Alkylation of Tetralin with Butene/Propylene Catalyzed by Ionic Liquid and Its Lubricating Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Analysis Conditions
2.4. Physicochemical Properties Test
2.5. Tribological Tests
3. Results and Discussions
3.1. Alkylation of Tetralin
3.2. Effects of ILs for Alkylation
3.2.1. IL Catalyst Types
3.2.2. Acidity of IL
3.3. Effect of Reaction Conditions
3.3.1. Reaction Temperature
3.3.2. Catalyst Dosage
3.3.3. Flow Rate of n-Butene
3.3.4. Reaction Time
3.4. Catalytic Mechanism of the ILs in Alkylation
3.5. Multi-Alkyltetralins as Lubricating Base Oils
3.5.1. Physicochemical Properties Test
3.5.2. Tribological Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, H.; Li, X. The Characteristics and Utilization of Naphthenic Crude Oil. Guangzhou Chem. Ind. 2009, 37, 48–51. [Google Scholar]
- Jia, J.; Li, M.; Li, C.; Du, Q.; Yu, E. Study on Application of Naphthenic Base Oils in Metalworking Fluids. Lubr. Eng. 2016, 41, 109–114. [Google Scholar]
- Hessell, E.T.; Abramshe, R.A. Alkylated naphthalenes as high-performance synthetic fluids. J. Synth. Lubr. 2003, 20, 109–122. [Google Scholar] [CrossRef]
- Kang, H.J.; Jung, Y.; Kwon, J.H. Changes in ecotoxicity of naphthalene and alkylated naphthalenes during photodegradation in water. Chemosphere 2019, 222, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bruyneel, B.; Kamelia, L.; Wesseling, S.; Rietjens, I.M.C.M.; Boogaard, P.J. In vitro metabolism of naphthalene and its alkylated congeners by human and rat liver microsomes via alkyl side chain or aromatic oxidation. Chem. Biol. Interact 2020, 315, 108905. [Google Scholar] [CrossRef]
- Gilbert, G.; Weil, R.C.; Hunter, R.H. Hydrorefining coal–tar naphthalene. Ind. Eng. Chem. 1961, 53, 993–996. [Google Scholar] [CrossRef]
- Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel-Crafts alkylation-From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem. 2010, 6, 6. [Google Scholar] [CrossRef]
- Yoo, K.; Burckle, E.C.; Smirniotis, P.G. Isobutane/2-Butene alkylation using large-pore zeolites: Influence of pore structure on activity and selectivity. J. Catal. 2002, 211, 6–18. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 2010, 373, 1–56. [Google Scholar] [CrossRef]
- Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Sheng, X.; Wang, B.; Zhu, Z.; Nan, Q. The catalytic performance study of chloroaluminate ionic liquids on long-chain alkenes alkylation. Energy Fuels 2018, 32, 9763–9771. [Google Scholar] [CrossRef]
- Qiao, K.; Deng, Y. Alkylations of benzene in room temperature ionic liquids modified with HCl. J. Mol. Catal. A Chem. 2001, 171, 81–84. [Google Scholar] [CrossRef]
- Aminov, R.I.; Mazitova, A.S.; Khusnutdinov, R.I. Benzene alkylation with cycloolefins under the action of [Et3NH]+[Al2Cl7]− ionic liquid. Russ. J. Gen. Chem. 2019, 89, 2171–2177. [Google Scholar] [CrossRef]
- Zhao, Z.; Qiao, W.; Wang, G.; Li, Z.; Cheng, L. Alkylation of α-methylnaphthalene with long-chain alkenes catalyzed by butylpyridinium bromochloroaluminate ionic liquids. J. Mol. Catal. A Chem. 2005, 231, 137–143. [Google Scholar] [CrossRef]
- Yang, T.; Wang, F.; Huang, J.; Ling, S.D.; Liu, S.; Zhang, A.; Wang, Y.; Xu, J. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system. React. Chem. Eng. 2021, 6, 1950–1960. [Google Scholar] [CrossRef]
- Li, L.; Zhao, X.; Chen, C.; Xu, H.; Liu, L.; Dong, J. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil. ChemistrySelect 2019, 4, 5284–5290. [Google Scholar] [CrossRef]
- Cui, J.; Tang, Q.; Chen, C.; Xu, H.; Liu, L.; Dong, J. High-viscosity polyalkylphenanthrene oils: Synthesis and evaluation of lubricating properties. Lubr. Sci. 2022, 34, 527–536. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, S. Comprehensive utilization of C4 resource as by-product of methanol to olefin process. Contemp. Chem. Ind. 2012, 41, 1333–1336. [Google Scholar]
- Zhao, Z.; Li, Z.; Wang, G.; Qiao, W.; Cheng, L. Friedel–Crafts alkylation of 2-methylnaphthalene in room temperature ionic liquids. Appl. Catal. A Gen. 2004, 262, 69–73. [Google Scholar] [CrossRef]
- Yang, Y.; Kou, Y. Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem. Commun. 2004, 4, 226–227. [Google Scholar] [CrossRef]
