z1, y1), (z2, y2), . . . , (zm, ym)} was obtained.

2.2.3. SVM Algorithm

SVM is a classification technology proposed in 1963 by the AT&T Bell laboratory
research group led by Vapnik. SVM is a pattern recognition method based on statistical
learning theory, which is mainly used in the field of pattern recognition [29,30]. It provides
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numerous unique advantages for solving small sample, nonlinear, and high-dimensional
pattern recognition, and it can be extended to other machine learning problems such as
function fitting. The SVM mechanism involves finding an optimal classification hyperplane
that meets the classification requirements so that the hyperplane can maximize the blank
areas on both sides of the hyperplane while ensuring classification accuracy. SVM can
achieve the optimal classification of linearly separable data.

Taking two types of data classification as examples, given a sample set (xi, yi),
i = 1, 2, . . . , l, x ∈ Rn, y ∈ {±1}, with the hyperplane denoted as (w·x) + b = 0, to
correctly classify all samples and have a classification interval, the following constraints
are required:

min
w,b

1
2
‖w‖2 (7)

yi[(w·xi) + b] ≥ 1; i = 1, 2, 3 . . . l (8)

This is a convex quadratic programming problem that was solved using the Lagrange
function:

L(w, b, a) =
1
2
‖w‖ − a(y((w·x) + b)− 1) (9)

The optimal solution was determined by finding the maximum value:

a∗ = (a∗1 , a∗2 , a∗3 , . . . , a∗l )
T (10)

The optimal weight vector w∗ and the optimal bias b∗ were calculated as follows:

w∗ =
l

∑
j=1

a∗j yjxj (11)

b∗ = yi −
l

∑
j=1

yja∗j
(
xj·xi

)
(12)

For the linear inseparable case, the kernel method was used. The main idea was
to project the input vector to a high-dimensional feature vector space and construct the
optimal classification surface in the feature space. The linear discriminant function was
constructed in the high-dimensional space, and the commonly used kernel functions were
as follows:

1© Linear kernel function: K(x, xi) = 〈x, xi〉;
2© Polynomial kernel function: K(x, xi) = [γ(x·xi) + coe f ]d, where d is the order of

the polynomial, and coef is the bias coefficient;
3© RBF kernel function: K(x, xi) = exp

(
−γ‖x− xi‖2

)
, where γ is the width of the

kernel function;
4© Sigmoid kernel function: K(x, xi) = tanh(γ(x·xi) + coe f ), where γ is the width of

the kernel function and coef is the bias coefficient.

2.3. Construction of Calibration Set and Validation Set
2.3.1. K/S Algorithm

The K/S algorithm [31] can provide the best expression of the difference between
samples and select more representative samples. The K/S algorithm was used to select
the sample set, and the steps were as follows: (1) The Euclidean distance between the two
samples was calculated, and the two samples with the largest distance were selected for the
calibration set. (2) The distance between each remaining sample and the selected calibration
set was calculated, and the two farthest and nearest samples were determined and selected
for the calibration set. (3) Step (2) was repeated until the number of the selected calibration
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samples was equal to the predetermined number. (4) The remaining samples were the
samples of the validation set.

2.3.2. Specific Construction of Calibration Set and Validation Set

The calibration set and verification set were constructed by the K/S algorithm with
a ratio of 6:4 for the spectral data of gear oil, diesel oil, gasoline oil, general oil, and
hydraulic oil samples. The specific sample distribution is listed in Table 1, and the statistical
distribution of MIR spectral data of samples in the calibration set and prediction set is listed
in Table 2.

Table 1. Composition of calibration and validation set.

Sample Types Calibration Set Validation Set Sum of Sample

Gear oil 8 5 13
Diesel engine oil 25 16 41

Gasoline engine oil 8 5 13
All-purpose engine oil 20 13 33

Hydraulic oil 13 9 22
Total number of samples 74 46 120

Table 2. Statistical distribution of MIR spectral data of samples in calibration set and prediction set.

