Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen and Steel Ball
2.2. Environment Preparation
2.3. Abrasive Wear Tests
2.4. Worn Surface Analysis
3. Results and Discussions
3.1. Volume Loss (VL)
3.2. Wear Depth (WD)
3.3. Coefficient of Friction (CoF)
3.4. Worn Surfaces
4. Conclusions
- The highest volume loss value was obtained from those experiments with a 30 N load, 15 mm/s sliding speed, and 5 wt % concentration value, and was calculated as 106.9 mm3. Conversely, the value obtained from the prediction equations is 110.8 mm3. There is a difference of 3.65% between the predicted value and the experimental result value, and the predicted value is higher.
- According to the quadratic ANOVA result, the most effective parameter for volume loss was the environment parameter; the effect value was found to be 39.47%. While this was followed by the load parameter at 29.70%, the effective rate of the sliding speed parameter was found to be 16.58 percent. According to the RSM result, there is a 96.64% agreement between the experimental results and the prediction results.
- The largest wear depth value was comparable with the volume loss value, and the relevant conditions were a 30 N load, 15 mm/s sliding speed, and 5 wt % abrasive-containing environment. Wear depth was measured as 26.40 µm from the experimental results. This value was calculated to be 27.59 µm using the prediction equations. There is a 4.5% difference between the two values, and the predictive value is higher.
- According to the ANOVA result, the most effective parameter for wear depth is the environment parameter, with an impact rate of 35.93%. It is followed by the load at 32.60%, and the sliding speed parameters at 18.96%. According to the RSM result, there is a 96.73% agreement between the experimental results and the prediction results.
- The experimental conditions in which the coefficient of friction value was highest was 0.137, seen with a load of 30 N, a sliding speed of 15 mm/s, and an environment containing 5 wt % of abrasive particles. Under these conditions, the CoF value was determined as 0.137. According to the prediction equations, the highest CoF value was 0.128 at 30 N, 5 mm/s, and 5 wt % abrasive particle-containing media. The difference between these two values is 6.57%, and the experimental CoF value is higher.
- According to the ANOVA results, the most effective parameter for CoF is the environment parameter at 67.18%, followed by the load at 16.52 percent and the sliding speed parameter at 3.44%, respectively. According to the RSM results, there is a 92.97% agreement between the experimental results and the predicted values.
- When the surface images are examined, there is scale penetration to both the specimen and the steel ball. In addition, the results showed material transfer from the ball to the specimen, as well as material transfer from the specimen to the ball.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloch, H.P.; Geitner, F.K. Machinery Component Failure Analysis. In Machinery Failure Analysis and Troubleshooting; Bloch, H.P., Geitner, F.K., Eds.; Gulf Professional Publishing: Houston, TA, USA, 1999; Volume 2, pp. 79–256. ISBN 1874-6942. [Google Scholar]
