A Review of Quintessential Inflation
Abstract
:1. Introduction
2. The Peebles–Vilenkin Model
2.1. Improvements
2.2. Dynamical Evolution of the Peebles–Vilenkin Model: From the Beginning of Kination to the Matter–Radiation Equality
- Decay before the end of the kination period.
- Decay after the end of the kination period.
2.2.1. Decay before the End of Kination
2.2.2. Decay after the End of the Kination Period
2.3. Dynamical Evolution of the Peebles–Vilenkin Model: From the Matter–Radiation Equality up to Now
2.4. The Number of e-Folds
3. Exponential Quintessential Inflation
3.1. The Scaling and Tracker Solutions
3.1.1. The Scaling Solution
3.1.2. The Tracker Solution
3.2. Numerical Simulation during Radiation
3.3. A Viable Model
4. Lorentzian Quintessential Inflation
4.1. Calculating the Values of the Parameters Involved in the Model
4.2. Present and Future Evolution: Numerical Analysis
5. -Attractors in Quintessential Inflation
5.1. Calculating the Values of the Parameters Involved in the Model
- We have chosen , but we could safely choose . In that case the Equation (131) would become
- If one takes to be very small—for example, in the order of —then, as has been shown in [50], a much simpler model than the exponential one is possible with a linear potential. In fact, the authors of [50] showed that the potential , which in terms of the canonically normalized field has the form
- Another important important application of the -attractors is its use to alleviate the current Hubble tension [82]. In that work, the authors, in the framework of -attractors, included in the model an early dark energy (EDE) component that adds energy to the universe, because the success in easing the Hubble tension crucially depends on the shape of this energy injection. In fact, in [82] the authors used the following potential for EDE:
5.2. Present and Future Evolution: Numerical Analysis
6. Other Quintessential Inflation Models
6.1. Dimopoulos Work in Quintessential Inflation
6.2. Quintessential Inflation with Non-Canonical Scalar Fields
6.3. Gauss–Bonnet Quintessential Inflation
6.4. Simple Models of Quintessential Inflation
7. Reheating Mechanisms
7.1. Gravitational Particle Production
7.1.1. Massless Particle Production
7.1.2. Superheavy Particle Production: Calculations Using the WKB Approximation
- Decay of the superheavy particles into lighter ones before the end of kinationLet be the decay rate of the superheavy particles. The decay is practically finished when is of the same order of the Hubble rate, i.e., when , and thus, the corresponding energy densities will beSince the decay is before the end of kination, one has and , which leads to the following bound,Then, assuming as usual nearly instantaneous thermalization, the reheating temperature—i.e., the temperature of the universe when the relativistic plasma in thermal equilibrium started to dominate ()—can be obtained by taking into account thatFinally, using the bound of the decay rate, we deduce that the reheating temperature is bounded by
- Decay of the superheavy particles into lighter ones after the end of kinationFirst of all, recall that we have already seen that at the end of kination one hasTaking into account that the decay is after the end of kination, we have the bound GeV, and thus, since the thermalization is nearly instantaneous, the reheating time coincides when the decay is completed, i.e, when , and consequently, the reheating temperature will be
7.1.3. The Diagonalization Method
- Decay of the superheavy particles into lighter ones before the end of kination.In this case, the energy density of the the inflaton field and that of the relativistic plasma, when the decay is finished, i.e., when GeV , are given byBy imposing that the end of the decay precedes the end of kination, meaning , one gets , and since the decay is after the beginning of the kination and for our LQI model one gets . Thus, the following bound for the decay rate must be obtained.Finally, the reheating temperature, i.e., the temperature of the universe when the relativistic plasma in thermal equilibrium started to dominate, which happened when , can be calculated as follows: Since after the decay, the evolution of the respective energy densities is given by
- Decay of the superheavy particles into lighter ones after the end of kination.In the case that the decay of the -field is after the end of kination, one has to impose . Now, taking into account that at the end of kinationOn the other hand, assuming once again instantaneous thermalization, the reheating temperature (i.e., the temperature of the universe when the thermalized plasma started to dominate) was obtained when all the superheavy particles decayed—i.e., when , obtainingConsequently, since the BBN epoch occurred in the 1 MeV regime, and taking once again , one can find that, in that case, the reheating temperature is bounded by
7.2. Instant Preheating
- If we do not want an exponential suppression of the energy density, one has to choose a bare mass satisfying . In fact, for the sake of simplicity, we take , and thus, the effective mass is given by .
