Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope
Abstract
:1. Introduction: The Extraordinary Deaths of Ordinary Stars
2. Using the James Webb Space Telescope (JWST) to Study PPNe and PNe
2.1. Instrument Summary
2.1.1. NIRCam (Near Infrared Camera): 0.6–5 m (U. Arizona)
2.1.2. NIRSpec (Near Infrared Spectrograph): m (ESA, and NASA/GSFC)
2.1.3. FGS/NIRISS (Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph): 0.6–5 m (CSA)
2.1.4. MIRI (Mid Infrared Instrument): ∼5–30 m (ESA and JPL)
2.1.5. JWST High-Contrast Imaging
- (1)
- NIRCam, using (i) a round coronagraphic mask for observations at 2–4.4 m, with an Inner Working Angle [IWA] of , and (ii) a bar for observations at 2–3.7 m, with an IWA of .
- (2)
- MIRI, using (i) a Lyot stop for observations at 23 m, with an IWA of and a FOV, and (ii) a 4-quadrant phase mask (4QPM) and filters at 10.65, 11.4, 15.5 m, with an IWA of .
- (3)
- NIRISS, which admits light through seven holes or sub-apertures in an otherwise opaque pupil mask that interferes to produce an interferogram on the detector in the AMI, effectively making the full aperture of JWST into an interferometric array. The interferogram created by the aperture mask has a sharper core than is provided by normal “direct” imaging. The AMI mode allows the detection and characterization of a faint source within of a bright one and up to ∼9 magnitudes fainter. It can also be used to reconstruct high resolution maps of extended sources. The AMI mode uses one of 4 filters (three medium-band, one wideband) covering the 2.8–4.8 m range.
2.2. JWST Strengths and Limitations for PPNe and PNe Studies
- (1)
- Saturation (especially for Galactic targets), however mitigation strategies to deal with this to some extent are available and have been investigated by the Solar System science community (e.g., for enabling observations of Mars and the gas giants). Note though that none of the detectors can be damaged by bright light.
- (2)
- Surveys of object classes that require slews from target-to-target will be expensive due to the long slew time (∼30 min)7.
- (3)
- At the short-end of the NIR range, JWST faces competition from ground-based Large Telescopes with extreme Adaptive Optics (AO) capabilities. However, it is important to note that the Strehl ratio8 for a ground-based telescope with AO depends on the seeing conditions, which can vary during the course of an observation, so observations of very faint extended circumstellar stricture around bright central sources can only be done with JWST.
3. Selected Science Investigations
- (a)
- Photometric and spectroscopic search for binary companions to, and/or disks around, the central stars of PNe (CSPNe), post-AGB, and post-RGB9 stars.
- (b)
- Imaging faint and obscured circumstellar structures in PNe and post-AGB objects.
- (c)
- Studying the composition and evolution of dust in galaxies.
- (d)
- Studying the physics and chemistry of UV-irradiated molecular clumps in PNe.
