The Hunt for Environmental Noise in Virgo during the Third Observing Run
Abstract
:1. Introduction
2. Environmental Monitors
3. Environmental Noise Couplings and Sources
4. Noise Hunting Methods
4.1. Data Mining
4.2. Experimental Methods
5. O3 Noise Hunting
5.1. Scattered Light Noise Studies
5.2. Electromagnetic Noise Injections
5.3. Evaluation of Residual Magnetic Noise
5.4. Mains and Sidebands
5.5. Charged Mirrors
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Amplitude Spectral Density | |
BBH | Binary Black Hole | |
BNS | Binary Neutron Star | |
CEB | CEntral Building | |
CF | Coupling Function | |
DAC | Digital to Analog Converter | |
EM | ElectroMagnetic | |
GW | Gravitational Wave | |
Hrec | reconstructed gravitational strain signal | |
HVAC | Heating Ventilation and Air Conditioning | |
MCB | Mode Cleaner Building | |
NEB | North End Building | |
PRCL | Power Recycling Cavity Length | |
RF | Radio Frequency | |
SDB1 | Suspended Detection Bench 1 | |
SL | Scattered Light | |
TCS | Thermal Compensation System | |
TM | Test Mass | |
UPS | Uninterruptible Power Supply | |
WEB | West End Building |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Effler, A.; Schofield, R.M.S.; Frolov, V.V.; González, G.; Kawabe, K.; Smith, J.R.; Birch, J.; McCarthy, R. Environmental Influences on the LIGO Gravitational Wave Detectors during the 6th Science Run. Class. Quantum Gravity 2015, 32, 3. [Google Scholar] [CrossRef] [Green Version]
- Covas, P.B.; Effler, A.; Goetz, E.; Meyers, P.M.; Neunzert, A.; Oliver, M.; Pearlstone, B.L.; Roma, V.J.; Schofield, R.M.S.; Adya, V.B.; et al. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys. Rev. D 2018, 97, 082002. [Google Scholar] [CrossRef] [Green Version]
- Acernese, F.; Amico, P.; Al-Shourbagy, M.; Aoudia, S.; Avino, S.; Babusci, D.; Ballardin, G.; Barillé, R.; Barone, F.; Barsotti, L.; et al. A first study of environmental noise coupling to the Virgo interferometer. Class. Quantum Gravity 2005, 22, S1069–S1077. [Google Scholar] [CrossRef] [Green Version]
- Acernese, F.; Alshourbagy, M.; Amico, P.; Antonucci, F.; Aoudia, S.; Arun, K.G.; Astone, P.; Avino, S.; Baggio, L.; Ballardin, G.; et al. Noise studies during the first Virgo science run and after. Class. Quantum Gravity 2008, 25, 184003. [Google Scholar] [CrossRef]
- Acernese, F.; Amico, P.; Alshourbagy, M.; Antonucci, F.; Aoudia, S.; Astone, P.; Avino, S.; Babusci, D.; Ballardin, G.; Barone, F.; et al. Analysis of noise lines in the Virgo C7 data. Class. Quantum Gravity 2007, 24, S433–S443. [Google Scholar] [CrossRef]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Asada, H.; Aso, Y.; Bae, S.; et al. Overview of KAGRA: Calibration, Detector Characterization, Physical Environmental Monitors, and the Geophysics Interferometer. arXiv 2020, arXiv:2009.09305. [Google Scholar]
- LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar] [CrossRef]
- Virgo Collaboration. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Gravity 2014, 32, 024001. [Google Scholar] [CrossRef] [Green Version]
- Affeldt, C.; Danzmann, K.; Dooley, K.L.; Grote, H.; Hewitson, M.; Hild, S.; Hough, J.; Leong, J.; Lu¨ck, H.; Prijatelj, M.; et al. Advanced techniques in GEO 600. Class. Quantum Gravity 2014, 31, 224002. [Google Scholar] [CrossRef]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Asada, H.; Aso, Y.; Atsuta, S.; et al. First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Class. Quantum Gravity 2019, 36, 165008. [Google Scholar] [CrossRef] [Green Version]
- Acernese, F.; Agathos, M.; Aiello, L.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; Ascenzi, S.; et al. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Phys. Rev. Lett. 2019, 123, 231108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchi, A.; Coccia, E.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Sperandio, L. Thermal effects and their compensation in Advanced Virgo. J. Phys. Conf. Ser. 2012, 363, 012016. [Google Scholar] [CrossRef]
- Acernese, F.; Antonucci, F.; Aoudia, S.; Arun, K.G.; Astone, P.; Ballardin, G.; Barone, F.; Barsuglia, M.; Bauer, T.S.; Beker, M.G.; et al. Measurements of Superattenuator seismic isolation by Virgo interferometer. Astropart. Phys. 2010, 33, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Van Heijningen, J.V.; Bertolini, A.; Hennes, E.; Beker, M.G.; Doets, M.; Bulten, H.J.; Agatsuma, K.; Sekiguchi, T.; Van den Brand, J.F.J. A multistage vibration isolation system for Advanced Virgo suspended optical benches. Class. Quantum Gravity 2019, 36, 7. [Google Scholar] [CrossRef]
- Gravitational-Wave Candidate Event Database. Available online: https://gracedb.ligo.org/superevents/public/O3/ (accessed on 4 December 2020).
