# Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Space-Time-Matter Theory

We presently have in mind as ultimate goal a pure field theory, in which the field variables produce the field of ‘empty space’ as well as the ... elementary particles that constitute ‘matter.’

## 2. Physical Interpretation

Space, time and mass in themselves are doomed to fade away into mere shadows, and only a kind of union of the three will preserve an independent reality.

## 3. Lorentz Violation in the Flat-Space Limit

## 4. Conclusions and Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Overduin, J.M.; Henry, R.C. Physics and the Pythagorean theorem. arXiv
**2020**, arXiv:2005.10671. [Google Scholar] - Norton, J.R. Einstein’s special theory of relativity and the problems in the electro-dynamics of moving bodies that led him to it. In The Cambridge Companion to Einstein; Janssen, M., Lehner, C., Eds.; Cambridge University Press: Cambridge, UK, 2014; Volume 1, pp. 72–102. [Google Scholar]
- Overduin, J.M.; Wesson, P.S. Kaluza-Klein gravity. Phys. Rep.
**1997**, 283, 303. [Google Scholar] [CrossRef][Green Version] - Wesson, P.S.; de Leon, J.P.; Liu, H.; Mashhoon, B.; Kalligas, D.; Everitt, C.W.F.; Billyard, A.; Lim, P.; Overduin, J.M. A Theory of Space, Time and Matter. Int. J. Mod. Phys.
**1996**, 11, 3247–3255. [Google Scholar] [CrossRef][Green Version] - Wesson, P.S. Space-Time-Matter; World Scientific: Singapore, 1999. [Google Scholar]
- Wesson, P.S.; Overduin, J.M. Principles of Space-Time-Matter; World Scientific: Singapore, 2018. [Google Scholar]
- Wesson, P.S. An embedding for general relativity with variable rest mass. Gen. Rel. Grav.
**1984**, 16, 193–203. [Google Scholar] [CrossRef] - Wesson, P.S. Comments on a possible change with cosmological time in the rest masses of particles. Astron. Astrophys.
**1988**, 189, 4–6. [Google Scholar] - Wesson, P.S. Clarification of an extended theory of gravity and a reply to Gron and Soleng. Gen. Rel. Grav.
**1990**, 22, 707–713. [Google Scholar] [CrossRef] - Williams, L.L. Field Equations and Lagrangian for the Kaluza metric evaluated with tensor algebra software. Hindawi J. Grav.
**2015**, 2015, 901870. [Google Scholar] [CrossRef] - Williams, L.L. Field Equations and Lagrangian of the Kaluza Energy-Momentum Tensor. Hindawi J. Grav.
**2020**, 2020, 1263723. [Google Scholar] [CrossRef] - Williams, L.L. Long-range scalar forces in five-dimensional general relativity. Hindawi Adv. Math. Phys.
**2020**, 2020, 9305187. [Google Scholar] - Wesson, P.S. Variable-gravity theory: A new version of an old idea. In 3rd Canadian Conference on General Relativity and Relativistic Astrophysics, University of Victoria, 4–6 May 1989; Coley, A., Cooperstock, F., Tupper, B., Eds.; World Scientific: Singapore, 1990; pp. 9–13. [Google Scholar]
- Einstein, A.; Grommer, J. Beweis der Nichtexistenz eines überall regulären zentrisch symmetrischen Feldes nach der Feld-theorie von Th. Kaluza. In Scripta Universitatis atque Bibliothecae Hierosolymitanarum: Mathematica et Physica 1; Nijhoff: Leiden, The Netherland, 1923; p. 1. [Google Scholar]
- Dongen, J.V. Einstein and the Kaluza-Klein particle. Stud. Hist. Philos. Mod. Phys.
**2002**, 33, 185–210. [Google Scholar] [CrossRef][Green Version] - Einstein, A. Physics and reality. J. Frankl. Inst.
**1936**, 221, 335–370. [Google Scholar] [CrossRef] - Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1956; p. 129. [Google Scholar]
- Wheeler, J.A. On the nature of quantum geometrodynamics. Ann. Phys.
**1957**, 2, 604–614. [Google Scholar] [CrossRef] - Finkelstein, D.; Rubinstein, J. Connection between spin, statistics, and kinks. J. Math. Phys.
**1968**, 9, 1762–1775. [Google Scholar] [CrossRef] - Halpern, L. Geometrical structure of gravitation and matter fields. Int. J. Theor. Phys.
**1994**, 33, 401–424. [Google Scholar] [CrossRef] - Dzhunushaliev, V.D. Spherically symmetric solution for torsion and the Dirac equation in 5D spacetime. Int. J. Mod. Phys.
**1998**, 7, 909–915. [Google Scholar] [CrossRef][Green Version] - Trayling, G.; Baylis, W.E. A geometric basis for the standard-model gauge group. J. Phys. A Math. Gen.
**2001**, 34, 3309–3324. [Google Scholar] [CrossRef][Green Version] - Vasilić, M. Consistency analysis of Kaluza-Klein geometric sigma models. Gen. Rel. Grav.
**2001**, 33, 1783–1798. [Google Scholar] [CrossRef] - Kalligas, D.; Wesson, P.S.; Everitt, C.W.F. The classical tests in Kaluza-Klein gravity. Astrophys. J.