3.1. Binary Companions and Disks in Post-AGB and Post-RGB Objects
3.2. Imaging Faint and Obscured Circumstellar Structures in Post-AGB Objects
3.3. The Composition and Evolution of Dust in Galaxies
3.4. Study of the Physics and Chemistry of UV-Irradiated Molecular Clumps in PNe
4. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Keaveney, N.; Boyle, L.; Redman, M. Shaping of Planetary Nebulae by Exoplanets. Galaxies 2020, 8, 41. [Google Scholar] [CrossRef]
- Boffin, H.M.J.; Jones, D. The Importance of Binaries in the Formation and Evolution of Planetary Nebulae; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Doan, L.; Ramstedt, S.; Vlemmings, W.H.T.; Mohamed, S.; Höfner, S.; De Beck, E.; Kerschbaum, F.; Lindqvist, M.; Maercker, M.; Paladini, C.; et al. The extended molecular envelope of the asymptotic giant branch star π1 Gruis as seen by ALMA. II. The spiral-outflow observed at high-angular resolution. Astron. Astrophys. 2020, 633, A13. [Google Scholar] [CrossRef] [Green Version]
- Hirano, N.; Shinnaga, H.; Dinh-V-Trung; Fong, D.; Keto, E.; Patel, N.; Qi, C.; Young, K.; Zhang, Q.; Zhao, J. High-Velocity Bipolar Outflow and Disklike Envelope in the Carbon Star V Hydrae. Astrophys. J. 2004, 616, L43–L46. [Google Scholar] [CrossRef]
- Randall, S.K.; Trejo, A.; Humphreys, E.M.L.; Kim, H.; Wittkowski, M.; Boboltz, D.; Ramstedt, S. Discovery of a complex spiral-shell structure around the oxygen-rich AGB star GX Monocerotis. Astron. Astrophys. 2020, 636, A123. [Google Scholar] [CrossRef]
- Sánchez Contreras, C.; Alcolea, J.; Bujarrabal, V.; Castro-Carrizo, A.; Velilla Prieto, L.; Santand er-García, M.; Quintana-Lacaci, G.; Cernicharo, J. Through the magnifying glass: ALMA acute viewing of the intricate nebular architecture of OH 231.8+4.2. Astron. Astrophys. 2018, 618, A164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahai, R.; Trauger, J.T. Multipolar Bubbles and Jets in Low-Excitation Planetary Nebulae: Toward a New Understanding of the Formation and Shaping of Planetary Nebulae. Astron. J. 1998, 116, 1357–1366. [Google Scholar] [CrossRef]
- Sahai, R.; Morris, M.; Sánchez Contreras, C.; Claussen, M. Preplanetary Nebulae: A Hubble Space Telescope Imaging Survey and a New Morphological Classification System. Astron. J. 2007, 134, 2200–2225. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Morris, M.R.; Villar, G.G. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System. Astron. J. 2011, 141, 134. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Claussen, M.J.; Schnee, S.; Morris, M.R.; Sánchez Contreras, C. An Expanded Very Large Array and CARMA Study of Dusty Disks and Torii with Large Grains in Dying Stars. Astrophys. J. 2011, 739, L3. [Google Scholar] [CrossRef] [Green Version]
- Balick, B.; Frank, A. Shapes and Shaping of Planetary Nebulae. Annu. Rev. Astron. Astrophys. 2002, 40, 439–486. [Google Scholar] [CrossRef]
- De Marco, O. The Origin and Shaping of Planetary Nebulae: Putting the Binary Hypothesis to the Test. Publ. Astron. Soc. Pac. 2009, 121, 316. [Google Scholar] [CrossRef] [Green Version]
- Blackman, E.G.; Lucchini, S. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. 2014, 440, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- García-Segura, G.; López, J.A.; Franco, J. Magnetically Driven Winds from Post-Asymptotic Giant Branch Stars: Solutions for High-Speed Winds and Extreme Collimation. Astrophys. J. 2005, 618, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Why Magnetic Fields Cannot Be the Main Agent Shaping Planetary Nebulae. Publ. Astron. Soc. Pac. 2006, 118, 260–269. [Google Scholar] [CrossRef] [Green Version]