- LIGO Scientific Collaboration and Virgo Collaboration. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Available online: https://arxiv.org/abs/2010.14527 (accessed on 4 December 2020).
- LIGO Scientific Collaboration and Virgo Collaboration. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 2020, 102, 043015. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration and Virgo Collaboration. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4 M⊙. Astrophys. J. 2020, 892, L3. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration and Virgo Collaboration. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. 2020, 896, L44. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration and Virgo Collaboration. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration and Virgo Collaboration. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. Vol. 2016, 19. [Google Scholar] [CrossRef] [Green Version]
- Barone, F.; De Rosa, R.; Eleuteri, A.; Milano, L.; Qipiani, K. The environmental monitoring system of VIRGO antenna for gravitational wave detection. IEEE Trans. Nucl. Sci. 2002, 49, 405–410. [Google Scholar] [CrossRef]
- De Rosa, R.; Fiori, I. AdV ENV Probe Maps (Fast and Slow Sensors). May 2019. Available online: https://tds.virgo-gw.eu/ql/?c=13976 (accessed on 4 December 2020).
- Berni, F.; Carbognani, F.; Dattilo, V.; Gherardini, F.; Hemming, G.; Verkindt, D. The Detector Monitoring System. May 2012. Available online: https://tds.virgo-gw.eu/ql/?c=9005 (accessed on 4 December 2020).
- Dattilo, V. Comb at 10.2782 Hz: Path and Source Identification. October 2011. Available online: https://logbook.virgo-gw.eu/virgo/?r=30429 (accessed on 4 December 2020).
- Coughlin, M.W.; Cirone, A.; Patrick, M.; Sho, A.; Boschi, V.; Chincarini, A.; Christensen, N.L.; De Rosa, R.; Effler, A.; Fiori, I.; et al. Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Phys. Rev. D 2018, 97, 102007. [Google Scholar] [CrossRef] [Green Version]
- Kowalska-Leszczynska, I.; Bizouard, M.A.; Tomasz, B.; Nelson, C.; Michael, C.; Gołkowski, M.; Jerzy, K.; Kulak, A.; Mlynarczyk, J.; Florent, R.; et al. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors. Class. Quantum Gravity 2017, 34, 074002. [Google Scholar] [CrossRef] [Green Version]
- Accadia, T.; Acernese, F.; Antonucci, F.; Astone, P.; Ballardin, G.; Barone, F.; Barsuglia, M.; Bauer, T.S.; Beker, M.G.; Belletoile, A.; et al. Noise from scattered light in Virgo’s second science run data. Class. Quantum Gravity 2010, 27, 194011. [Google Scholar] [CrossRef]
- Canuel, B.; Fiori, I.; Marque, J.; Tournefier, E. Diffused Light Mitigation in Virgo and Constraints for Virgo+ and AdV. December 2009. Available online: https://tds.virgo-gw.eu/ql/?c=7118 (accessed on 4 December 2020).
- Soni, S.; Austin, C.; Effler, A.; Schofield, R.M.S.; Gonzalez, G.; Frolov, V.V.; Driggers, J.C.; Pele, A.; Urban, A.L.; Valdes, G.; et al. Reducing Scattered Light in LIGO’s Third Observing Run. arXiv 2020, arXiv:2007.14876. [Google Scholar]
- Was, M.; Gouaty, R.; Bonnand, R. End Benches Scattered Light Modeling and Subtraction in Advanced Virgo. arXiv 2020, arXiv:2011.03539v1. [Google Scholar]
- Schofield, R.; Nguyen, P.; Banagiri, S.; Austin, C.; Merfeld, K.; Effler, A.; Shoemaker, D.; Siddharth, S.; Helmling-Cornell, A.; Ball, M. August 2019 PEM Update and New Techniques for Localizing Scattering. August 2019. Available online: https://dcc.ligo.org/LIGO-G1901683/public (accessed on 4 December 2020).
- Eisenmann, M.; Flaminio, R.; Gouaty, R. The ESQB Mechanical Resonances Analysis. July 2020. Available online: https://tds.virgo-gw.eu/ql/?c=15790 (accessed on 4 December 2020).
