Lubrication Film Generation with Limited Lubricant Supply and Its Tuned Oil Replenishment in a Cylinder-on-Disc Contact
Abstract
:1. Introduction
2. Experimental Apparatus and Working Conditions
2.1. Experimental Apparatus
2.2. Disc Surface Modification
3. Results and Discussion
3.1. Lubrication Behaviors of Cylindrical Slider-on-Disc Contact under LLS
3.2. Wettability Gradient Patterns and Enhanced Film Thickness
3.2.1. Stripe Wettability Pattern
3.2.2. Interlaced Wettability Pattern
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lubrication of Rolling Bearings. Available online: www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/tpi/downloads_8/tpi_176_de_en.pdf (accessed on 10 December 2022).
- Raju, K.S.; Veettil, M.P.; Ray, S.; Shi, F. Needle Roller Bearing Lubricant Flow CFD Simulations. SAE Tech. Pap. Ser. 2013, 26, 41. [Google Scholar] [CrossRef]
- Obert, P.; Füßer, H.-J.; Bartel, D. Oil distribution and oil film thickness within the piston ring-liner contact measured by laser-induced fluorescence in a reciprocating model test under starved lubrication conditions. Tribol. Int. 2019, 129, 191–201. [Google Scholar] [CrossRef]
- Riggs, M.R.; Murthy, N.K.; Berkebile, S.P.; Korenyi-Both, A.L. Scuffing Resistance and Starved Lubrication Behavior in Helicopter Gear Steels Coated with Nanocomposite Surface Coatings with and without a Hard Sublayer. Tribol. Trans. 2020, 63, 610–620. [Google Scholar] [CrossRef]
- Gohar, R.; Cameron, A. The Mapping of Elastohydrodynamic Contacts. ASLE Trans. 1967, 10, 215–225. [Google Scholar] [CrossRef]
- Wedeven, L.D.; Evans, D.; Cameron, A. Optical Analysis of Ball Bearing Starvation. J. Lubr. Technol. 1971, 93, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Wymer, D.G.; Cameron, A. Elastohydrodynamic lubrication of a line contact. Proc. Inst. Mech. Eng. 1974, 188, 221–238. [Google Scholar] [CrossRef]
- Wolveridge, P.E.; Baglin, K.P.; Archard, J.F. The starved lubrication of cylinders in line contact. Proc. Inst. Mech. Eng. 1970, 185, 1159–1169. [Google Scholar] [CrossRef]
- Dmytrychenko, N.; Aksyonov, A.; Gohar, R.; Wan, G. Elastohydrodynamic lubrication of line contacts. Wear 1991, 150, 303–313. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Chen, X.; Han, Q.; Shi, L. Experimental study of starvation in grease-lubricated finite line contacts. Ind. Lubr. Tribol. 2017, 69, 963–969. [Google Scholar] [CrossRef]
- Ebner, M.; Yilmaz, M.; Lohner, T.; Michaelis, K.; Höhn, B.R.; Stahl, K. On the effect of starved lubrication on elasto-hydrodynamic (EHL) line contacts. Tribol. Int. 2018, 118, 515–523. [Google Scholar] [CrossRef]
- Michelberger, B.; Jaitner, D.; Hagel, A.; Striemann, P.; Kröger, B.; Wetzel, F.-J.; Leson, A.; Lasagni, A.F. Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings. Coatings 2022, 12, 738. [Google Scholar] [CrossRef]
- Chevalier, F.; Lubrecht, A.A.; Cann, P.M.E.; Colin, F.; Dalmaz, G. Film Thickness in Starved EHL Point Contacts. J. Tribol. 1998, 120, 126–133. [Google Scholar] [CrossRef]
- Damiens, B.; Venner, C.H.; Cann, P.M.E.; Lubrecht, A.A. Starved Lubrication of Elliptical EHD Contacts. J. Tribol. 2004, 126, 105–111. [Google Scholar] [CrossRef]
- Venner, C.H.; Hooke, C.J. Surface roughness attenuation in ehl line and point contacts under conditions of starved lubrication. In Proceedings of the IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics, Cardiff, UK, 1–3 September 2004; pp. 59–70. [Google Scholar]
- Yang, P.; Wang, J.; Kaneta, M. Thermal and Non-Newtonian Numerical Analyses for Starved EHL Line Contacts. J. Tribol. 2006, 128, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Sun, Z.; Liu, H.; Song, C.; Li, Z.; Wang, Z. Effect of the shape of inlet oil-supply layer on starved lubrication performance of a cycloid drive. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, BSN, MT, USA, 2–5 August 2015. 57205: V010T11A049. [Google Scholar]
- Liu, H.; Zhu, C.; Sun, Z.; Song, C. Starved lubrication of a spur gear pair. Tribol. Int. 2016, 94, 52–60. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, C.; Liu, H.; Song, C.; Gu, Z. Study on Starved Lubrication Performance of a Cycloid Drive. Tribol. Trans. 2016, 59, 1005–1015. [Google Scholar] [CrossRef]
- Biboulet, N.; Colin, F.; Lubrecht, A. Friction in starved hydrodynamically lubricated line contacts. Tribol. Int. 2012, 58, 1–6. [Google Scholar] [CrossRef]