- Çakır Şencan, A.; Çelik, M.; Selayet Saraç, E.N. The Effect of Nanofluids Used in the MQL Technique Applied in Turning Process on Machining Performance: A Review on Eco-Friendly Machining. Manuf. Technol. Appl. 2021, 2, 47–66. [Google Scholar] [CrossRef]
- Denkena, B.; Abele, E.; Brecher, C.; Dittrich, M.-A.; Kara, S.; Mori, M. Energy efficient machine tools. CIRP Ann. 2020, 69, 646–667. [Google Scholar] [CrossRef]
- Wegener, K.; Mayr, J.; Merklein, M.; Behrens, B.-A.; Aoyama, T.; Sulitka, M.; Fleischer, J.; Groche, P.; Kaftanoglu, B.; Jochum, N.; et al. Fluid elements in machine tools. CIRP Ann. 2017, 66, 611–634. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Y.; Fan, Y.; Yu, X.; Zhang, Z.; Zhang, B. The three-body abrasive tribological characteristics of the Graphene/h-BN heterostructure film considering defects. Tribol. Int. 2022, 171, 107525. [Google Scholar] [CrossRef]
- Asif, A.; Zheng, Y.; Rahman, S.; Amiri, A.; Jun, H.J.; Polycarpou, A.A. Three-body abrasive wear in the presence of inorganic fullerene-like tungsten disulfide and ionic liquid containing alkanolamines and phosphates. Wear 2021, 486–487, 204073. [Google Scholar] [CrossRef]
- Hayashi, S.; Yoneda, S.; Kondo, Y.; Tanei, H. Phase Transformation of Thermally Grown FeO Formed on High-Purity Fe at Low Oxygen Potential. Oxid. Met. 2020, 94, 81–93. [Google Scholar] [CrossRef]
- Yu, X.L.; Jiang, Z.Y.; Yang, D.J.; Wei, D.B.; Yang, Q. Precipitation Behavior of Magnetite in Oxide Scale during Cooling of Microalloyed Low Carbon Steel. Adv. Mater. Res. 2012, 572, 249–254. [Google Scholar] [CrossRef]
- Çakıroğlu, R. Machinability Analysis of Inconel 718 Superalloy with AlTiN-Coated Carbide Tool Under Different Cutting Environments. Arab. J. Sci. Eng. 2021, 46, 8055–8073. [Google Scholar] [CrossRef]
- Danish, M.; Gupta, M.K.; Rubaiee, S.; Ahmed, A.; Korkmaz, M.E. Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718. Tribol. Int. 2021, 163, 107178. [Google Scholar] [CrossRef]
- Erdogan, A.; Yener, T.; Doleker, K.M.; Korkmaz, M.E.; Gök, M.S. Low-temperature aluminizing influence on degradation of nimonic 80A surface: Microstructure, wear and high temperature oxidation behaviors. Surf. Interfaces 2021, 25, 101240. [Google Scholar] [CrossRef]
- Ghazali, M.F.; Abdullah, M.M.; Abd Rahim, S.Z.; Gondro, J.; Pietrusiewicz, P.; Garus, S.; Stachowiak, T.; Sandu, A.V.; Mohd Tahir, M.F.; Korkmaz, M.E.; et al. Tool Wear and Surface Evaluation in Drilling Fly Ash Geopolymer Using HSS, HSS-Co, and HSS-TiN Cutting Tools. Materials 2021, 14, 1628. [Google Scholar] [CrossRef] [PubMed]
- Günen, A.; Döleker, K.M.; Korkmaz, M.E.; Gök, M.S.; Erdogan, A. Characteristics, high temperature wear and oxidation behavior of boride layer grown on nimonic 80A Ni-based superalloy. Surf. Coat. Technol. 2021, 409, 126906. [Google Scholar] [CrossRef]
- Demirsöz, R.; Korkmaz, M.E.; Gupta, M.K.; Collado, A.G.; Krolczyk, G.M. Erosion characteristics on surface texture of additively manufactured AlSi10Mg alloy in SiO quartz added slurry environment. Rapid Prototyp. J. 2021; ahead of print. [Google Scholar] [CrossRef]