- Cirone, A.; Chincarini, A.; Neri, M.; Farinon, S.; Gemme, G.; Fiori, I.; Paoletti, F.; Majorana, E.; Puppo, P.; Rapagnani, P.; et al. Magnetic coupling to the advanced Virgo payloads and its impact on the low frequency sensitivity. Rev. Sci. 2018, 89, 114501. [Google Scholar] [CrossRef]
- Cirone, A.; Fiori, I.; Paoletti, F.; Perez, M.M.; Rodríguez, A.R.; Swinkels, B.L.; Vazquez, A.M.; Gemme, G.; Chincarini, A. Investigation of magnetic noise in advanced Virgo. Class. Quantum Gravity 2019, 36, 225004. [Google Scholar] [CrossRef] [Green Version]
- LIGO Scientific Collaboration; Virgo Collaboration; Coughlin, M.W. Identification of long-duration noise transients in LIGO and Virgo. Class. Quantum Gravity 2011, 28, 235008. [Google Scholar] [CrossRef] [Green Version]
- Boschi, V.; 46th Airbrigade; Fiori, I.; Mantovani, M.; Menzione, N.; Paoletti, F.; Pillant, G.; Tringali, M.C. C130J Flyover Tests. January 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=44268 (accessed on 4 December 2020).
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Acernese, F.; Adams, C.; Aams, T.; et al. The characterization of Virgo data and its impact on gravitational-wave searches. Class. Quantum Gravity 2012, 29. [Google Scholar] [CrossRef]
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Acernese, F.; Adams, C.; Aams, T.; et al. Characterization of the LIGO detectors during their sixth science run. Class. Quantum Gravity 2015, 32. [Google Scholar] [CrossRef] [Green Version]
- Virgo Electronic Logbook. Available online: https://logbook.virgo-gw.eu/virgo/ (accessed on 4 December 2020).
- Vajente, G. BRUte Force COherence. May 2017. Available online: https://github.com/gw-pem/bruco (accessed on 4 December 2020).
- Vajente, G. Analysis of Sensitivity and Noise Sources for the Virgo Gravitational Wave Interferometer. Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2008. Chapter 8. [Google Scholar]
- Swinkels, B. Brute Force Correlation of Drifting Lines. June 2018. Available online: https://tds.virgo-gw.eu/ql/?c=13316 (accessed on 4 December 2020).
- Di Renzo, F. NonNA: A Non-Stationary Noise Analysis Tool. March 2019. Available online: https://tds.virgo-gw.eu/ql/?c=15883 (accessed on 4 December 2020).
- Patricelli, B.; Cella, G. Tools for Modulated Noise Study. June 2019. Available online: https://tds.virgo-gw.eu/ql/?c=14409 (accessed on 4 December 2020).
- Wąs, M.; Patricelli, B. Range Variations and Subtraction Efficiency. December 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=47852 (accessed on 4 December 2020).
- Marque, J.; Vajente, G. Stray Light Issues. In Advanced Interferometers and the Search for Gravitational Waves: Lectures from the First VESF School on Advanced Detectors for Gravitational Waves; Astrophysics and Space Science Library; Springer International Publishing: Basel, Switzerland, 2014; pp. 275–290. [Google Scholar]
- Kruck, J.; Schofield, R. Environmental Monitoring: Coupling Function Calculator. August 2016. Available online: https://dcc.ligo.org/LIGO-T1600387/public (accessed on 4 December 2020).
- Billing, H.; Maischberger, K.; Rudiger, A.; Schilling, R.; L Schnupp, L.; Winkler, W. An argon laser interferometer for the detection of gravitational radiation. J. Phys. E Sci. Instrum. 1979, 12, 1043–1050. [Google Scholar] [CrossRef]
- Canuel, B.; Genin, E.; Vajente, G.; Marque, J. Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors. Opt. Express 2013, 21, 10546. [Google Scholar] [CrossRef] [PubMed]
- Evans, M. Optickle. November 2020. Available online: https://dcc.ligo.org/T070260/public (accessed on 4 December 2020).
- Schumann, W. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z. Naturforschung Teil A 1952, 7, 149. [Google Scholar] [CrossRef]
- Sentman, D.D. Schumann Resonances. In Handbook of Atmospheric Electrodynamics; Volland, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; Volume I, Chapter 11. [Google Scholar]
- Fiori, I.; Bersanetti, D.; Cirone, A. Magnetic Injections CEB. July 2017. Available online: https://logbook.virgo-gw.eu/virgo/?r=38369 (accessed on 4 December 2020).
- Paoletti, F.; Fiori, I.; Soldani, D.; D’Andrea, M. TEST: Separating CEB and MCB Mains Lines, and Reducing the Unwanted Coupling between Them (50 Hz HVAC Sidebands in Hrec). November 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=49102 (accessed on 4 December 2020).