Sample
(Unit) Data Sets Number of

Samples Maximum Minimum Mean Standard
Deviation

Lubricating
oils

Calibration set 74 6.0 −0.065 0.070 0.163
Validation set 46 1.732 −0.063 0.064 0.117

2.4. LDA-SVM Algorithm Steps

Step 1: Data pre-processing. The spectral range was optimized, the signal-to-noise
ratio was improved, and the influence of stray light was eliminated;

Step 2: The K/S algorithm was used to divide the sample data to ensure the represen-
tativeness of the calibration set and validation set;

Step 3: Supervised dimensionality reduction was performed on the calibration set
using LDA, and the optimal vector Wopt was calculated;

Step 4: The dimensionality reduction result was provided as the input of SVM, and the
grid search method was used to automatically search and calculate the optimal parameters
of SVM, when the kernel functions were linear, poly, RBF, and sigmoid;

Step 5: The dimensionality reduction result of the validation set was calculated through
the optimal vector Wopt obtained in step 3;

Step 6: The optimal parameters were used to predict the validation set through SVM.

2.5. Experimental Design

As shown in Figure 5, the original infrared spectrum data of the lubricating oils
were pre-processed, the data were divided into calibration and validation sets by the K/S
algorithm, and the calibration set was input into four models: 1. The PLS-DA model was
used to calculate the percentage of correct classification (%CC) of the calibration set under
different latent variable numbers, and the principal component number with the highest
correct rate was selected. 2. The LDA model, when the matrix was decomposed with
singular value decomposition (SVD), least square (lsqr), eigenvalue decomposition (eigen),
and the %CC of the calibration set and validation set were calculated, and the optimal
results were selected. 3. When the principal component number of PCA was 2–40, the
results of dimensionality reduction were used as the input of SVM. The grid search method
was used to search the hyperparameters automatically to obtain the optimal solutions
of the kernel functions when they were linear, poly, RBF, and sigmoid. 4. The principal
component number of LDA was 2, 3, or 4, the dimension reduction results were taken as
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the input of SVM, and the grid search method was used to search the hyperparameters
automatically to obtain the optimal solutions of kernel functions when they were linear,
poly, RBF, and sigmoid.
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The %CC was the criterion used to compare classification results.

%CC = Nc/(Nc + Nic) (13)

where Nc and Nic represent the numbers of incorrect and correct identifiers, respectively.
PLS-DA, LDA, PCA-SVM, and LDA-SVM models were built using the Keras and

Scikit-learn machine learning library. They were developed based on Python 3.7.0, and the
data mining and data analysis tools adopted Scikit-learn 0.23.2. The programming platform
is based on Jupiter Notebook 4.4.0 and runs on the Windows 10 operating system.

3. Results and Discussion
3.1. PLS-DA Model

The number of latent variables is an important parameter in the PLS-DA model;
when the number of latent variables is small, it leads to insufficient feature extraction, and
when the number of latent variables is large, it leads to noise information. The %CC of
the calibration and validation sets is shown in Figure 6. The number of latent variables
ranges from 2 to 74, and the %CC of the calibration set increases with the number of latent
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variables; when the number of latent variables is >36, the cyclic resistance ratio (CRR)
remains unchanged at 100%. The %CC of the validation set fluctuated greatly with the
number of latent variables, and when the number of latent variables was 22, the %CC
reached its maximum, 78%. The PLS-DA model was over-fitted by comparing the results
of calibration and validation sets. When the number of latent variables was 22, the sum of
the %CC of the calibration and validation sets reached the maximum value.
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Figure 6. %CC for calibration and validation sets under different numbers of latent variables with
PLS-DA model.

3.2. LDA Model

The %CC of the calibration and validation sets is listed in Table 3; different matrix
decomposition algorithms have a certain influence on the results of the LDA model. When
the matrix decomposition algorithms were used by SVD, the %CC of the calibration and
validation sets was 100% and 95%, respectively. When the matrix decomposition algorithms
were used by lsqr and eigen, the %CC of the calibration and validation sets was 95% and
98%, respectively. By comparing the three decomposition algorithms, we observe that SVD
decomposition algorithms are favorable, where the sum of the %CC of the calibration and
validation sets reaches the highest value.

Table 3. %CC for calibration and validation sets under different decomposition methods with
LDA model.