- Boromei, I.; Ceschini, L.; Martini, C.; Sola, R. Aluminium bronze-steel sliding contact in packaging applications: Failure analysis and lab-scale tribological tests. Eng. Fail. Anal. 2020, 112, 104528. [Google Scholar] [CrossRef]
- Cenna, A.A.; Dastoor, P.; Beehag, A.; Page, N.W. Effects of graphite particle addition upon the abrasive wear of polymer surfaces. J. Mater. Sci. 2001, 36, 891–900. [Google Scholar] [CrossRef]
- Latthe, S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef]
- Wang, K.; Yu, S.; Li, W.; Song, Y.; Gong, P.; Zhang, M.; Li, H.; Sun, D.; Yang, X.; Wang, X. Superhydrophobic and photocatalytic synergistic Self-Cleaning ZnS coating. Appl. Surf. Sci. 2022, 595, 153565. [Google Scholar] [CrossRef]
- Li, M.; Luo, W.; Sun, H.; Zhang, M.; Ng, K.W.; Wang, F.; Cheng, X. Low-cost preparation of durable, transparent, superhydrophobic coatings with excellent environmental stability and self-cleaning function. Surf. Coat. Technol. 2022, 438, 128367. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Chao, C.Y.H.; Tso, C.Y.; Huang, B.; Li, W.; Yao, S. Solar-assisted icephobicity down to −60°C with superhydrophobic selective surfaces. Cell Rep. Phys. Sci. 2021, 2, 100384. [Google Scholar] [CrossRef]
- Ijaola, A.O.; Farayibi, P.K.; Asmatulu, E. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review. J. Nat. Gas Sci. Eng. 2020, 83, 103544. [Google Scholar] [CrossRef]
- Jiang, J.; Wan, S.; Yi, G.; Wang, J.; Chang, J.; Jin, W.; Lei, J.; Lu, B.; Qu, F. A case study on the wear mechanism and stress evolution of graphite plugged bronze wear plate from the field trial. Eng. Fail. Anal. 2021, 131, 105836. [Google Scholar] [CrossRef]
- Akram, S.; Babutskyi, A.; Chrysanthou, A.; Montalvão, D.; Whiting, M.J.; Pizurova, N. Improvement of the wear resistance of nickel-aluminium bronze and 2014-T6 aluminium alloy by application of alternating magnetic field treatment. Wear 2021, 480–481, 203940. [Google Scholar] [CrossRef]
- Velásquez, D.; Pérez, S.; Mejía-Gutiérrez, R.; Velásquez-López, A. Crack detection method in transport of hygroscopic particulate compressed material. Int. J. Mech. Mechatron. Eng. 2020, 20, 26–33. [Google Scholar]
- Oksanen, V.T.; Lehtovaara, A.J.; Kallio, M.H. Load capacity of lubricated bismuth bronze bimetal bearing under elliptical sliding motion. Wear 2017, 388–389, 72–80. [Google Scholar] [CrossRef]
- Ghaednia, H.; Hossain, M.S.; Jackson, R.L. Tribological Performance of Silver Nanoparticle–Enhanced Polyethylene Glycol Lubricants. Tribol. Trans. 2016, 59, 585–592. [Google Scholar] [CrossRef]
- Gara, L.; Zou, Q. Friction and wear characteristics of oil-based ZnO nanofluids. Tribol. Trans. 2013, 56, 236–244. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Tsui, W.C.; Liu, T.C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Fu, J.; Xu, J.; Zhang, J.; Xu, G.; Li, Y.; Wang, Z. Effect of low cast-rolling speeds on the microstructure and mechanical properties of twin-roll casting high Mg AA5059 alloy sheets. J. Mater. Res. Technol. 2022, 19, 1059–1072. [Google Scholar] [CrossRef]