- García-Segura, G.; Villaver, E.; Langer, N.; Yoon, S.C.; Manchado, A. Single Rotating Stars and the Formation of Bipolar Planetary Nebula. Astrophys. J. 2014, 783, 74. [Google Scholar] [CrossRef]
- Sahai, R.; Claussen, M.; Contreras, C.S.; Sanz-Forcada, J.; Guerrero, M.A.; Ortiz, R.; De Marco, O.; Muthumariappan, C. Probing Strong Binary Interactions and Accretion in Asymptotic Giant Branch Stars. Bull. Am. Astron. Soc. 2019, 51, 262. [Google Scholar]
- Matthews, L.D.; Claussen, M.J.; Harper, G.M.; Menten, K.M.; Ridgway, S. Unlocking the Secrets of Late-Stage Stellar Evolution and Mass Loss through Radio Wavelength Imaging. Bull. Am. Astron. Soc. 2019, 51, 424. [Google Scholar]
- Bond, H.E. Close Binary (and Pulsating) Nuclei of Planetary Nebulae. In IAU Colloq. 53: White Dwarfs and Variable Degenerate Stars; van Horn, H.M., Weidemann, V., Savedoff, M.P., Eds.; Cambridge University Press: Cambridge, UK, 1979; p. 266. [Google Scholar]
- Miszalski, B.; Acker, A.; Parker, Q.A.; Moffat, A.F.J. Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures. Astron. Astrophys. 2009, 505, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Miszalski, B.; Acker, A.; Moffat, A.F.J.; Parker, Q.A.; Udalski, A. Binary planetary nebulae nuclei towards the Galactic bulge. I. Sample discovery, period distribution, and binary fraction. Astron. Astrophys. 2009, 496, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Jones, D. Planetary Nebulae: What Can They Tell Us about Close Binary Evolution? EAS Publ. Ser. 2015, 71–72, 113–116. [Google Scholar] [CrossRef]
- De Marco, O.; Passy, J.C.; Frew, D.J.; Moe, M.; Jacoby, G.H. The binary fraction of planetary nebula central stars—I. A high-precision, I-band excess search. Mon. Not. R. Astron. Soc. 2013, 428, 2118–2140. [Google Scholar] [CrossRef] [Green Version]
- Douchin, D.; De Marco, O.; Frew, D.J.; Jacoby, G.H.; Jasniewicz, G.; Fitzgerald, M.; Passy, J.C.; Harmer, D.; Hillwig, T.; Moe, M. The binary fraction of planetary nebula central stars—II. A larger sample and improved technique for the infrared excess search. Mon. Not. R. Astron. Soc. 2015, 448, 3132–3155. [Google Scholar] [CrossRef] [Green Version]
- Miller Bertolami, M.M. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron. Astrophys. 2016, 588, A25. [Google Scholar] [CrossRef]
- Villaver, E.; Stanghellini, L.; Shaw, R.A. The Mass Distribution of the Central Stars of Planetary Nebulae in the Large Magellanic Cloud. Astrophys. J. 2007, 656, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Farihi, J. Circumstellar debris and pollution at white dwarf stars. New Astron. Rev. 2016, 71, 9–34. [Google Scholar] [CrossRef] [Green Version]
- Becklin, E.E.; Farihi, J.; Jura, M.; Song, I.; Weinberger, A.J.; Zuckerman, B. A Dusty Disk around GD 362, a White Dwarf with a Uniquely High Photospheric Metal Abundance. Astrophys. J. 2005, 632, L119–L122. [Google Scholar] [CrossRef] [Green Version]
- Jura, M. A Tidally Disrupted Asteroid around the White Dwarf G29-38. Astrophys. J. 2003, 584, L91–L94. [Google Scholar] [CrossRef]
- Su, K.Y.L.; Chu, Y.H.; Rieke, G.H.; Huggins, P.J.; Gruendl, R.; Napiwotzki, R.; Rauch, T.; Latter, W.B.; Volk, K. A Debris Disk around the Central Star of the Helix Nebula? Astrophys. J. 2007, 657, L41–L45. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.H.; Su, K.Y.L.; Bilikova, J.; Gruendl, R.A.; De Marco, O.; Guerrero, M.A.; Updike, A.C.; Volk, K.; Rauch, T. Spitzer 24 μm Survey for Dust Disks around Hot White Dwarfs. Astron. J. 2011, 142, 75. [Google Scholar] [CrossRef] [Green Version]