Decomposition Method Calibration Sets (%CC) Validation Sets (%CC)

SVD 100 95
sqlr 95 97

eigen 95 97

3.3. PCA-SVM Model Recognition Results

PCA is an unsupervised dimensionality reduction technique. The main factors affect-
ing the PCA-SVM model are as follows: principal component number, kernel function, and
kernel function parameters. The kernel functions of SVM are linear, poly, RBF, and sigmoid
when the principal component number ranges from 2 to 42, and grid search is used for
automatic hyperparameter search. As shown in Figure 7a,c, the principal component num-
bers negligibly influence the linear and RBF kernel functions. When the kernel functions
are linear, the %CC of the calibration and validation sets are 89% and 85%, respectively,
When the kernel functions are RBF, the %CC of the calibration and validation sets is 100%
and 93%, respectively. As shown in Figure 7b, when the kernel function is poly, the %CC
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of the calibration and validation sets increases first and then decreases. When the princi-
pal component number is 16, the %CC of the calibration and validation sets is 100% and
89%, respectively. As shown in Figure 7d, the %CC of the calibration and validation sets
increases with an increase in the principal component number and finally stabilizes. When
the principal component number is 30, the %CC of calibration and validation sets is 91%
and 89%, respectively. Comparing the results of the different kernel functions, the best
prediction result of the PCA-SVM model is achieved using the RBF kernel function, and
the %CC of the calibration and validation sets is 100% and 93%, respectively.
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Figure 7. %CC for calibration and validation sets of PCA-SVM model for the following: (a) number
of principal components used in linear kernel function; (b) number of principal components used in
poly kernel function; (c) number of principal components used in RBF kernel function; (d) number of
principal components used in sigmoid kernel function.

3.4. LDA-SVM Model

LDA is a dimensionality reduction technique. The main factors that affect the classifica-
tion results of the LDA-SVM model are as follows: the principal component number, kernel
function, and kernel function parameters. When the principal component number is 2, 3,
or 4, and the kernel functions of SVM are linear, poly, RBF, and sigmoid, respectively, grid
search is used for automatic hyperparameter search to obtain the optimal solutions. The
%CC of the calibration and validation sets is listed in Figure 8. The %CC of the calibration
and validation sets increases with an increase in the principal component number of LDA,
and when the principal component number is 4, the %CC of the calibration and validation
sets becomes maximized. Comparing the results of different kernel functions, the best
prediction result of the PCA-SVM model is exhibited by the poly kernel function, and the
%CC of the calibration and validation sets is 100%.
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Figure 8. %CC for calibration and validation sets as LDA-SVM model of the following: (a) number of
principal components used in linear kernel function; (b) number of principal components used in
poly kernel function; (c) number of principal components used in RBF kernel function; (d) number of
principal components used in sigmoid kernel function.

3.5. Comparison of Model Classification Results

The classification results of PLS-DA, LDA, PCA-SVM, and LDA-SVM are listed in
Table 4. The PLS-DA model exhibits the worst recognition ability, the over-fitting phe-
nomenon is serious, and the CRR of calibration and validation sets is poor. When classified
using the LDA and PCA-SVM model, the CRR of the calibration set achieved 100%, but the
CRR of the validation set is unfavorable; the LDA-SVM has the best recognition, and the
CRR of the calibration and validation sets is 100%.

Table 4. Correct classification of calibration and validation sets of different models.

Model Parameter Calibration Sets
(%CC)

Validation Sets
(%CC)

PLS-DA LV = 22 86% 78%
LDA Decomposition method = SVD 100% 95%

PCA-SVM PC = 2, kernel = RBF 100% 94%
LDA-SVM PC = 4, kernel = poly 100% 100%

4. Conclusions and Future Scope

A classification model based on LDA-SVM was proposed. In this model, LDA was
used for the dimensionality reduction of the MIR spectrum of lubricating oils, the samples of
the same class were clustered together, and the samples of different classes were separated
as far as possible. The results of dimensionality reduction were input to SVM. The results
demonstrated that LDA-SVM exhibited higher recognition accuracy and robustness than
PLS-DA, LDA, and PCA-SVM models. LDA-SVM is a suitable tool to identify lubricating
oil types via MIR spectra.

In the next work, a semi-supervised learning method and an interval selection algo-
rithm will be combined to study the improved LDA-SVM algorithm for oil classification.
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