- For masses—the effective mass of the field is -greater than the Hubble parameter—the vacuum polarization energy density due to the field , which for can be calculated using the WKB approximation, is of the order [116]. This quantity is smaller than the energy density of the background () when the pivot scale leaves the Hubble radius, meaning that the polarization effects does not affect the last stages of inflation. Therefore, since , for a quadratic potential the condition is accomplished by imposing .
- The energy density of the produced -particles cannot dominate before its decay into light particles, which forms the relativistic plasma, because, if so, the force driving the inflation back to cannot disappear and the inflaton field would not continue its movement forward up to ∞. Effectively, the interaction term entails that after the phase transition, the inflaton field satisfies the equationWhen the energy density of the -particles is sub-dominant, the right-hand side of (239) is negligible and the field rolls towards ∞, but when it is dominant, the right-hand side ceases to be negligible, meaning that the inflaton is under the action of the quadratic potential , so the inflaton field will roll down to zero, which may produce a new inflationary phase.Therefore, to avoid this situation, we have to calculate when the energy density of the background and the field are of the same order, that is,To obtain these quantities, we use that for the model presented here, after the phase transition the universe enters in a kination regime and one hasNow, using that , one getsThen, both quantities are of the same order whenFurthermore, we obtain an important constraint for this theory: the decaying time, i.e., when the particles have decayed into a relativistic plasma, must be smaller than , in order for the back-reaction to be subdominant so that the inflaton field rolls monotonically towards ∞.
- . (The back-reaction is not important at the last stages of inflation and the -field decays before the end of kination).
- . (The decay ends when the value of the inflaton field is in the order of the reduced Planck mass).
- . (Reheating temperatures guaranteeing the BBN’s success).
7.3. Curvaton Reheating in Quintessential Inflation
- The curvaton decays when it is subdominant.In this first case, the curvaton decays into radiation (recall that the thermalization is nearly instantaneous) at a time satisfying , and thus, one hasNow, to obtain the reheating temperature, that is, when , one getsThen, using the bound (251) we can see that the reheating temperature is constrained to be in the rangeOn the other hand, when the decay of the curvaton takes place when it is subdominant, the power spectrum of the curvature perturbation is given by [55,120] , which from the bound (251) leads toThen, choosing , which for is the value of the Hubble parameter when the pivot scale leaves the Hubble radius if the curvaton field is not present [101], and taking into account that the condition must be satisfied in order to guarantee the Gaussianity of the curvature perturbation [117], one can safely take , which agrees with the bound .For these values, the Equation (253) becomes
- The curvaton decays when the curvaton field dominates the universe.Assuming once again instantaneous thermalization, since the curvaton decays when it dominates, that is, when , the reheating time will occur during the decay ().In this case the conditionNext, in this case, the reheating temperature is and the constraint leads to the boundOn the other hand, when the curvaton decays after its domination, the power spectrum of the curvature perturbation is given by [117]Then, choosing as in the previous case , one has , and since the curvaton rolls slowly before the oscillations, one can safely take , which satisfies the bound (258).Finally, from these values and the Equation (259), one can conclude that only for curvaton light masses satisfying GeV is a reheating temperature compatible with BBN obtained.