**1995**, 439, 548–557. [Google Scholar] [CrossRef] - Liu, H.; Overduin, J.M. Solar system tests of higher-dimensional gravity. Astrophys. J.
**2000**, 538, 386–394. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M. Solar-system tests of the equivalence principle and constraints on higher-dimensional gravity. Phys. Rev.
**2000**, 62, 102001. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M.; Mitcham, J.; Warecki, Z. Expanded solar-system limits on violations of the equivalence principle. Class. Quant. Grav.
**2014**, 31, 015001. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M.; Wesson, P.S.; Mashhoon, B. Decaying dark energy in higher-dimensional gravity. Astron. Astrophys.
**2007**, 473, 727–731. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M.; Everett, R.D.; Wesson, P.S. Constraints on Kaluza-Klein gravity from Gravity Probe B. Gen. Rel. Grav.
**2013**, 45, 1723–1731. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M. Spacetime, Spin and Gravity Probe B. Class. Quant. Grav.
**2015**, 32, 224003. [Google Scholar] [CrossRef][Green Version] - Will, C.M. The Confrontation between General Relativity and experiment. Liv. Rev. Rel.
**2014**, 17, 4. [Google Scholar] [CrossRef] [PubMed][Green Version] - Schwarz, A.J.; Doughty, N.A. Kaluza-Klein unification and the Fierz-Pauli weak-field limit. Am. J. Phys.
**1992**, 60, 150–157. [Google Scholar] [CrossRef] - Bailin, D.; Love, A. Kaluza-Klein theories. Rep. Prog. Phys.
**1987**, 50, 1087–1170. [Google Scholar] [CrossRef] - Sakharov, A.D. Cosmological transitions with changes in the signature of the metric. Sov. Phys.
**1984**, 60, 214–218. [Google Scholar] - Aref’eva, I.Y.; Volovich, I.V. Kaluza-Klein theories and the signature of space-time. Phys. Lett.
**1985**, 164, 287–292. [Google Scholar] [CrossRef][Green Version] - Burakovsky, L.; Horwitz, L.P. 5D generalized inflationary cosmology. Gen. Rel. Grav.
**1995**, 27, 1043–1070. [Google Scholar] [CrossRef][Green Version] - Bars, I.; Kounnas, C. Theories with two times. Phys. Lett.
**1997**, 402, 25–32. [Google Scholar] [CrossRef][Green Version] - Wesson, P.S. Five-dimensional relativity and two times. Phys. Lett.
**2002**, 538, 159–163. [Google Scholar] [CrossRef][Green Version] - Band, W. Klein’s fifth dimension as spin angle. Phys. Rev.
**1939**, 56, 204. [Google Scholar] [CrossRef] - Hara, O. A study of charge independence in terms of Kaluza’s five dimensional theory. Prog. Theor. Phys.
**1959**, 21, 919–937. [Google Scholar] [CrossRef][Green Version] - Rumer, Y.B. Action as a space coordinate. I. Zh. Eksp. Teor. Fiz.
**1949**, 19, 86–94. (In Russian) [Google Scholar] - Rumer, Y.B. Studies in 5-Optics; West Siberian Branch of the Academy of Science: Moscow, Russia, 1956; (In Russian). Available online: http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/rumer_-_studies_in_5-optics.pdf (accessed on 1 January 2021).
- Fukui, T. Fundamental constants and higher-dimensional universe. Gen. Rel. Grav.
**1988**, 20, 1037–1045. [Google Scholar] [CrossRef] - Fukui, T. Vacuum cosmological solution in a 6D universe. Gen. Rel. Grav.
**1992**, 24, 389. [Google Scholar] [CrossRef] - Carmeli, M. Cosmological Special Relativity: The Large-Scale Structure of Space, Time and Velocity, 2nd ed.; World Scientific: Singapore, 2002. [Google Scholar]
- Overduin, J.M. The experimental verdict on spacetime from Gravity Probe B. In Space, Time and Spacetime; Petkov, V., Ed.; Springer: Berlin, Germany, 2010; pp. 25–59. [Google Scholar]
- Vos, D.A.J.; Hilgevoord, J. Five-dimensional aspect of free particle motion. Nucl. Phys.
**1967**, 1, 494–510. [Google Scholar] [CrossRef] - Edmonds, J.D. Five-dimensional space-time: Mass and the fundamental length. Int. J. Theor. Phys.
**1974**, 11, 309–315. [Google Scholar] [CrossRef] - Edmonds, J.D. Extended relativity: Mass and the fifth dimension. Found. Phys.
**1975**, 5, 239–249. [Google Scholar] [CrossRef] - Minkowski, H. Space and Time. In The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity; Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H., Eds.; Dover Publications: New York, NY, USA, 1952; pp. 75–91. [Google Scholar]
- Mattingly, D. Modern tests of Lorentz invariance. Liv. Rev. Relativ.