- Zhao, Z.; Qiao, W.; Wang, X.; Wang, G.; Li, Z.; Cheng, L. Effects of kinds of ionic liquid catalysts on alkylations of 1- and 2-methylnaphthalene with alkenes. Appl. Catal. A Gen. 2005, 290, 133–137. [Google Scholar] [CrossRef]
- Deng, L.; Su, Q.; Tan, X.; Wang, Y.; Dong, L.; He, H.; Li, Z.; Cheng, W. Tunable imidazolium ionic liquids as efficient catalysts for conversion of urea into cyclic carbonates. Mol. Catal. 2022, 519, 112153. [Google Scholar] [CrossRef]
- Xin, H.; Wu, Q.; Han, M.; Wang, D.; Jin, Y. Alkylation of benzene with 1-dodecene in ionic liquids [Rmim]+Al2Cl6X− (R=butyl, octyl and dodecyl; X = chlorine, bromine and iodine). Appl. Catal. A Gen. 2005, 292, 354–361. [Google Scholar] [CrossRef]
- Sronsri, C.; Sittipol, W.; Kongpop, U. Optimization of biodiesel production using magnesium pyrophosphate. Chem. Eng. Sci. 2020, 226, 115884. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Eichmann, M. Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents—Design and application of a continuous loop reactor. Catal. Today 2001, 66, 309–316. [Google Scholar] [CrossRef]
- Qi, G.; Jiang, F.; Sun, X.; Zhao, S. Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3. Sci. China Chem. 2010, 53, 1102–1107. [Google Scholar] [CrossRef]
- Lu, R.; Morimoto, M.; Tani, H.; Tagawa, N.; Koganezawa, S. Tribological properties of alkyldiphenylethers in boundary lubrication. Lubricants 2019, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Kitakami, O.; Ichijo, M.; Daimon, H. Lubrication of surface oxidized Co–Cr thin films by phosphoric and phosphorous acid esters. J. Magn. Magn. Mater. 2001, 235, 179–182. [Google Scholar] [CrossRef]
- Hu, C.; Ai, J.; Ma, L.; Wen, P.; Fan, M.; Zhou, F.; Liu, W. Ester oils prepared from fully renewable resources and their lubricant base oil properties. ACS Omega 2021, 6, 16343–16355. [Google Scholar] [CrossRef]
Entry | Catalyst | Tetralin Conversion/% | Selectivity/% | ||
---|---|---|---|---|---|
Mono-Butyltetralins | Di-Butyltetralins | Tri-Butyltetralins | |||
1 | Et3NHCl-ZnCl2 | 0 | 0 | 0 | 0 |
2 | Et3NHCl-FeCl3 | 2.3 | 100 | 0 | 0 |
3 | Et3NHCl-AlCl3 | 99.7 | 6.3% | 90.3% | 3.4% |
4 | Et2NH2Cl-AlCl3 | 99.5 | 29.6% | 69.3% | 1.1% |
5 | EtNH3Cl-AlCl3 | 99.8 | 24.6% | 73.8% | 1.6% |
6 | Me3NHCl-AlCl3 | >99.9 | 9.8% | 88.7% | 1.5% |
7 | Me2NH2Cl-AlCl3 | 99.8 | 12.2% | 84.8% | 3.0% |
8 | MeNH3Cl-AlCl3 | >99.9 | 11.6% | 86.3% | 2.1% |
Alkyl-Substituted Products Content (%) | Synthetic Base Oils | ||
---|---|---|---|
DPT | MBT | DBT | |
mono-alkyltetralins | 1.3 | 95.9 | 11.1 |
di-alkyltetralins | 97.0 | 4.0 | 87.8 |
tri-alkyltetralins | 1.6 | 0.1 | 1.1 |
tetra-alkyltetralins | 0.1 | / | / |
Physicochemical Properties | Synthetic Base Oils | ||
---|---|---|---|
DPT | MBT | DBT | |
Density (g/cm−3, 20 °C) | 0.926 | 0.936 | 0.922 |
Flash point (°C) | 135 | 118 | 145 |
Pour point (°C) | −40 | <−60 | −40 |
Kinematic viscosities at 40 °C (mm2·s−1) | 7.92 | 3.39 | 12.91 |
Kinematic viscosities at 100 °C (mm2·s−1) | 1.85 | 1.24 | 2.32 |
Mixed aniline point (°C) | 28 | 21 | 34 |
Oxidation onset temperature (°C) | 176.70 | 171.06 | 185.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Chen, C.; Tang, Q.; Xu, H.; Liu, L.; Dong, J. Alkylation of Tetralin with Butene/Propylene Catalyzed by Ionic Liquid and Its Lubricating Properties. Lubricants 2022, 10, 287. https://doi.org/10.3390/lubricants10110287
Fu J, Chen C, Tang Q, Xu H, Liu L, Dong J. Alkylation of Tetralin with Butene/Propylene Catalyzed by Ionic Liquid and Its Lubricating Properties. Lubricants. 2022; 10(11):287. https://doi.org/10.3390/lubricants10110287
Chicago/Turabian StyleFu, Jiajia, Chen Chen, Qiong Tang, Hong Xu, Lei Liu, and Jinxiang Dong. 2022. "Alkylation of Tetralin with Butene/Propylene Catalyzed by Ionic Liquid and Its Lubricating Properties" Lubricants 10, no. 11: 287. https://doi.org/10.3390/lubricants10110287
APA StyleFu, J., Chen, C., Tang, Q., Xu, H., Liu, L., & Dong, J. (2022). Alkylation of Tetralin with Butene/Propylene Catalyzed by Ionic Liquid and Its Lubricating Properties. Lubricants, 10(11), 287. https://doi.org/10.3390/lubricants10110287