8. Impact of the Production of Gravitational Waves in the BBN Success
8.1. Overproduction of GWs
8.2. BBN Constraints from the Logarithmic Spectrum of GWs
- When the decay of superheavy particles occurs before the end of kination.In this case the reheating time coincides with the end of kination, so a simple calculation leads toUsing the formulasFinally, using our previous results
- When the decay of superheavy particles occurs after the end of kination.Since during the kination period we have , one gets
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guth, A. The inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Chibisov, G.; Mukhanov, V. Galaxy formation and phonons. Mon. Not. R. Astron. Soc. 1982, 200, 535. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations. Phys. Lett. B 1982, 117, 175. [Google Scholar] [CrossRef]
- Guth, A.H.; Pi, S.-Y. Fluctuations in the New Inflationary Universe. Phys. Rev. Lett. 1982, 49, 1110. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Steinhardt, P.J.; Turner, M.S. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 1983, 28, 679. [Google Scholar] [CrossRef]
- Linde, A.D. Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario. Phys. Lett. B 1982, 116, 335. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999, 5517, 65. [Google Scholar]
- Tsujikawa, S. Quintessence: A Review. Class. Quantum Gravity 2013, 30, 214003. [Google Scholar] [CrossRef] [Green Version]
- Spokoiny, B. Deflationary Universe Scenario. Phys. Lett. B 1993, 315, 40. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Vilenkin, A. Quintessential inflation. Phys. Rev. D 1999, 59, 063505. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Ratra, B. Cosmology with a time-variable cosmological “constant”. Astrophys. J. Lett. 1988, 352, L17–L20. [Google Scholar] [CrossRef]
- Guendelman, E.I.; Herrera, R.; Labrana, R.P.; Nissimov, E.; Pacheva, S. Emergent Cosmology, Inflation and Dark Energy. Gen. Relativ. Gravit. 2015, 47, 10. [Google Scholar] [CrossRef] [Green Version]
- De Haro, J.; Amorós, J.; Pan, S. A simple nonsingular inflationary quintessential model. Phys. Rev. D 2016, 93, 084018. [Google Scholar] [CrossRef] [Green Version]
- De Haro, J.; Elizalde, E. Inflation and late-time acceleration from a double-well potential with cosmological constant. Gen. Relativ. Gravit. 2016, 48, 77. [Google Scholar] [CrossRef] [Green Version]
- De Haro, J. On the viability of quintessential inflationary models from observational data. Gen. Relativ. Gravit. 2017, 49, 6. [Google Scholar] [CrossRef] [Green Version]
- Aresté Saló, L.; de Haro, J. Quintessential inflation at low reheating temperatures. Eur. Phys. J. C 2017, 77, 798. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Pan, S. Bulk viscous quintessential inflation. Int. J. Mod. Phys. D 2018, 27, 1850052. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. A class of quintessential inflation models with parameter space consistent with BICEP2. Phys. Rev. D 2014, 89, 123513. [Google Scholar] [CrossRef] [Green Version]
- Geng, C.Q.; Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results. Phys. Rev. D 2015, 92, 023522. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Unification of inflation and dark energy à la quintessential inflation. Int. J. Mod. Phys. D 2015, 24, 1530014. [Google Scholar] [CrossRef]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Evading Lyth bound in models of quintessential inflation. Phys. Lett. B 2014, 737, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Geng, C.Q.; Lee, C.C.; Sami, M.; Saridakis, E.N.; Starobinsky, A.A. Observational constraints on successful model of quintessential Inflation. J. Cosmol. Astropart. Phys. 2017, 2017, 011. [Google Scholar] [CrossRef] [Green Version]
