Impact of Boron-Containing Lubricant Additive on Three-Way Catalyst Reactivity and Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lubricant Additives
2.2. Three-Way Catalyst
2.3. Accelerated Engine Aging
2.4. TWC Performance Evaluation Protocols
2.5. Surface Characterization Studies
3. Results and Discussion
3.1. Performance Evaluation on Bench-Flow Reactor (BFR)
3.2. Characterization Studies
4. Conclusions
- Reactivity of the B-exposed samples was minimally affected and compared favorably with the no-additive case (NA).
- ○
- This was demonstrated with light-off temperatures (T50 and T90), WGS reaction, and OSC measurements.
- ○
- Conversely, ZDDP-exposed samples had a significant degradation.
- B is more likely to pass through the TWC without depositing compared with P.
- ○
- ICP-OES confirmed the presence of B on the TWC samples, but the amount collected on the TWC was notably smaller than the P amount in the ZDDP-exposed TWCs.
- ○
- After correcting for molecular weights, P was two times more likely to stick to the TWC compared with B.
- B does not form a detectable crystalline phase on the TWC, unlike the notable presence of CePO4 peaks when P is used.
- ○
- XRD confirmed the presence of CePO4, but no B-related peaks were observed.
- Finally, neither B nor P affect the overall surface area or pore size of the TWC; however, the ZDDP-aged TWC sample pore volume reduced by more than 20%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Twigg, M.V. Progress and Future Challenges in Controlling Automotive Exhaust Gas Emissions. Appl. Catal. B Environ. 2007, 70, 2–15. [Google Scholar] [CrossRef]
- Granger, P.; Lamonier, J.F.; Sergent, N.; Aboukais, A.; Leclercq, L. Investigation of the Intrinsic Activity of ZrxCe1-xO2 Mixed Oxides in the CO+ NO Reactions: Influence of Pd Incorporation. Top. Catal. 2001, 16, 89–94. [Google Scholar] [CrossRef]
- Heck, R.M.; Farrauto, R.K.; Gulati, S. Catalytic Air Pollution Control: Commercial Technology. Platin. Met. Rev. 2010, 54, 180–183. [Google Scholar]
- Ozawa, M.; Kimura, M. Effect of Cerium Addition on the Thermal Stability of Gamma Alumina Support. J. Mater. Sci. Lett. 1990, 9, 291–293. [Google Scholar] [CrossRef]
- Burtin, P.; Brunelle, J.P.; Pijolat, M.; Soustelle, M. Influence of Surface Area and Additives on the Thermal Stability of Transition Alumina Catalyst Supports. I: Kinetic Data. Appl. Catal. 1987, 34, 225–238. [Google Scholar] [CrossRef]
- Beguin, B.; Garbowski, E.; Primet, M. Stabilization of Alumina toward Thermal Sintering by Silicon Addition. J. Catal. 1991, 127, 595–604. [Google Scholar] [CrossRef]
- Moulijn, J.A.; van Diepen, A.E.; Kapteijn, F. Catalyst Deactivation: Is It Predictable?: What to Do? Appl. Catal. A Gen. 2001, 212, 3–16. [Google Scholar] [CrossRef]
- Gandhi, H.S.; Wlliamson, W.B.; Bomback, J.L. Deactivation of Three-Way and Oxidation Catalyst Dual Bed Emission Control Systems: Catalyst Post Mortem Analyses from Methanol-Fueled Vehicles. Appl. Catal. 1982, 3, 79–88. [Google Scholar] [CrossRef]
- Williamson, W.B.; Perry, J.; Goss, R.L.; Gandhi, H.S.; Beason, R.E. Catalyst Deactivation Due to Glaze Formation from Oil-Derived Phosphorus and Zinc. SAE Tech. Pap. 1984, 841406. [Google Scholar] [CrossRef]
- Rokosz, M.J.; Chen, A.E.; Lowe-Ma, C.K.; Kucherov, A.V.; Benson, D.; Paputa Peck, M.C.; McCabe, R.W. Characterization of Phosphorus-Poisoned Automotive Exhaust Catalysts. Appl. Catal. B Environ. 2001, 33, 205–215. [Google Scholar] [CrossRef]
- Xu, L.; Guo, G.; Uy, D.; O’Neill, A.E.; Weber, W.H.; Rokosz, M.J.; McCabe, R.W. Cerium Phosphate in Automotive Exhaust Catalyst Poisoning. Appl. Catal. B Environ. 2004, 50, 113–125. [Google Scholar] [CrossRef]
