Advanced LIGO Laser Systems for O3 and Future Observation Runs
Abstract
:1. Introduction
2. Pre-Stabilized Laser System in O3
2.1. Layout
2.2. Characterization and Performance during O3
3. Pre-Stabilized Laser System for O4
3.1. Layout
3.2. Characterization of the O4 Laser System Prototype
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LIGO | laser interferometric gravitational wave observatory |
eLIGO | enhanced LIGO |
aLIGO | advanced LIGO |
PSL | pre-stabilized laser system |
NPRO | non-planar ring oscillator |
O3 | observation run three |
O4 | observation run four |
DBB | diagnostic breadboard |
QPD | quadrant photodiode |
ASD | amplitude spectral density |
EOM | electro-optical modulator |
AOM | acousto-optical modulator |
PMC | pre-modecleaner |
IO | input optics |
CDS | control and design system |
HOM | higher order mode |
AEI | Albert Einstein Institute |
RPN | relative power noise |
References
- LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar] [CrossRef]
- Fricke, T.T.; Smith-Lefebvre, N.D.; Abbott, R.; Adhikari, R.; Dooley, K.L.; Evans, M.; Fritschel, P.; Frolov, V.V.; Kawabe, K.; Kissel, J.S.; et al. DC readout experiment in Enhanced LIGO. Class. Quantum Gravity 2012, 29, 065005. [Google Scholar] [CrossRef]
- Somiya, K.; Chen, Y.; Kawamura, S.; Mio, N. Erratum: Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes [Phys. Rev. D73, 122005 (2006)]. Phys. Rev. D 2007, 75. [Google Scholar] [CrossRef] [Green Version]
- Põld, J.H. aLIGO Bow-Tie Pre-Modecleaner Document; Technical Report LIGO-T0900616; Albert-Einstein-Institut Hannover: Hannover, Germany, 2012. [Google Scholar]
- Mueller, C.L.; Arain, M.A.; Ciani, G.; DeRosa, R.T.; Effler, A.; Feldbaum, D.; Frolov, V.V.; Fulda, P.; Gleason, J.; Heintze, M.; et al. The advanced LIGO input optics. Rev. Sci. Instrum. 2016, 87, 014502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwee, P.; Bogan, C.; Danzmann, K.; Frede, M.; Kim, H.; King, P.; Põld, J.; Puncken, O.; Savage, R.L.; Seifert, F.; et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Opt. Express 2012, 20, 10617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thies, F.; Bode, N.; Oppermann, P.; Frede, M.; Schulz, B.; Willke, B. Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors. Opt. Lett. 2019, 44, 719. [Google Scholar] [CrossRef] [PubMed]
- Harry, G.M.; the LIGO Scientific Collaboration. Advanced LIGO: The next generation of gravitational wave detectors. Class. Quantum Gravity 2010, 27, 084006. [Google Scholar] [CrossRef]
- Winkelmann, L.; Puncken, O.; Kluzik, R.; Veltkamp, C.; Kwee, P.; Poeld, J.; Bogan, C.; Willke, B.; Frede, M.; Neumann, J.; et al. Injection-locked single-frequency laser with an output power of 220 W. Appl. Phys. B 2011, 102, 529–538. [Google Scholar] [CrossRef]
- Kane, T.J.; Byer, R.L. Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt. Lett. 1985, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Frede, M.; Schulz, B.; Wilhelm, R.; Kwee, P.; Seifert, F.; Willke, B.; Kracht, D. Fundamental mode, single-frequency laser amplifier for gravitational wave detectors. Opt. Express 2007, 15, 459. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Fritschel, P.; Waldman, S. Enhanced LIGO; Technical Report LIGO-T060156; LIGO Laboratory: Pasadena, CA, USA, 2006. [Google Scholar]
- Buikema, A.; Cahillane, C.; Mansell, G.; Blair, C.; Abbott, R.; Adams, C.; Adhikari, R.; Ananyeva, A.; Appert, S.; Arai, K.; et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. D 2020, 102. [Google Scholar] [CrossRef]
- Kwee, P.; Seifert, F.; Willke, B.; Danzmann, K. Laser beam quality and pointing measurement with an optical resonator. Rev. Sci. Instruments 2007, 78, 073103. [Google Scholar] [CrossRef] [PubMed]
- Kwee, P.; Willke, B. Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers. Appl. Opt. 2008, 47, 6022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, E.; Meers, B.J.; Robertson, D.I.; Ward, H. Automatic alignment of optical interferometers. Appl. Opt. 1994, 33, 5041. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Savage, R.; King, P.; Zhang, L.; Appert, S. aLIGO All-Bolted PMC; Technical Report LIGO-T1700543; LIGO Laboratory / LSC: Pasadena, CA, USA, 2017. [Google Scholar]
- Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Bork, R.; Hanks, J.; Barker, D.; Betzwieser, J.; Rollins, J.; Thorne, K.; von Reis, E. Advligorts: The Advanced LIGO Real-Time Digital Control and Data Acquisition System. Available online: https://arxiv.org/abs/2005.00219 (accessed on 4 May 2020).
- Bode, N.; Meylahn, F.; Willke, B. Sequential high power laser amplifiers for gravitational wave detection. Opt. Express 2020, 28, 29469–29478. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.S.; King, P.J. Diode-pumped Nd:YAG laser intensity noise suppression using a current shunt. Rev. Sci. Instrum. 2001, 72, 1346. [Google Scholar] [CrossRef]
- Wellmann, F.; Steinke, M.; Meylahn, F.; Bode, N.; Willke, B.; Overmeyer, L.; Neumann, J.; Kracht, D. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Opt. Express 2019, 27, 28523. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, F.; Steinke, M.; Wessels, P.; Bode, N.; Meylahn, F.; Willke, B.; Overmeyer, L.; Neumann, J.; Kracht, D. Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors. Appl. Opt. 2020, 59, 7945. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guiraud, G.; Pierre, C.; Floissat, F.; Casanova, A.; Hreibi, A.; Chaibi, W.; Traynor, N.; Boullet, J.; Santarelli, G. High-power all-fiber ultra-low noise laser. Appl. Phys. B 2018, 124, 114. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bode, N.; Briggs, J.; Chen, X.; Frede, M.; Fritschel, P.; Fyffe, M.; Gustafson, E.; Heintze, M.; King, P.; Liu, J.; et al. Advanced LIGO Laser Systems for O3 and Future Observation Runs. Galaxies 2020, 8, 84. https://doi.org/10.3390/galaxies8040084
Bode N, Briggs J, Chen X, Frede M, Fritschel P, Fyffe M, Gustafson E, Heintze M, King P, Liu J, et al. Advanced LIGO Laser Systems for O3 and Future Observation Runs. Galaxies. 2020; 8(4):84. https://doi.org/10.3390/galaxies8040084
Chicago/Turabian StyleBode, Nina, Joseph Briggs, Xu Chen, Maik Frede, Peter Fritschel, Michael Fyffe, Eric Gustafson, Matthew Heintze, Peter King, Jian Liu, and et al. 2020. "Advanced LIGO Laser Systems for O3 and Future Observation Runs" Galaxies 8, no. 4: 84. https://doi.org/10.3390/galaxies8040084
APA StyleBode, N., Briggs, J., Chen, X., Frede, M., Fritschel, P., Fyffe, M., Gustafson, E., Heintze, M., King, P., Liu, J., Oberling, J., Savage, R. L., Spencer, A., & Willke, B. (2020). Advanced LIGO Laser Systems for O3 and Future Observation Runs. Galaxies, 8(4), 84. https://doi.org/10.3390/galaxies8040084