- Bilíková, J.; Chu, Y.H.; Gruendl, R.A.; Su, K.Y.L.; De Marco, O. Spitzer Search for Dust Disks around Central Stars of Planetary Nebulae. Astrophys. J. Suppl. Ser. 2012, 200, 3. [Google Scholar] [CrossRef]
- Sahai, R.; Vlemmings, W.H.T.; Nyman, L.Å. The Coldest Place in the Universe: Probing the Ultra-cold Outflow and Dusty Disk in the Boomerang Nebula. Astrophys. J. 2017, 841, 110. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Nyman, L.Å. The Boomerang Nebula: The Coldest Region of the Universe? Astrophys. J. 1997, 487, L155–L159. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.W.; Uchida, K.I.; Sellgren, K.; Marengo, M.; Gordon, K.D.; Morris, P.W.; Houck, J.R.; Stansberry, J.A. New Infrared Emission Features and Spectral Variations in NGC 7023. Astrophys. J. Suppl. Ser. 2004, 154, 309–314. [Google Scholar] [CrossRef]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: Candidate selection, spectral energy distributions and spectroscopic examination. Mon. Not. R. Astron. Soc. 2014, 439, 2211–2270. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2015, 454, 1468–1502. [Google Scholar] [CrossRef]
- Kamath, D.; Wood, P.R.; Van Winckel, H.; Nie, J.D. A newly discovered stellar type: Dusty post-red giant branch stars in the Magellanic Clouds. Astron. Astrophys. 2016, 586, L5. [Google Scholar] [CrossRef]
- De Marco, O.; Izzard, R.G. Dawes Review 6: The Impact of Companions on Stellar Evolution. Publ. Astron. Soc. Aust. 2017, 34, e001. [Google Scholar] [CrossRef] [Green Version]
- Iaconi, R.; Reichardt, T.; Staff, J.; De Marco, O.; Passy, J.C.; Price, D.; Wurster, J.; Herwig, F. The effect of a wider initial separation on common envelope binary interaction simulations. Mon. Not. R. Astron. Soc. 2017, 464, 4028–4044. [Google Scholar] [CrossRef] [Green Version]
- Shiber, S.; Soker, N. Simulating a binary system that experiences the grazing envelope evolution. Mon. Not. R. Astron. Soc. 2018, 477, 2584–2598. [Google Scholar] [CrossRef]
- Arneson, R.A.; Gehrz, R.D.; Woodward, C.E.; Helton, L.A.; Shenoy, D.; Evans, A.; Keller, L.D.; Hinkle, K.H.; Jura, M.; Lebzelter, T.; et al. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables. Astrophys. J. 2017, 843, 51. [Google Scholar] [CrossRef]
- Hillen, M.; de Vries, B.L.; Menu, J.; Van Winckel, H.; Min, M.; Mulders, G.D. The evolved circumbinary disk of AC Herculis: A radiative transfer, interferometric, and mineralogical study. Astron. Astrophys. 2015, 578, A40. [Google Scholar] [CrossRef]
- Sahai, R.; Zijlstra, A.; Sánchez Contreras, C.; Morris, M. An Icy, Bipolar Proto-Planetary Nebula with Knotty Jets: IRAS 22036+5306. Astrophys. J. 2003, 586, L81–L85. [Google Scholar] [CrossRef] [Green Version]
- Ossenkopf, V.; Henning, T.; Mathis, J.S. Constraints on cosmic silicates. Astron. Astrophys. 1992, 261, 567–578. [Google Scholar]
- Artigau, É.; Sivaramakrishnan, A.; Greenbaum, A.Z.; Doyon, R.; Goudfrooij, P.; Fullerton, A.W.; Lafrenière, D.; Volk, K.; Albert, L.; Martel, A.; et al. NIRISS aperture masking interferometry: An overview of science opportunities. In Proceedings of the Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Montreal, QC, Canada, 22–27 June 2014; p. 914340. [Google Scholar] [CrossRef] [Green Version]
- Ford, K.E.S.; McKernan, B.; Sivaramakrishnan, A.; Martel, A.R.; Koekemoer, A.; Lafrenière, D.; Parmentier, S. Active Galactic Nucleus and Quasar Science with Aperture Masking Interferometry on the James Webb Space Telescope. Astrophys. J. 2014, 783, 73. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Le Mignant, D.; Sánchez Contreras, C.; Campbell, R.D.; Chaffee, F.H. Sculpting a Pre-planetary Nebula with a Precessing Jet: IRAS 16342-3814. Astrophys. J. 2005, 622, L53–L56. [Google Scholar] [CrossRef] [Green Version]