- Larese, C.; Cabello Galisteo, F.; López Granados, M.; Mariscal, R.; Fierro, J.L.G.; Furió, M.; Fernández Ruiz, R. Deactivation of Real Three Way Catalysts by CePO4 Formation. Appl. Catal. B Environ. 2003, 40, 305–317. [Google Scholar] [CrossRef]
- Uy, D.; O’Neill, A.E.; Xu, L.; Weber, W.H.; McCabe, R.W. Observation of Cerium Phosphate in Aged Automotive Catalysts Using Raman Spectroscopy. Appl. Catal. B Environ. 2003, 41, 269–278. [Google Scholar] [CrossRef]
- Angelidis, T.N.; Sklavounos, S.A. A SEM-EDS Study of New and Used Automotive Catalysts. Appl. Catal. A Gen. 1995, 133, 121–132. [Google Scholar] [CrossRef]
- Kim, D.; Toops, T.; Nguyen, K.; Brookshear, D.; Lance, M.J.; Qu, J. Impact of Lubricant Oil Additives on the Performance of Pd-Based Three-Way Catalysts. Emiss. Control. Sci. Technol. 2020, 6, 139–150. [Google Scholar] [CrossRef]
- Kim, D.; Nam, J. Impact of High-Temperature Desulfation on the Performance of Pd-Based TWC. J. Adv. Mar. Eng. Technol. 2021, 45, 10–16. [Google Scholar] [CrossRef]
- Kim, D.; Toops, T.J.; Nguyen, K.; Lance, M.J.; Qu, J. Impact of Primary and Secondary ZDDP and Ionic Liquid as Lubricant Oil Additives on the Performance and Physicochemical Properties of Pd-Based Three-Way Catalysts. Catalysts 2021, 11, 878. [Google Scholar] [CrossRef]
- Xie, C.; Toops, T.J.; Lance, M.J.; Qu, J.; Viola, M.B.; Lewis, S.A.; Leonard, D.N.; Hagaman, E.W. Impact of Lubricant Additives on the Physicochemical Properties and Activity of Three-Way Catalysts. Catalysts 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Barnhill, W.C.; Luo, H.; Meyer III, H.M.; Leonard, D.N.; Landauer, A.K.; Kheireddin, B.; Gao, H.; Papke, B.L.; Dai, S. Synergistic Effects between Phosphonium-alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives. Adv. Mater. 2015, 27, 4767–4774. [Google Scholar] [CrossRef]
- Shah, F.U.; Glavatskih, S.; Antzutkin, O.N. Boron in Tribology: From Borates to Ionic Liquids. Tribol. Lett. 2013, 51, 281–301. [Google Scholar] [CrossRef]
- Baldwin, B.A. Relative Antiwear Efficiency of Boron and Sulfur Surface Species. Wear 1977, 45, 345–353. [Google Scholar] [CrossRef]
- Liu, W.; Jin, Z.; Xue, Q. The Performance and Antiwear Mechanism of S-containing Organic Borate as an Oil Additive. Lubr. Sci. 1994, 7, 49–60. [Google Scholar] [CrossRef]
- Junbin, Y. Antiwear Function and Mechanism of Borate Containing Nitrogen. Tribol. Int. 1997, 30, 387–389. [Google Scholar] [CrossRef]
- Erdemir, A.; Bindal, C.; Zuiker, C.; Savrun, E. Tribology of Naturally Occurring Boric Acid Films on Boron Carbide. Surf. Coat. Technol. 1996, 86, 507–510. [Google Scholar] [CrossRef]
- Kreuz, K.L.; Fein, R.S.; Dundy, M. EP Films from Borate Lubricants. Asle Trans. 1967, 10, 67–76. [Google Scholar] [CrossRef]
- Martin, J.M.; Mogne, T.L.; Chassagnette, C.; Gardos, M.N. Friction of Hexagonal Boron Nitride in Various Environments. Tribol. Trans. 1992, 35, 462–472. [Google Scholar] [CrossRef]
- Koskilinna, J.O.; Linnolahti, M.; Pakkanen, T.A. Friction Coefficient for Hexagonal Boron Nitride Surfaces from Ab Initio Calculations. Tribol. Lett. 2006, 24, 37–41. [Google Scholar] [CrossRef]
- Hu, Z.S.; Yie, Y.; Wang, L.G.; Chen, G.X.; Dong, J.X. Synthesis and Tribological Properties of Ferrous Octoxyborate as Antiwear and Friction-Reducing Additive of Lubricating Oil. Tribol. Lett. 2000, 8, 45–50. [Google Scholar] [CrossRef]
- Herdan, J.M. Friction Modifiers in Engine and Gear Oils. Lubr. Sci. 2000, 12, 265–276. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Xue, Q. The Tribological Properties of the Heterocyclic Compound Containing S, N, O, and B as Additive in Liquid Paraffin. Wear 1999, 224, 68–72. [Google Scholar] [CrossRef]
- Shen, G.; Zheng, Z.; Wan, Y.; Xu, X.; Cao, L.; Yue, Q.; Sun, T. Synergistic Lubricating Effects of Borate Ester with Heterocyclic Compound. Wear 2000, 246, 55–58. [Google Scholar] [CrossRef]