- De Haro, J.; Amorós, J.; Pan, S. Simple inflationary quintessential model II: Power law potentials. Phys. Rev. D 2016, 94, 064060. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K. Towards a model of Quintessential Inflation. Nucl. Phys. Proc. Suppl. 2001, 95, 70. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Valle, J.W.F. Modeling Quintessential Inflation. Astropart. Phys. 2002, 18, 287. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, M. Low-scale Quintessential Inflation. Phys. Rev. D 2003, 67, 123512. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Yang, W.; Pan, S. Reheating in quintessential inflation via gravitational production of heavy massive particles: A detailed analysis. J. Cosmol. Astropart. Phys. 2019, 2019, 023. [Google Scholar] [CrossRef] [Green Version]
- Kofman, L.; Linde, A.; Starobinsky, A. Reheating after Inflation. Phys. Rev. Lett. 1994, 73, 3195–3198. [Google Scholar] [CrossRef] [Green Version]
- Kofman, L.; Linde, A.; Starobinsky, A. Towards the Theory of Reheating after Inflation. Phys. Rev. D 1997, 56, 3258–3295. [Google Scholar] [CrossRef] [Green Version]
- Greene, P.B.; Kofman, L.; Linde, A.; Starobinsky, A. Structure of Resonance in Preheating after Inflation. Phys. Rev. D 1997, 56, 6175. [Google Scholar] [CrossRef] [Green Version]
- Shtanov, Y.; Traschen, J.; Brandenberger, R. Universe Reheating after Inflation. Phys. Rev. D 1995, 51, 5438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassett, B.A.; Liberati, S. Geometric Reheating after Inflation. Phys. Rev. D 1998, 58, 02130. [Google Scholar] [CrossRef] [Green Version]
- Joyce, M. Electroweak Baryogenesis and the Expansion Rate of the Universe. Phys. Rev. D 1997, 55, 1875. [Google Scholar] [CrossRef] [Green Version]
- Parker, L. Particle Creation in Expanding Universes. Phys. Rev. Lett. 1968, 21, 562. [Google Scholar] [CrossRef]
- Parker, L. Quantized Fields and Particle Creation in Expanding Universes. I. Phys. Rev. 1969, 183, 1057. [Google Scholar] [CrossRef]
- Parker, L. Quantized Fields and Particle Creation in Expanding Universes. II. Phys. Rev. D 1970, 3, 346. [Google Scholar] [CrossRef]
- Folov, V.M.; Mamayev, S.G.; Mostepanenko, V.M. On the difference in creation of particles with spin 0 and 1/2 in isotropic cosmologies. Phys. Lett. A 1976, 55, 7. [Google Scholar]
- Grib, A.A.; Levitskii, B.A.; Mostepanenko, V.M. Particle creation from vacuum by a nonstationary gravitational field in the canonical formalism. Theor. Mat. Fiz. 1974, 19, 59. [Google Scholar] [CrossRef]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Particle creation from vacuum in homogeneous isotropic models of the Universe. Gen. Relativ. Gravit. 1976, 7, 535. [Google Scholar] [CrossRef]
- Ford, L.H. Gravitational particle creation and inflation. Phys. Rev. D 1987, 35, 2955. [Google Scholar] [CrossRef] [PubMed]
- Zeldovich, Y.B.; Starobinsky, A.A. Rate of particle production in gravitational fields. JETP Lett. 1977, 26, 252. [Google Scholar]
- Damour, T.; Vilenkin, A. String Theory and Inflation. Phys. Rev. D 1995, 53, 2981. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, M. Gravitational waves constraints on post-inflationary phases stiffer than radiation. Phys. Rev. D 1998, 58, 083504. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Owen, C. Quintessential Inflation with α-attractors. J. Cosmol. Astropart. Phys. 2017, 2017, 027. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Kallosh, R.; Linde, A.; Vardanyan, V. Dark energy, α-attractors, and large-scale structure surveys. J. Cosmol. Astropart. Phys. 2018, 2018, 041. [Google Scholar] [CrossRef] [Green Version]
- Felder, G.; Kofman, L.; Linde, A. Instant Preheating. Phys. Rev. D 1999, 59, 123523. [Google Scholar] [CrossRef] [Green Version]