- Cetin, M.H.; Ozcelik, B.; Kuram, E.; Demirbas, E. Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J. Clean. Prod. 2011, 19, 2049–2056. [Google Scholar] [CrossRef]
- Krelling, A.P.; da Costa, C.E.; Milan, J.C.G.; Almeida, E.A.S. Micro-abrasive wear mechanisms of borided AISI 1020 steel. Tribol. Int. 2017, 111, 234–242. [Google Scholar] [CrossRef]
- Yi, Y.; Xing, J.; Ren, X.; Fu, H.; Li, Q.; Yi, D. Investigation on abrasive wear behavior of FeB alloys containing various molybdenum contents. Tribol. Int. 2019, 135, 237–245. [Google Scholar] [CrossRef]
- Gök, M.S.; Küçük, Y.; Erdoğan, A.; Öge, M.; Kanca, E.; Günen, A. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures. Surf. Coat. Technol. 2017, 328, 54–62. [Google Scholar] [CrossRef]
- Kondul, B.; Cetin, M.H. Increasing the wear resistance of railway switches with boron coating and analysis of tribological performance by ANOVA method. Wear 2022, 488–489, 204132. [Google Scholar] [CrossRef]
- Turan, M.E.; Sun, Y.; Akgul, Y. Improved wear properties of magnesium matrix composite with the addition of fullerene using semi powder metallurgy. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 130–136. [Google Scholar] [CrossRef]
- Cetin, M.H.; Korkmaz, S. Investigation of the concentration rate and aggregation behaviour of nano-silver added colloidal suspensions on wear behaviour of metallic materials by using ANOVA method. Tribol. Int. 2020, 147, 106273. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Demirsöz, R.; Boy, M.; Yaşar, N.; Günay, M.; Ross, N.S. On tribological characteristics of TiC rollers machined under hybrid lubrication/cooling conditions. Tribol. Int. 2022, 174, 107745. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Li, C.; Huang, L.; Wang, Y.; Gao, T.; Zhang, Z.; Liu, W. Wear Properties of C-MoS2-PTFE Composite Coating Prepared on 4032 Aluminum Alloy. Lubricants 2022, 10, 181. [Google Scholar] [CrossRef]
- Demirsöz, R.; Korkmaz, M.E.; Gupta, M.K. A novel use of hybrid Cryo-MQL system in improving the tribological characteristics of additively manufactured 316 stainless steel against 100 Cr6 alloy. Tribol. Int. 2022, 173, 107613. [Google Scholar] [CrossRef]
- Zhang, T.; Zhen, H.; Liu, T.; Hou, X.; Zhang, Z. Microstructure and Tribological Properties of Lubricating-Reinforcing Laser Cladding Composite Coating with the Ti2SC-Ti2Ni Mosaic Structure Phase. Coatings 2022, 12, 876. [Google Scholar] [CrossRef]
- García-León, R.A.; Martínez-Trinidad, J.; Zepeda-Bautista, R.; Campos-Silva, I.; Guevara-Morales, A.; Martínez-Londoño, J.; Barbosa-Saldaña, J. Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: A statistical analysis. Tribol. Int. 2021, 157, 106885. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Demirsöz, R. Understanding the lubrication regime phenomenon and its influence on tribological characteristics of additively manufactured 316 Steel under novel lubrication environment. Tribol. Int. 2022, 173, 107686. [Google Scholar] [CrossRef]
Element | Cu | Sn | Ni | Pb | Al | Mn | Fe | Balance |
---|---|---|---|---|---|---|---|---|
wt % | 86.88 | 1.45 | 3.63 | 3.68 | 0.22 | 0.41 | 0.44 | 3.29 |