- Lagadec, E.; Verhoelst, T.; Mékarnia, D.; Suáeez, O.; Zijlstra, A.A.; Bendjoya, P.; Szczerba, R.; Chesneau, O.; van Winckel, H.; Barlow, M.J.; et al. A mid-infrared imaging catalogue of post-asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2011, 417, 32–92. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.Å.; Quintana-Lacaci, G. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus. Astrophys. J. 2017, 835, L13. [Google Scholar] [CrossRef]
- Castro-Carrizo, A.; Bujarrabal, V.; Neri, R.; Alcolea, J.; Sánchez Contreras, C.; Santand er-García, M.; Nyman, L.A. Structure and dynamics of the molecular gas in M 2-9: A follow-up study with ALMA. Astron. Astrophys. 2017, 600, A4. [Google Scholar] [CrossRef]
- Ressler, M.E.; Cohen, M.; Wachter, S.; Hoard, D.W.; Mainzer, A.K.; Wright, E.L. The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-sky Survey. Astron. J. 2010, 140, 1882–1890. [Google Scholar] [CrossRef] [Green Version]
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R.A.; Szczerba, R.; Perea-Calderón, J.V. Formation of Fullerenes in H-containing Planetary Nebulae. Astrophys. J. 2010, 724, L39–L43. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Ramirez, L.; Zijlstra, A.A.; Níchuimín, R.; Gesicki, K.; Lagadec, E.; Millar, T.J.; Woods, P.M. Carbon chemistry in Galactic bulge planetary nebulae. Mon. Not. R. Astron. Soc. 2011, 414, 1667–1678. [Google Scholar] [CrossRef] [Green Version]
- Sloan, G.C.; Lagadec, E.; Zijlstra, A.A.; Kraemer, K.E.; Weis, A.P.; Matsuura, M.; Volk, K.; Peeters, E.; Duley, W.W.; Cami, J.; et al. Carbon-rich Dust Past the Asymptotic Giant Branch: Aliphatics, Aromatics, and Fullerenes in the Magellanic Clouds. Astrophys. J. 2014, 791, 28. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, M.; Bernard-Salas, J.; Lloyd Evans, T.; Volk, K.M.; Hrivnak, B.J.; Sloan, G.C.; Chu, Y.H.; Gruendl, R.; Kraemer, K.E.; Peeters, E.; et al. Spitzer Space Telescope spectra of post-AGB stars in the Large Magellanic Cloud-polycyclic aromatic hydrocarbons at low metallicities. Mon. Not. R. Astron. Soc. 2014, 439, 1472–1493. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S. Organic Synthesis in the Late Stages of Stellar Evolution. EAS Publ. Ser. 2015, 71–72, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Gillett, F.C.; Forrest, W.J.; Merrill, K.M. 8–13-micron spectra of NGC 7027, BD +30 3639, and NGC 6572. Astrophys. J. 1973, 183, 87. [Google Scholar] [CrossRef]
- Tielens, A.G.G.M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289–337. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.K.; Holz, M.; Gerlich, D.; Maier, J.P. Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands. Nature 2015, 523, 322–323. [Google Scholar] [CrossRef]
- Walker, G.A.H.; Campbell, E.K.; Maier, J.P.; Bohlender, D. The 9577 and 9632 Å Diffuse Interstellar Bands: C60+ as Carrier. Astrophys. J. 2017, 843, 56. [Google Scholar] [CrossRef]
- Linnartz, H.; Cami, J.; Cordiner, M.; Cox, N.L.J.; Ehrenfreund, P.; Foing, B.; Gatchell, M.; Scheier, P. C60+ as a diffuse interstellar band carrier; a spectroscopic story in 6 acts. J. Mol. Spectrosc. 2020, 367, 111243. [Google Scholar] [CrossRef]
- Otsuka, M.; Kemper, F.; Cami, J.; Peeters, E.; Bernard-Salas, J. Physical properties of fullerene-containing Galactic planetary nebulae. Mon. Not. R. Astron. Soc. 2014, 437, 2577–2593. [Google Scholar] [CrossRef]