- Felder, G.; Kofman, L.; Linde, A. Inflation and Preheating in NO models. Phys. Rev. D 1999, 60, 103505. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Wood, L.D.; Owen, C. Instant Preheating in Quintessential Inflation with α-Attractors. Phys. Rev. D 2018, 97, 063525. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Li, M. Curvaton Reheating in Non-oscillatory Inflationary Models. Phys. Lett. B 2003, 564, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Bekov, S.; Myrzakulov, K. Quintessential Inflation and curvaton reheating. arXiv 2018, arXiv:1807.03629. [Google Scholar]
- Dimopoulos, K.; Markkanen, T. Non-minimal gravitational reheating during kination. J. Cosmol. Astropart. Phys. 2018, 2018, 021. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.J.H.; Kolb, E.W.; Riotto, A. Superheavy dark matter. Phys. Rev. D 1998, 59, 023501. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.J.H.; Crotty, P.; Kolb, E.W.; Riotto, A. On the gravitational production of superheavy dark matter. Phys. Rev. D 2001, 64, 043503. [Google Scholar] [CrossRef] [Green Version]
- Birrell, N.D.; Davies, P.C.W. Massive particle production in anisotropic space-times. J. Phys. A Math. Gen. 1980, 13, 2109. [Google Scholar] [CrossRef]
- Hashiba, S.; Yokoyama, J. Gravitational reheating through conformally coupled superheavy scalar particles. J. Cosmol. Astropart. Phys. 2018, 2018, 028. [Google Scholar] [CrossRef] [Green Version]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Vacuum Quantum Effects in Strong Fields; Friedmann Laboratory Publishing for Theoretical Physics: St. Petersburg, Russia, 1994. [Google Scholar]
- Panda, S.; Sami, M.; Thongkool, I. Reheating the D-brane universe via instant preheating. Phys. Rev. D 2010, 81, 03506. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, D.G.; Tanin, E.H. Inconsistency of an inflationary sector coupled only to Einstein gravity. J. Cosmol. Astropart. Phys. 2019, 10, 050. [Google Scholar] [CrossRef] [Green Version]
- Giudice, G.F.; Kolb, E.W.; Riotto, A. Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 2001, 64, 023508. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Hiroshima, N.; Kohri, K.; Hansen, R.S.L.; Tram, T.; Hannestad, S. MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles. J. Cosmol. Astropart. Phys. 2019, 2019, 012. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Nanopoulos, D.V.; Sarkar, S. The cosmology of decaying gravitinos. Nucl. Phys. B 1985, 259, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Linde, A.; Nanopoulos, D. Inflation can save the gravitino. Phys. Lett. B 1982, 118, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M. Gravitational Wave Experiments and Early Universe Cosmology. Phys. Rep. 2000, 331, 283–367. [Google Scholar] [CrossRef] [Green Version]
- Bassett, B.A.; Tsujikawa, S.; Wands, D. Inflation Dynamics and Reheating. Rev. Mod. Phys. 2006, 78, 537. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. arXiv 2019, arXiv:1807.06211. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2021, arXiv:1807.06209. [Google Scholar]
- Liddle, A.R.; Leach, S.M. How long before the end of inflation were observable perturbations produced? Phys. Rev. D 2003, 68, 103503. [Google Scholar] [CrossRef] [Green Version]
- Steinhardt, P.J.; Wang, L.M.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [Google Scholar] [CrossRef] [Green Version]
- Urena-López, L.A.U.; Matos, T. A New cosmological tracker solution for quintessence. Phys. Rev. D 2000, 62, 081302. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Amorós, J.; Pan, S. The Peebles-Vilenkin quintessential inflation model revisited. Eur. Phys. J. C 2019, 79, 505. [Google Scholar] [CrossRef]
- Benisty, D.; Guendelman, E.I. Lorentzian Quintessential Inflation. Int. J. Mod. Phys. D 2020, 29, 2042002. [Google Scholar] [CrossRef]
- Benisty, D.; Guendelman, E.I. Quintessential Inflation from Lorentzian slow-roll. Eur. Phys. J. C 2020, 80, 577. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Vennin, V. Shortcomings of New Parametrizations of Inflation. Phys. Rev. D 2016, 94, 123521. [Google Scholar] [CrossRef] [Green Version]