Element | C | Mn | P | S | Si | Ni | Cr | Cu |
---|---|---|---|---|---|---|---|---|
wt % | 0.95 | 0.35 | 0.025 | 0.015 | 0.25 | 0.30 | 1.55 | 0.3 |
Property | |
---|---|
Grade | ISO 100 |
Copper Strip Corrosion, 3 h, 100 C, Rating, ASTM D130 | 1 A |
Demulsibility, Total Free Water, Non-EP Oils, mL, ASTM D2711 | 39 |
Density @ 15 C, kg/L, ASTM D1298 | 0.88 |
Emulsion, Time to 37 mL Water, 54 C, min, ASTM D1401 | 15 |
FZG Scuffing, Fail Load Stage, A/8.3/90, ISO 14635-1 | 12 |
Flash Point, Cleveland Open Cup, °C, ASTM D92 | 264 |
Foam, Sequence I, Tendency, mL, ASTM D892 | 10 |
Kinematic Viscosity @ 100 C, mm2/s, ASTM D445 | 10.7 |
Kinematic Viscosity @ 40 C, mm2/s, ASTM D445 | 89 |
Pour Point, °C, ASTM D97 | −24 |
Viscosity Index, ASTM D2270 | 99 |
Exp. No | Load (N) | Sliding Speed (mm/s) | Conc. (%) | Coefficient of Friction (CoF) | Predicted CoF | Volume Loss (VL) 10−3 (mm3) | Predicted VL 10−3 (mm3) | Wear Depth (WD) (µm) | Predicted WD (µm) |
---|---|---|---|---|---|---|---|---|---|
1 | 10 | 5 | 0 | 0.065 ± 0.014 | 0.067 | 15.3 ± 0.62 | 16.1 | 5.35 ± 0.31 | 4.47 |
2 | 10 | 5 | 2.5 | 0.096 ± 0.013 | 0.087 | 33.4 ± 0.56 | 27.2 | 9.51 ± 0.49 | 8.20 |
3 | 10 | 5 | 5 | 0.106± 0.026 | 0.108 | 50.6 ± 0.53 | 54.8 | 12.59 ± 0.70 | 14.44 |
4 | 20 | 5 | 0 | 0.087 ± 0.011 | 0.077 | 30.5 ± 1.33 | 39.1 | 8.94 ± 0.91 | 10.40 |
5 | 20 | 5 | 2.5 | 0.103 ± 0.023 | 0.098 | 53.5 ± 0.44 | 50.6 | 13.25 ± 0.42 | 13.78 |
6 | 20 | 5 | 5 | 0.108 ± 0.015 | 0.118 | 79.2 ± 1.31 | 78.5 | 20.42 ± 0.72 | 19.68 |
7 | 30 | 5 | 0 | 0.093 ± 0.050 | 0.087 | 45.8 ± 1.71 | 36.8 | 12.17 ± 0.93 | 10.57 |
8 | 30 | 5 | 2.5 | 0.108 ± 0.025 | 0.108 | 39.1 ± 1.82 | 48.6 | 11.57 ± 0.75 | 13.60 |
9 | 30 | 5 | 5 | 0.116 ± 0.029 | 0.128 | 81.1 ± 1.15 | 76.9 | 20.51 ± 1.79 | 19.14 |
10 | 10 | 10 | 0 | 0.057 ± 0.016 | 0.062 | 22.9 ± 1.85 | 23.4 | 5.73 ± 0.47 | 6.32 |
11 | 10 | 10 | 2.5 | 0.087 ± 0.011 | 0.083 | 34.4 ± 1.04 | 33.7 | 11.12 ± 1.53 | 9.73 |
12 | 10 | 10 | 5 | 0.100 ± 0.010 | 0.103 | 62.0 ± 0.88 | 60.4 | 16.10 ± 0.65 | 15.65 |
13 | 20 | 10 | 0 | 0.073 ± 0.070 | 0.073 | 57.3 ± 0.61 | 52.0 | 13.43 ± 0.56 | 13.67 |
14 | 20 | 10 | 2.5 | 0.097 ± 0.019 | 0.093 | 60.1 ± 0.85 | 62.6 | 15.95 ± 0.52 | 16.73 |
15 | 20 | 10 | 5 | 0.111 ± 0.022 | 0.113 | 88.8 ± 1.31 | 89.7 | 22.02 ± 1.15 | 22.30 |
16 | 30 | 10 | 0 | 0.081 ± 0.014 | 0.083 | 55.4 ± 1.64 | 55.4 | 15.29 ± 0.84 | 15.24 |
17 | 30 | 10 | 2.5 | 0.102 ± 0.018 | 0.103 | 61.1 ± 1.01 | 66.4 | 17.40 ± 0.53 | 17.95 |
18 | 30 | 10 | 5 | 0.119 ± 0.009 | 0.123 | 95.5 ± 0.87 | 93.7 | 23.75 ± 0.25 | 23.17 |
19 | 10 | 15 | 0 | 0.053 ± 0.023 | 0.058 | 29.6 ± 0.69 | 30.9 | 6.89 ± 0.20 | 8.56 |
20 | 10 | 15 | 2.5 | 0.079 ± 0.016 | 0.078 | 40.1 ± 0.85 | 40.3 | 12.15 ± 0.15 | 11.65 |
21 | 10 | 15 | 5 | 0.092 ± 0.070 | 0.099 | 64.9 ± 0.17 | 66.2 | 16.85 ± 0.30 | 17.25 |
22 | 20 | 15 | 0 | 0.068 ± 0.010 | 0.068 | 67.8 ± 0.26 | 65.2 | 19.22 ± 0.78 | 17.31 |
23 | 20 | 15 | 2.5 | 0.083 ± 0.014 | 0.088 | 73.5 ± 1.80 | 74.9 | 20.12 ± 0.83 | 20.05 |
24 | 20 | 15 | 5 | 0.126 ± 0.027 | 0.109 | 103.1 ± 1.15 | 101.1 | 25.91 ± 0.27 | 25.30 |