**2005**, 8, 5. [Google Scholar] [CrossRef][Green Version] - Robertson, H.P. Postulate versus observation in the special theory of relativity. Rev. Mod. Phys.
**1949**, 21, 378–382. [Google Scholar] [CrossRef][Green Version] - Mansouri, R.; Sexl, R.U. A test theory of special relativity: I. Simultaneity and clock synchronization. Gen. Relativ. Grav.
**1977**, 8, 497–513. [Google Scholar] [CrossRef] - Reinhardt, S.; Saathoff, G.; Buhr, H.; Carlson, L.A.; Wolf, A.; Schwalm, D.; Karpuk, S.; Novotny, C.; Huber, G.; Zimmermann, M.; et al. Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nat. Phys.
**2007**, 3, 861–864. [Google Scholar] [CrossRef] - Tobar, M.E.; Wolf, P.; Bize, S.; Santarelli, G.; Flambaum, V. Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser. Phys. Rev.
**2010**, 81, 022003. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M.; Ali, H. Extra dimensions and violations of Lorentz symmetry. In Seventh Meeting on CPT and Lorentz Symmetry; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2017; pp. 253–255. [Google Scholar]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev.
**1998**, 58, 116002. [Google Scholar] [CrossRef][Green Version] - Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev.
**2004**, 69, 105009. [Google Scholar] [CrossRef][Green Version] - Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev.
**2002**, 66, 056005. [Google Scholar] [CrossRef][Green Version] - Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev.
**2009**, 80, 015020. [Google Scholar] [CrossRef][Green Version] - Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys.
**2011**, 83, 11, arXiv:0801.0287v14 (2021 version). [Google Scholar] [CrossRef][Green Version] - Altschul, B. Laboratory bounds on electron Lorentz violation. Phys. Rev.
**2010**, 82, 016002. [Google Scholar] [CrossRef][Green Version] - Hohensee, M.A.; Chu, S.; Peters, A.; Müller, H. Equivalence principle and gravitational redshift. Phys. Rev. Lett.
**2011**, 106, 151102. [Google Scholar] [CrossRef][Green Version] - Hohensee, M.A.; Leefer, N.; Budker, D.; Harabati, C.; Dzuba, V.A. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett.
**2013**, 111, 050401. [Google Scholar] [CrossRef][Green Version] - Hohensee, M.A.; Müller, H.; Wiringa, R.B. Equivalence principle and bound kinetic energy. Phys. Rev. Lett.
**2013**, 111, 151102. [Google Scholar] [CrossRef][Green Version] - Stecker, F.W. Limiting superluminal electron and neutrino velocities using the 2010 Crab Nebula flare and the IceCube PeV neutrino events. Astropart. Phys.
**2014**, 56, 16–18. [Google Scholar] [CrossRef][Green Version] - Dzuba, V.A.; Flambaum, V.V. Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year. Phys. Rev.
**2017**, 95, 015019. [Google Scholar] [CrossRef][Green Version] - Wolf, P.; Chapelet, F.; Bize, S.; Clairon, A. Cold atomic clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett.
**2006**, 96, 060801. [Google Scholar] [CrossRef][Green Version] - Katori, T. Tests of Lorentz and CPT violation with MiniBooNE neutrino oscillation excesses. Mod. Phys. Lett.
**2012**, 27, 1230024. [Google Scholar] [CrossRef] - Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev.
**2015**, 91, 052003. [Google Scholar] [CrossRef][Green Version] - Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.D.; Ebran, J.P.; Bailey, Q.G.; Bize, S.; Khan, E.; Wolf, P. Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized
^{133}Cs cold atom clock. Phys. Rev.**2017**, 97, 075026. [Google Scholar] - Bekenstein, J.D. Are particle rest masses variable? Theory and constraints from solar system experiments. Phys. Rev.
**1977**, 15, 1458–1468. [Google Scholar] [CrossRef] - Liu, H.; Wesson, P.S. On the Klein-Gordon equation in higher dimensions: Are particle masses variable? Gen. Rel. Gravit.
**2000**, 32, 583–592. [Google Scholar] [CrossRef] - Wetterich, C. Variable gravity universe. Phys. Rev.
**2014**, 89, 024005. [Google Scholar] [CrossRef][Green Version] - Overduin, J.M.; Wesson, P.S. The Light/Dark Universe: Light fom Galaxies, Dark Matter and Dark Energy; World Scientific: Singapore, 2014. [Google Scholar]
- Overduin, J.M.; Everitt, C.W.F.; Worden, P.; Mester, J. STEP and fundamental physics. Class. Quant. Grav.
**2012**, 29, 184012. [Google Scholar] [CrossRef][Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Overduin, J.; Ali, H.; Walz, F.
Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension. *Galaxies* **2021**, *9*, 26.
https://doi.org/10.3390/galaxies9020026

**AMA Style**

Overduin J, Ali H, Walz F.
Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension. *Galaxies*. 2021; 9(2):26.
https://doi.org/10.3390/galaxies9020026

**Chicago/Turabian Style**

Overduin, James, Hamna Ali, and Francis Walz.
2021. "Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension" *Galaxies* 9, no. 2: 26.
https://doi.org/10.3390/galaxies9020026