- Huang, W.; Tan, Y.; Dong, J.; Chen, B. Tribological Properties of the Film Formed by Borated Dioctyl Dithiocarbamate as an Additive in Liquid Paraffin. Tribol. Int. 2002, 35, 787–791. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, L.; Xue, Q. Tribological Properties and Action Mechanism of N,N-Dialkyl Dithiocarbamate-Derived S-Hydroxyethyl Borate Esters as Additives in Rapeseed Oil. Wear 2009, 266, 917–924. [Google Scholar] [CrossRef]
- Twigg, M.V.; Collins, N.R.; Morris, D.; O’Connell, T.J.; Ball, I.K.; Arrowsmith, S.; Cassidy, L.; Wrench, P. The Effect of Phosphorus and Boron Lubricant Oil Additives on Catalyst and Engine Durability. SAE Trans. 2004, 948–959. [Google Scholar] [CrossRef]
- Rappé, K.G.; DiMaggio, C.; Pihl, J.A.; Theis, J.R.; Oh, S.H.; Fisher, G.B.; Parks, J.; Easterling, V.G.; Yang, M.; Stewart, M.L.; et al. Aftertreatment Protocols for Catalyst Characterization and Performance Evaluation: Low-Temperature Oxidation, Storage, Three-Way, and NH3-SCR Catalyst Test Protocols. Emiss. Control. Sci. Technol. 2019, 5, 183–214. [Google Scholar] [CrossRef]
- Friction Modifier, SDS No. AR9100 1. 2. 0. Archoil: Norfolk, UK, 23 February 2012. Available online: https://oil-club.de/wcf/index.php?attachment/22403-sds-ar9100-nlen-pdf/ (accessed on 12 January 2023).
- West, B.; Sluder, C.S. Lubricating Oil Consumption on the Standard Road Cycle. In Proceedings of the SAE World Congress, Detroit, UM, USA, 16 April 2013. [Google Scholar] [CrossRef]
- Culley, S.A.; McDonnell, T.F.; Ball, D.J.; Kirby, C.W.; Hawes, S.W. The Impact of Passenger Car Motor Oil Phosphorus Levels on Automotive Emissions Control Systems. SAE Tech. Pap. 1996, 105, 1216–1225. [Google Scholar] [CrossRef]
- Kim, D. Effect of Analyzer Scan Time on the Oxygen Storage Capacity Performance in Pd-Based TWCs. J. Adv. Mar. Eng. Technol. 2021, 45, 88–93. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. Sci. Eng. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Bedrane, S.; Descorme, C.; Duprez, D. Investigation of the Oxygen Storage Process on Ceria- and Ceria–Zirconia-Supported Catalysts. Catal. Today 2002, 75, 401–405. [Google Scholar] [CrossRef]
- Eaton, S.J.; Bunting, B.G.; Toops, T.J.; Nguyen, K. The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts. J. Soc. Automot. Eng. Jpn. 2009, 1, 628. [Google Scholar] [CrossRef]
- Bunting, B.G.; More, K.; Lewis, S.; Toops, T. Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts. SAE Tech. Pap. 2005, 1, 1758. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size Distribution (nm) |
---|---|---|---|
NA | 83 | 0.42 | 17.2 |
ZDDP | 81 | 0.34 | 17.2 |
BR | 88 | 0.44 | 17.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Toops, T.J.; Nguyen, K.; Lance, M.J.; Qu, J. Impact of Boron-Containing Lubricant Additive on Three-Way Catalyst Reactivity and Physicochemical Properties. Lubricants 2023, 11, 53. https://doi.org/10.3390/lubricants11020053
Kim D, Toops TJ, Nguyen K, Lance MJ, Qu J. Impact of Boron-Containing Lubricant Additive on Three-Way Catalyst Reactivity and Physicochemical Properties. Lubricants. 2023; 11(2):53. https://doi.org/10.3390/lubricants11020053
Chicago/Turabian StyleKim, Daekun, Todd J. Toops, Ke Nguyen, Michael J. Lance, and Jun Qu. 2023. "Impact of Boron-Containing Lubricant Additive on Three-Way Catalyst Reactivity and Physicochemical Properties" Lubricants 11, no. 2: 53. https://doi.org/10.3390/lubricants11020053
APA StyleKim, D., Toops, T. J., Nguyen, K., Lance, M. J., & Qu, J. (2023). Impact of Boron-Containing Lubricant Additive on Three-Way Catalyst Reactivity and Physicochemical Properties. Lubricants, 11(2), 53. https://doi.org/10.3390/lubricants11020053