- Saló, L.A.; Benisty, D.; Guendelman, E.I.; de Haro, J. Quintessential Inflation and Cosmological See-Saw Mechanism: Reheating and Observational Constraints. J. Cosmol. Astropart. Phys. 2021, 2021, 007. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A.; Roest, D. Superconformal Inflationary α-Attractors. J. High Energy Phys. 2013, 11, 198. [Google Scholar] [CrossRef] [Green Version]
- Kehagias, A.; Dizgah, A.M.; Riotto, A. Comments on the Starobinsky Model of Inflation and its Descendants. Phys. Rev. D 2014, 89, 043527. [Google Scholar] [CrossRef] [Green Version]
- Braglia, M.; Emond, W.T.; Finelli, F.; Gumrukcuoglu, A.E.; Koyama, K. Unified framework for Early Dark Energy from α-attractors. Phys. Rev. D 2020, 102, 083513. [Google Scholar] [CrossRef]
- Dimopoulos, K. The Curvaton Hypothesis and the eta-problem of Quintessential Inflation, with and without Branes. Phys. Rev. D 2003, 68, 123506. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Donaldson-Wood, L. Warm Quintessential Inflation. Phys. Lett. B 2019, 796, 26–31. [Google Scholar] [CrossRef]
- Dimopoulos, K.; López, S.S. Quintessential inflation in Palatini f(R) gravity. Phys. Rev. D 2021, 103, 043533. [Google Scholar] [CrossRef]
- Bettoni, D.; Lopez-Eiguren, A.; Rubio, J. Hubble-induced phase transitions on the lattice with applications to Ricci reheating. arXiv 2021, arXiv:2107.09671. [Google Scholar]
- Bettoni, D.; Rubio, J. Hubble-induced phase transitions: Walls are not forever. J. Cosmol. Astropart. Phys. 2020, 1, 002. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, D.; Domènech, G.; Rubio, J. Gravitational waves from global cosmic strings in quintessential inflation. J. Cosmol. Astropart. Phys. 2019, 1902, 034. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, D.; Rubio, J. Quintessential Affleck-Dine baryogenesis with non minimal couplings. Phys. Lett. B 2018, 784, 122–129. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Karciauskas, M.; Owen, C. Quintessential inflation with a trap and axionic dark matter. Phys. Rev. D 2019, 100, 083530. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.C.B.; Dimopoulos, K. Curvaton reheating allows TeV Hubble scale in NO inflation. J. Cosmol. Astropart. Phys. 2007, 2007, 007. [Google Scholar] [CrossRef] [Green Version]
- Kepuladze, Z.; Maziashvili, M. A new take on the inflationary quintessence. Phys. Rev. D 2021, 103, 063540. [Google Scholar] [CrossRef]
- Bruck, C.v.; Dimopoulos, K.; Longden, C.; Owen, C. Gauss–Bonnet-coupled Quintessential Inflation. arXiv 2017, arXiv:1707.06839. [Google Scholar]
- Kleidis, K.; Oikonomou, V.K. A Study of an Einstein Gauss–Bonnet Quintessential Inflationary Model. Nucl. Phys. B 2019, 948, 114765. [Google Scholar] [CrossRef]
- Rosenfeld, R.; Frieman, J.A. A Simple Model for Quintessential Inflation. J. Cosmol. Astropart. Phys. 2005, 2005, 003. [Google Scholar] [CrossRef] [Green Version]
- Bento, M.C.; Felipe, R.G.; Santos, N.M.C. A Simple Quintessence Model, presented at the “seventh Alexander Friedmann international seminar on gravitation and cosmology”. arXiv 2008, arXiv:0809.1679. [Google Scholar]
- Bento, M.C.; Felipe, R.G.; Santos, N.M.C. Brane assisted quintessential inflation with transient acceleration. Phys. Rev. D 2008, 77, 123512. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Einstein, A. Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie; Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, VI: Berlin, Germany, 1917. [Google Scholar]
- Birrell, N.D.; Davies, C.P.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- De Haro, J.; Saló, L.A. Reheating constraints in quintessential inflation. Phys. Rev. D 2017, 95, 123501. [Google Scholar] [CrossRef] [Green Version]
- Allahverdi, R.; Brandenberger, R.; Cyr-Racine, F.-Y.; Mazumdar, A. Reheating in Inflationary Cosmology: Theory and Applications. Ann. Rev. Nucl. Part. Sci. 2010, 60, 27–51. [Google Scholar] [CrossRef] [Green Version]