- van der Kruk, W.M.; Smit, S.A.; Segers, T.J.; Li, X.M.; Venner, C.H. Drop-on-Demand Printing as Novel Method of Oil Supply in Elastohydrodynamic Lubrication. Tribol. Lett. 2019, 67, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.; Yilmaz, M.; Thieme, E.; Lohner, T.; Venner, C.H. Drop-On-Demand Lubrication of Gears: A Feasibility Study. Front. Mech. Eng. 2021, 7, 746406. [Google Scholar] [CrossRef]
- Cheong, J.; Wigger, S.; Füßer, H.J.; Kaiser, S.A. The oil film around a cylindrical micropore in a sliding contact visualized by fluorescence microscopy on a tribometer. Tribol. Int. 2022, 165, 107309. [Google Scholar] [CrossRef]
- Galda, L.; Sep, J.; Prucnal, S. The effect of dimples geometry in the sliding surface on the tribological properties under starved lubrication conditions. Tribol. Int. 2016, 99, 77–84. [Google Scholar] [CrossRef]
- Galda, L.; Sep, J.; Swirad, S. Effect of the Sliding Element Surface Topography on the Oil Film Thickness in EHD Lubrication in Non-Conformal Contact. Materials 2022, 15, 7549. [Google Scholar] [CrossRef]
- Grützmacher, P.G.; Rosenkranz, A.; Szurdak, A.; Grüber, M.; Gachot, C.; Hirt, G.; Mücklich, F. Multi-scale surface patterning—An approach to control friction and lubricant migration in lubricated systems. Ind. Lubr. Tribol. 2019, 71, 1007–1016. [Google Scholar] [CrossRef]
- Liu, C.; Guo, F.; Wong, P.L.; Li, X. Laser pattern-induced unidirectional lubricant flow for lubrication track replenishment. Friction 2022, 10, 1234–1244. [Google Scholar] [CrossRef]
- Ge, L.; Wang, C.; Yan, K.; Zhu, Y.; Hong, J. Design of groove structures for bearing lubrication enhancement based on the flow mechanism analysis. Tribol. Int. 2021, 158, 106950. [Google Scholar] [CrossRef]
- Li, X.; Guo, F.; Wong, P.; Zhao, Y. Regulation of lubricant supply by wettability gradient in rolling EHL contacts. Tribol. Int. 2018, 120, 565–574. [Google Scholar] [CrossRef]
- Liu, C.; Guo, F.; Wong, P.; Li, X. Tribological behaviour of surfaces with stepped wettability under limited lubricant supply. Tribol. Int. 2020, 141, 105880. [Google Scholar] [CrossRef]
- Guo, F.; Wong, P.L.; Fu, Z.; Ma, C. Interferometry Measurement of Lubricating Films in Slider-On-Disc Contacts. Tribol. Lett. 2010, 39, 71–79. [Google Scholar] [CrossRef]
- Liu, H.C.; Guo, F.; Guo, L.; Wong, P.L. A Dichromatic Interference Intensity Modulation Approach to Measurement of Lubricating Film Thickness. Tribol. Lett. 2015, 58, 1–11. [Google Scholar] [CrossRef]
- Guo, F.; Wong, P. A multi-beam intensity-based approach for lubricant film measurements in non-conformal contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 281–291. [Google Scholar] [CrossRef]
- Li, S.; Guo, F.; Wong, P.L.; Li, X. Numerical analysis of lubrication of conformal contact with discontinuous oil drop-lets. Tribol. Int. 2022, 173, 107632. [Google Scholar]
Lubricants | Dynamic Viscosity/(mPa·s@20 °C) | Refractive Index |
---|---|---|
PAO20 | 379.95 | 1.48 |
PAO8 | 109.5 | 1.47 |
PAO4 | 30.7 | 1.49 |
Stripe Wettability | Interlaced Wettability | |
---|---|---|
Pattern type | ||
Central radius, Rc (mm) | 25 | |
Track width, W (mm) | 4, 5 | 5 |
Width of wettability-interlaced B = L (mm) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Guo, F.; Li, S.; Jing, Z.; Wong, P.L. Lubrication Film Generation with Limited Lubricant Supply and Its Tuned Oil Replenishment in a Cylinder-on-Disc Contact. Lubricants 2023, 11, 93. https://doi.org/10.3390/lubricants11030093
Jin W, Guo F, Li S, Jing Z, Wong PL. Lubrication Film Generation with Limited Lubricant Supply and Its Tuned Oil Replenishment in a Cylinder-on-Disc Contact. Lubricants. 2023; 11(3):93. https://doi.org/10.3390/lubricants11030093
Chicago/Turabian StyleJin, Wei, Feng Guo, Shuyi Li, Zhaogang Jing, and Pat Lam Wong. 2023. "Lubrication Film Generation with Limited Lubricant Supply and Its Tuned Oil Replenishment in a Cylinder-on-Disc Contact" Lubricants 11, no. 3: 93. https://doi.org/10.3390/lubricants11030093
APA StyleJin, W., Guo, F., Li, S., Jing, Z., & Wong, P. L. (2023). Lubrication Film Generation with Limited Lubricant Supply and Its Tuned Oil Replenishment in a Cylinder-on-Disc Contact. Lubricants, 11(3), 93. https://doi.org/10.3390/lubricants11030093