Viscosity Variations and Tribological Performances of Oleylamine-Modified Fe3O4 Nanoparticles as Mineral Oil Additives
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of Lubricants Containing of Fe3O4 Nanoparticles
2.3. Viscosity and Tribological Tests
2.4. Characterization
3. Results and Discussion
3.1. Characterizations of Fe3O4 Nanoparticles
3.2. Settling Stabilities of Lubricants
3.3. Flow Behaviors of Lubricants
3.4. Tribological Properties of Lubricants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, J.; Zhou, X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 643–665. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, H.; Wu, B.; Feng, W.; Li, X.; Jiao, Y.; Hu, X. Effect of magnetic field on the tribological behaviors of Fe3O4@MoS2 as polyalphaolefin additive in the steel/steel friction interface. Wear 2021, 466–467, 203586. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Yang, G.; Zhang, S.; Yu, L.; Zhang, P. Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv. 2016, 6, 69836–69844. [Google Scholar] [CrossRef]
- Szabó, Á.I.; Tóth, Á.D.; Leskó, M.Z.; Hargitai, H. Investigation of the applicability of Y2O3–ZrO2 spherical nanoparticles as tribological lubricant additives. Lubricants 2022, 10, 152. [Google Scholar] [CrossRef]
- Patel, J.; Kiani, A. Effects of reduced graphene oxide (rGO) at different goncentrations on tribological properties of liquid base lubricants. Lubricants 2019, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Gao, C.; Xu, Z.; Yang, L.; Huang, S. Lubrication mechanisms of a nanocutting fluid with carbon nanotubes and sulfurized isobutylene (CNTs@T321) composites as additives. Lubricants 2022, 10, 189. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Jia, X.; Song, H. Preparation and tribological properties of core-shell Fe3O4@C microspheres. Tribol. Int. 2019, 129, 427–435. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.; Ma, G.; Shen, C. Study on the synthesis and tribological property of Fe3O4 based magnetic fluids. Tribol. Lett. 2009, 33, 187–192. [Google Scholar] [CrossRef]
- Sammaiah, A.; Huang, W.; Wang, X. Synthesis of magnetic Fe3O4/graphene oxide nanocomposites and their tribological properties under magnetic field. Mater. Res. Express 2018, 5, 105006. [Google Scholar] [CrossRef]
- Sammaiah, A.; Dai, Q.; Huang, W.; Wang, X. Synthesis of GO-Fe3O4-based ferrofluid and its lubrication performances. Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 2019, 234, 1160–1167. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Liao, C.; Yang, G.; Qin, Y.; Li, Q.; Wu, M. Enhancing tribological performance of cemented carbide (WC-12Co) by pulsed magnetic field treatment and magnetofluid. Tribol. Int. 2021, 161, 107086. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Y.; Hu, D.; Pan, Z.; Xiang, L. Tribological properties of magnetite nanoparticles with various morphologies as lubricating additives. J. Nanopart. Res. 2013, 15, 1502. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, Y.; Wang, X.; Xia, M.; Zhang, Y.; Ding, H. Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil. Wear 2013, 301, 753–757. [Google Scholar] [CrossRef]
- Zuin, A.; Cousseau, T.; Sinatora, A.; Toma, S.H.; Araki, K.; Toma, H.E. Lipophilic magnetite nanoparticles coated with stearic acid: A potential agent for friction and wear reduction. Tribol. Int. 2017, 112, 10–19. [Google Scholar] [CrossRef]
- Amund, O.O.; Adebiyi, A.G. Effect of viscosity on the biodegradability of automotive lubricating oils. Tribol. Int. 1991, 24, 235–237. [Google Scholar] [CrossRef]
- Andablo-Reyes, E.; Hidalgo-Álvarez, R.; de Vicente, J. Controlling friction using magnetic nanofluids. Soft Matter 2011, 7, 880–883. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, C.; Hou, Y.; Gao, H.; Sun, S. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mat. 2009, 21, 1778–1780. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Y.; Yu, W.; Shen, H.; Zhang, H.; Gu, N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surf. A-Physicochem. Eng. Asp. 2003, 212, 219–226. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, S.; Hou, P.; Yang, Y.; Weng, J.; Li, X.; Li, M. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. Part A 2007, 80, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Eine neue bestimmung der moleküldimensionen. Ann. Phys. 1906, 324, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Thomas, D.G. Transport characteristics of suspension: VIII. A note on viscosity of newtonian suspensions of uniform spherical particles. J. Colloid Sci 1965, 20, 267–277. [Google Scholar] [CrossRef]