- Hollenbach, D.; Natta, A. Time-dependent Photodissociation Regions. Astrophys. J. 1995, 455, 133. [Google Scholar] [CrossRef]
- Cox, N.L.J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C. Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: The case of NGC 6720. Mon. Not. R. Astron. Soc. 2016, 456, L89–L93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
1 | If we include interactions with giant planets (“hot Jupiters”) (e.g., [1]), then this percentage becomes much higher. |
2 | here we are referring to the extended regions of these envelopes and not the innermost regions which have been found to be remarkably aspherical in some objects, and we are excluding some notable examples with extended aspherical structures such as V Hya, Gru, GX Mon, and OH 231.8 + 4.2 (e.g., see [3,4,5,6]). |
3 | objects with a post-AGB central star, a compact central disk, and little or no extended nebulosity. |
4 | individual shutter size is in the dispersion direction × spatial direction; multiple shutters can be combined to form a slit. |
5 | these values apply at the central wavelength in the measured spectral range. |
6 | the grisms are mounted to disperse light in orthogonal directions on the detector. |
7 | This is the estimated slew time for a 53 slew on-sky, adopted for use as a generic mean slew time in the Astronomers Proposal Tool. The actual slew time for a specific object may in general be shorter than this, because the telescope scheduling will attempt to minimize slews. |
8 | ratio of the peak aberrated image intensity from a point source compared to the maximum attainable intensity using an ideal optical system limited only by diffraction over the system’s aperture. |
9 | like post-AGB objects, except that they have lost their stellar envelopes while on the RGB. |
10 | assuming that the source is sufficiently faint that its noise contribution is small compared to the instrumental noise. |
11 | |
12 | [35]. |
13 | the modeling strategy adopted by SS20 is conservative, beginning with a 1-component model and then if significant discrepancies remain, proceeding to a 2-component model. Note that the optical-to-mid IR SED is dominated by emission from a warm central component, whereas the far-IR SED is dominated by emission from an extended cool component, and since the latter is generally optically thin, its shape is unimportant. |
14 | minor constituents could include graphite, hydrorgenated amorphous carbon, or soot-like particles. |
15 | the NIRSpec MSA can also be used. |
WD | K | ||
---|---|---|---|
(m) | (ms/wd) | F (Jy) | F (Jy) |
0.8 | 0.0017 | 1938 | 3.2 |
5.6 | 0.12 | 42.8 | 5.1 |
10 | 0.155 | 13.4 | 2.1 |
WD | K | ||
(m) | (ms/wd) | F (Jy) | F (Jy) |
0.8 | 33,880 | 3.2 | |
5.6 | 0.0063 | 810 | 5.1 |
10 | 0.0082 | 257 | 2.1 |
WD | K | ||
(m) | (ms/wd) | F (Jy) | F (Jy) |
0.8 | 0.006 | 549 | 3.2 |
5.6 | 0.44 | 11.7 | 5.1 |
10 | 0.56 | 3.7 | 2.1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahai, R. Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope. Galaxies 2020, 8, 61. https://doi.org/10.3390/galaxies8030061
Sahai R. Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope. Galaxies. 2020; 8(3):61. https://doi.org/10.3390/galaxies8030061
Chicago/Turabian StyleSahai, Raghvendra. 2020. "Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope" Galaxies 8, no. 3: 61. https://doi.org/10.3390/galaxies8030061
APA StyleSahai, R. (2020). Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope. Galaxies, 8(3), 61. https://doi.org/10.3390/galaxies8030061