25 | 30 | 15 | 0 | 0.071 ± 0.006 | 0.078 | 68.7 ± 1.57 | 74.3 | 19.85 ± 0.36 | 20.30 |
26 | 30 | 15 | 2.5 | 0.090 ± 0.009 | 0.098 | 93.5 ± 1.64 | 84.3 | 23.34 ± 0.75 | 22.69 |
27 | 30 | 15 | 5 | 0.137 ± 0.046 | 0.119 | 106.9 ± 0.85 | 110.8 | 26.40 ± 0.72 | 27.59 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution Rate % |
---|---|---|---|---|---|---|
L—Load (N) | 1 | 4798.7 | 4798.73 | 149.88 | 0.0000 | 29.70 |
S—Speed (mm/s) | 1 | 2679.1 | 2679.12 | 83.68 | 0.0000 | 16.58 |
E—Environment (wt %) | 1 | 6377 | 6376.97 | 199.17 | 0.0000 | 39.47 |
L × L | 1 | 956.8 | 956.76 | 29.88 | 0.0000 | 5.92 |
S × S | 1 | 0 | 0.05 | 0 | 0.9698 | 0.00 |
E × E | 1 | 405.6 | 405.63 | 12.67 | 0.0024 | 2.51 |
L × S | 1 | 383.1 | 383.07 | 11.96 | 0.0030 | 2.37 |
L × E | 1 | 1.3 | 1.27 | 0.04 | 0.8446 | 0.01 |
S × E | 1 | 9.2 | 9.19 | 0.29 | 0.5991 | 0.06 |
Error | 17 | 544.3 | 32.02 | 3.37 | ||
Total | 26 | 16,155.1 | 100.00 | |||
R2 = 0.9664, R2 (adj) = 0.9485 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution Rate % |
---|---|---|---|---|---|---|
L—Load (N) | 1 | 304.099 | 304.099 | 169.25 | 0.0000 | 32.60 |
S—Speed (mm/s) | 1 | 176.845 | 176.845 | 98.42 | 0.0000 | 18.96 |
E—Environment (wt %) | 1 | 335.189 | 335.189 | 186.55 | 0.0000 | 35.93 |
L × L | 1 | 49.949 | 49.949 | 27.80 | 0.0001 | 5.35 |
S × S | 1 | 0.222 | 0.222 | 0.12 | 0.7297 | 0.00002 |
E × E | 1 | 9.446 | 9.446 | 5.26 | 0.0349 | 1.01 |
L × S | 1 | 23.843 | 23.843 | 13.27 | 0.0020 | 2.56 |
L × E | 1 | 1.474 | 1.474 | 0.82 | 0.3778 | 0.16 |
S × E | 1 | 1.232 | 1.232 | 0.69 | 0.4191 | 0.13 |
Error | 17 | 30.545 | 1.797 | 3.27 | ||
Total | 26 | 932.844 | 100.00 | |||
R2 = 0.9673, R2 (adj) = 0.9499 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution Rate % |
---|---|---|---|---|---|---|
L—Load (N) | 1 | 0.001840 | 0.00184 | 39.95 | 0.0000 | 16.52 |
S—Speed (mm/s) | 1 | 0.000383 | 0.000383 | 8.31 | 0.0103 | 3.44 |
E—Environment (wt %) | 1 | 0.007483 | 0.007483 | 162.46 | 0.0000 | 67.18 |
L × L | 1 | 0.000067 | 0.000067 | 1.45 | 0.2454 | 0.60 |
S × S | 1 | 0.000013 | 0.000013 | 0.29 | 0.5953 | 0.12 |
E × E | 1 | 0.000013 | 0.000013 | 0.29 | 0.5953 | 0.12 |
L × S | 1 | 0.000048 | 0.000048 | 1.04 | 0.3216 | 0.43 |
L × E | 1 | 0.000001 | 0.000001 | 0.03 | 0.8669 | 0.01 |
S × E | 1 | 0.000507 | 0.000507 | 11.01 | 0.0041 | 4.55 |
Error | 17 | 0.000783 | 0.000046 | 7.03 | ||
Total | 26 | 0.011139 | 100.00 | |||
R2 = 0.9297, R2 (adj) = 0.8925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirsöz, R. Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications. Lubricants 2022, 10, 212. https://doi.org/10.3390/lubricants10090212
Demirsöz R. Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications. Lubricants. 2022; 10(9):212. https://doi.org/10.3390/lubricants10090212
Chicago/Turabian StyleDemirsöz, Recep. 2022. "Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications" Lubricants 10, no. 9: 212. https://doi.org/10.3390/lubricants10090212
APA StyleDemirsöz, R. (2022). Wear Behavior of Bronze vs. 100Cr6 Friction Pairs under Different Lubrication Conditions for Bearing Applications. Lubricants, 10(9), 212. https://doi.org/10.3390/lubricants10090212