- Linde, A. Particle Physics and Inflationary Cosmology. Contemp. Concepts Phys. 2005, 5, 1–362. [Google Scholar]
- Haro, J. Gravitational particle production: A mathematical treatment. J. Phys. A Math. Theor. 2011, 44, 205401. [Google Scholar] [CrossRef]
- Winitzki, S. Cosmological particle production and the precision of the WKB approximation. Phys. Rev. D 2005, 72, 104011. [Google Scholar] [CrossRef] [Green Version]
- Bunch, T.S. Adiabatic regularisation for scalar fields with arbitrary coupling to the scalar curvature. J. Phys. A 1980, 13, 1297. [Google Scholar] [CrossRef]
- Zeldodovich, Y.B.; Starobinsky, A.A. Particle production and vacuum polarization in an anisotropic gravitational field. Sov. J. Exp. Theor. Phys. 1972, 34, 1159. [Google Scholar]
- De Haro, J.; Pan, S.; Saló, L.A. Understanding gravitational particle production in quintessential inflation. J. Cosmol. Astropart. Phys. 2019, 2019, 056. [Google Scholar] [CrossRef] [Green Version]
- Saló, L.A.; de Haro, J. Gravitational particle production of heavy massive particles in Quintessential Inflation: A numerical analysis. arXiv 2021, arXiv:2108.10795. [Google Scholar]
- Nikishov, A.I. Barrier scattering in field theory removal of Klein paradox. Nucl. Phys. B 1970, 21, 346–358. [Google Scholar] [CrossRef]
- Popov, V.S. Pair production in a variable external field (Quasiclassical approximation). Sov. J. Exp. Theor. Phys. 1972, 34, 709–718. [Google Scholar]
- Marinov, S.M.; Popov, V.S. Electron-positron pair creation from vacuum induced by variable electric field. Fortschr. Phys. 1977, 25, 373–400. [Google Scholar] [CrossRef]
- Haro, J. Pair production in a uniform electric field. Int. J. Theor. Phys. 2003, 42, 531–547. [Google Scholar] [CrossRef]
- Fedoryuk, M.V. Asymptotic Analysis; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Meyer, R.E. Exponential asymptotic. SIAM Rev. 1980, 22, 213–224. [Google Scholar] [CrossRef]
- Kaya, A.; Tarman, M. Stress-Energy Tensor of Adiabatic Vacuum in Friedmann-Robertson-Walker Spacetimes. J. Cosmol. Astropart. Phys. 2011, 2011, 040. [Google Scholar] [CrossRef] [Green Version]
- Lyth, D.H.; Wands, D. Generating the curvature perturbation without an inflaton. Phys. Lett. B 2002, 524, 5–14. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Turner, M.S. Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
- Liddle, A.R.; Ureña-Lopez, L.A. Curvaton reheating: An application to braneworld inflation. Phys. Rev. D 2003, 68, 043517. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, M. Production and detection of relic gravitons in quintessential inflationary models. Phys. Rev. D 1999, 60, 123511. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.; Wetterich, C. Emergent scale symmetry: Connecting inflation and dark energy. Phys. Rev. D 2017, 96, 063509. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, M. Thermal history of the plasma and high-frequency gravitons. Class. Quantum Gravity 2009, 26, 045004. [Google Scholar] [CrossRef]
- Giovannini, M. Stochastic backgrounds of relic gravitons, TΛCDM paradigm and the stiff ages. Phys. Lett. B 2008, 668, 44. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, M. The first observations of wide-band interferometers and the spectra of relic gravitons. Phys. Lett. B 2016, 759, 528. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Haro, J.; Aresté Saló, L. A Review of Quintessential Inflation. Galaxies 2021, 9, 73. https://doi.org/10.3390/galaxies9040073
de Haro J, Aresté Saló L. A Review of Quintessential Inflation. Galaxies. 2021; 9(4):73. https://doi.org/10.3390/galaxies9040073
Chicago/Turabian Stylede Haro, Jaume, and Llibert Aresté Saló. 2021. "A Review of Quintessential Inflation" Galaxies 9, no. 4: 73. https://doi.org/10.3390/galaxies9040073
APA Stylede Haro, J., & Aresté Saló, L. (2021). A Review of Quintessential Inflation. Galaxies, 9(4), 73. https://doi.org/10.3390/galaxies9040073