- Mostafizur, R.M.; Abdul Aziz, A.R.; Saidur, R.; Bhuiyan, M.H.U.; Mahbubul, I.M. Effect of temperature and volume fraction on rheology of methanol based nanofluids. Int. J. Heat Mass Transf. 2014, 77, 765–769. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Hojo, D.; Yoko, A.; Seong, G.; Aoki, N.; Tomai, T.; Takami, S.; Adschiri, T. Dispersion and rheology of nanofluids with various concentrations of organic modified nanoparticles: Modifier and solvent effects. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 583, 123876. [Google Scholar] [CrossRef]
- Minakov, A.V.; Rudyak, V.Y.; Pryazhnikov, M.I. Systematic experimental study of the viscosity of nanofluids. Heat Transf. Eng. 2020, 42, 1024–1040. [Google Scholar] [CrossRef]
- Mohammadfam, Y.; Zeinali Heris, S.; Khazini, L. Experimental Investigation of Fe3O4/hydraulic oil magnetic nanofluids rheological properties and performance in the presence of magnetic field. Tribol. Int. 2020, 142, 105995. [Google Scholar] [CrossRef]
- Dolatabadi, N.; Rahmani, R.; Rahnejat, H.; Garner, C.P.; Brunton, C. Performance of poly alpha olefin nanolubricant. Lubricants 2020, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Yapici, K.; Cakmak, N.K.; Ilhan, N.; Uludag, Y. Rheological characterization of polyethylene glycol based TiO2 nanofluids. Korea-Aust. Rheol. J. 2014, 26, 355–363. [Google Scholar] [CrossRef]
- Zareie, A.; Akbari, M. Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study. J. Mol. Liq. 2017, 230, 408–414. [Google Scholar] [CrossRef]
- Myshkin, N.; Kovalev, A. Adhesion and surface forces in polymer tribology—A review. Friction 2018, 6, 143–155. [Google Scholar] [CrossRef]
- Georgiou, E.P.; Drees, D.; De Bilde, M.; Anderson, M. Can we put a value on the adhesion and tackiness of greases? Tribol. Lett. 2018, 66, 60. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, B.; Song, R.; Song, H.; Zhang, J.; Hu, X. Preparation, characterization and tribological properties of polyalphaolefin with magnetic reduced graphene oxide/Fe3O4. Tribol. Int. 2020, 141, 105952. [Google Scholar] [CrossRef]
- Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int. 2016, 102, 88–98. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, W.; Liang, W.; Yan, T.; Li, T.; Zhang, L.; Li, S. Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction 2021, 10, 645–676. [Google Scholar] [CrossRef]
- Du, F.; Li, C.; Li, D.; Sa, X.; Yu, Y.; Li, C.; Yang, Y.; Wang, J. Research progress regarding the use of metal and metal oxide nanoparticles as lubricant additives. Lubricants 2022, 10, 196. [Google Scholar] [CrossRef]
- Kato, H.; Komai, K. Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear 2007, 262, 36–41. [Google Scholar] [CrossRef]
- Sui, T.; Song, B.; Zhang, F.; Yang, Q. Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. J. Nanomater. 2015, 2015, 427. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, K.; Parekh, K.; Upadhyay, R.V. Nanolubricant: Magnetic nanoparticle based. Mater. Res. Express 2017, 4, 114003. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Wei, P.; Wang, X.; Lou, W. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Dalton Trans. 2012, 41, 896–899. [Google Scholar] [CrossRef]
Characteristic | Unit | Value |
---|---|---|
Kinematic viscosity at 40 °C | mm2/s | 29.73 |
Kinematic viscosity at 100 °C | mm2/s | 5.256 |
Viscosity index | - | 116 |
Density at 25 °C | g/cm3 | 8.314 |
Flash point | °C | 232 |
Pour point | °C | −27 |
Sample | Base Oils | NF-1 | NF-3 | NF-5 | NF-8 | NF-10 | NF-20 |
---|---|---|---|---|---|---|---|
η (mPa·s) | 46.714 | 46.116 | 45.982 | 42.710 | 43.511 | 44.326 | 50.255 |
R2 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, H.; Zhao, Q.; Wang, X.; Lou, W. Viscosity Variations and Tribological Performances of Oleylamine-Modified Fe3O4 Nanoparticles as Mineral Oil Additives. Lubricants 2023, 11, 149. https://doi.org/10.3390/lubricants11030149
Wang X, Liu H, Zhao Q, Wang X, Lou W. Viscosity Variations and Tribological Performances of Oleylamine-Modified Fe3O4 Nanoparticles as Mineral Oil Additives. Lubricants. 2023; 11(3):149. https://doi.org/10.3390/lubricants11030149
Chicago/Turabian StyleWang, Xiaoyu, Huanchen Liu, Qilong Zhao, Xiaobo Wang, and Wenjing Lou. 2023. "Viscosity Variations and Tribological Performances of Oleylamine-Modified Fe3O4 Nanoparticles as Mineral Oil Additives" Lubricants 11, no. 3: 149. https://doi.org/10.3390/lubricants11030149
APA StyleWang, X., Liu, H., Zhao, Q., Wang, X., & Lou, W. (2023). Viscosity Variations and Tribological Performances of Oleylamine-Modified Fe3O4 Nanoparticles as Mineral Oil Additives. Lubricants, 11(3), 149. https://doi.org/10.3390/lubricants11030149