- Fiori, I.; De Rossi, C.; Paoletti, F. Hunting for 5 Hz Comb and the Higher Magnetic Fields Close to WE Chamber. November 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=47617 (accessed on 4 December 2020).
- Nardecchia, I.; Aiello, L.; Cesarini, E.; Lumaca, D.; Fafone, V.; Maggiore, R.; Lorenzini, M.; Minenkov, Y.; Rocchi, A. Integrated dynamical thermal compensation techniques for Advanced Virgo. In Proceedings of the 2nd GRavitational-Waves Science and Technology Symposium (GRASS 2019), Padova, Italy, 17–18 October 2019. [Google Scholar] [CrossRef]
- Martynov, D. 1/f2 Noise. October 2016. Available online: https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=28644 (accessed on 4 December 2020).
1. | The ideal condition would be that of generating a uniform field across the whole interferometer and the witness sensors. The best practical approximation that we could do consisted of one injection coil that was placed in one corner of the experimental halls and witness magnetometers centrally located with respect to the potentially sensitive components. |
2. | We also evaluated the impact of ambient EM fields at frequencies within 10 kHz from the Virgo laser modulation frequencies () 6 MHz, 8 MHz, and 56 MHz. These fields might couple to electronics contaminating the demodulated photodiode signals used for the angular and longitudinal controls of the interferometer. In this case, we used one transmitting antenna (6 m long vertical whip) positioned in proximity of the central building to broadcast 20 kHz-span sweep signals that were centered at each . This antenna was fed with a broadband power radio frequency amplifier set for an output of about 10 W. The contribution of the ambient radio frequency background was estimated to be more than one order of magnitude below the current Virgo sensitivity. |
Type | Sensor Model | Usable Frequency Band | Self Noise |
---|---|---|---|
seismometer | Guralp CMG-40T | –50 Hz | 6 nm/ at Hz |
accelerometer | Episensor FBA ES-T 3-axis | –50 Hz | at 1 Hz |
accelerometer | Wilcoxon 731-207 or PCB 393B12 | 1–1000 Hz | at 10 Hz |
microphone | Brüel Kjaer 4190 or 4193 | 0.1 Hz–10 kHz | mPa / at 10 Hz |
magnetometer | Metronix MFS-06e | 0.1 mHz–10 kHz | pT/ at 1 Hz |
RF receiver | AOR AR5000A | 10 kHz–3 GHz | 10 nV/ at 10 MHz |
Type | Description | Operating Frequency | Model |
---|---|---|---|
Portable sensors | |||
seismic | digital accelerometer | 1–1000 Hz | PCB 633A01 |
acoustic | cell phone microphone | 10–20,000 Hz | - |
magnetic | 3-axial probe | 0–1000 Hz | Mayer FL3-100 |
RF | RF receiver | 10 kHz–100 MHz | ELAD FDM-S1 |
Tools for noise injections | |||
seismic | small impact hammer | - | PCB 086C01 |
seismic | small bluetooth shaker | 30–2000 Hz | Vibe–Tribe Troll Plus |
seismic | medium shaker | 10–1000 Hz | TIRA TV-51110 |
acoustic | speaker set | 20 Hz to few kHz | 18” sub-woofer and PROEL SMTV-15MA |
magnetic | injection coil | DC to a few 100 Hz | 0.5 m radius, 50 turns of 1 mm Cu wire |
magnetic | small injection coil | DC to a few kHz | 32 mm radius, 1000 turns of 1 mm Cu wire |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiori, I.; Paoletti, F.; Tringali, M.C.; Janssens, K.; Karathanasis, C.; Menéndez-Vázquez, A.; Romero-Rodríguez, A.; Sugimoto, R.; Washimi, T.; Boschi, V.; et al. The Hunt for Environmental Noise in Virgo during the Third Observing Run. Galaxies 2020, 8, 82. https://doi.org/10.3390/galaxies8040082
Fiori I, Paoletti F, Tringali MC, Janssens K, Karathanasis C, Menéndez-Vázquez A, Romero-Rodríguez A, Sugimoto R, Washimi T, Boschi V, et al. The Hunt for Environmental Noise in Virgo during the Third Observing Run. Galaxies. 2020; 8(4):82. https://doi.org/10.3390/galaxies8040082
Chicago/Turabian StyleFiori, Irene, Federico Paoletti, Maria Concetta Tringali, Kamiel Janssens, Christos Karathanasis, Alexis Menéndez-Vázquez, Alba Romero-Rodríguez, Ryosuke Sugimoto, Tatsuki Washimi, Valerio Boschi, and et al. 2020. "The Hunt for Environmental Noise in Virgo during the Third Observing Run" Galaxies 8, no. 4: 82. https://doi.org/10.3390/galaxies8040082