X-ray Spectral Evolution of High Energy Peaked Blazars
Abstract
:1. Introduction
2. Models Used to Fit the X-ray Spectra of Blazars
- A power law model defined by with fixed galactic absorption. It is characterized by a normalization k and spectral index . In most of the HSPs, X-ray spectra are not well fitted with a power law model and unacceptable values of are obtained. The X-ray spectra of HSPs are remarkably curved; hence, this model is not adequate to describe their spectra.Other analytical models such as a broken power law or a power law with an exponential cut-off (PL plus EC model) are also used to fit the spectra of such sources. However, the values are generally be large to be acceptable, indicating that the spectral curvature is milder than an exponential [17].
- A logarithmic parabola model defined by (e.g., [15,16,17]) with fixed galactic absorption. It is characterized by a normalization k, spectral index a, transition energy , and curvature parameter b. Or the alternative SED representationThe rest frame energy peak is given byAdditionally, the value of is proportional to the bolometric emitted flux, the rest frame powers of BL Lacs in terms of the isotropic luminosity peak energy :
3. Correlation between Different Parameters
3.1. Correlation between and
3.2. Correlation between and b (Curvature Parameter)
3.3. Correlation between a and b
3.4. Correlation between and Flux
4. Conclusions
- The height of the SED (or luminosity peak energy ) and of the synchrotron peak follows a power law. Additionally, the power law index indicates the driver of the spectral changes in X-ray band of HSPs.
- Curvature parameter b decreases as increases, which indicates that statistical/stochastic acceleration processes are at work for the emitting electrons.
- Curvature parameter b and photon index a are also expected to be linearly correlated with respect to each other in the first-order Fermi acceleration. However, in many observations weaker or absent correlation is found between these two parameters, which indicates that stochastic (second-order Fermi acceleration) also exits.
- The spectral shape generally shows a “harder-when-brighter” trend. Additionally, shifts to higher frequencies as flux increases.
Funding
Conflicts of Interest
References
- Ghisellini, G.; Villata, M.; Raiteri, C.M.; Bosio, S.; de Francesco, G.; Latini, G.; Maesano, M.; Massaro, E.; Montagni, F.; Nesci, R.; et al. Optical-IUE observations of the gamma-ray loud BL Lacertae object S5 0716+714: Data and interpretation. Astron. Astrophys. 1997, 327, 61–71. [Google Scholar]
- Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. R. Astron. Soc. 1998, 299, 433–448. [Google Scholar] [CrossRef]
- Krawczynski, H. TeV blazars-observations and models. New Astron. Rev. 2004, 48, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Mücke, A.; Protheroe, R.J.; Engel, R.; Rachen, J.P.; Stanev, T. BL Lac objects in the synchrotron proton blazar model. Astropart. Phys. 2003, 18, 593–613. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M. Modeling the emission processes in blazars. Astrophys. Space Sci. 2007, 309, 95–104. [Google Scholar]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Arkharov, A.A.; Axelsson, M.; Bach, U.; et al. The Spectral Energy Distribution of Fermi Bright Blazars. Astrophys. J. 2010, 716, 30. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, W.; Papadakis, I.E.; Raeth, C.; Mimica, P.; Haberl, F. XMM-Newton timing mode observations of Mrk 421. Astron. Astrophys. 2005, 443, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Treves, A.; Celotti, A.; Qin, Y.P.; Bai, J.M. XMM-Newton View of PKS 2155–304: Characterizing the X-ray Variability Properties with EPIC pn. Astrophys. J. 2005, 629, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H. XMM-Newton Observations of the TeV BL Lacertae Object PKS 2155-304 in 2006: Signature of Inverse Compton X-ray Emission? Astrophys. J. 2008, 682, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Gaur, H.; Gupta, A.C.; Lachowicz, P.; Wiita, P.J. Detection Of Intra-day Variability Timescales of Four High-Energy Peaked Blazars With XMM-Newton. Astrophys. J. 2010, 718, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3–10 keV band. Mon. Not. R. Astron. Soc. 2014, 444, 1077–1094. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B. Swift Observations of Mrk 421 in Selected Epochs. III. Extreme X-ray Timing/Spectral Properties and Multiwavelength Lognormality during 2015 December-2018 April. Astrophys. J. Suppl. Ser. 2020, 247, 27K. [Google Scholar] [CrossRef] [Green Version]
- Gliozzi, M.; Sambruna, R.M.; Jung, I.; Krawczynski, H.; Horan, D.; Tavecchio, F. Long-Term X-ray and TeV Variability of Mrk 501. Astrophys. J. 2006, 646, 61. [Google Scholar] [CrossRef] [Green Version]
- Perlman, E.S.; Madejski, G.; Georganopoulos, M.; Andersson, K.; Daugherty, T.; Krolik, J.H.; Rector, T.; Stocke, J.T.; Koratkar, A.; Wagner, S.; et al. Intrinsic Curvature in the X-ray Spectra of BL Lacertae Objects. Astrophys. J. 2005, 625, 727. [Google Scholar] [CrossRef] [Green Version]
- Massaro, E.; Perri, M.; Giommi, P.; Nesci, R. Log-parabolic spectra and particle acceleration in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray data set. Astron. Astrophys. 2004, 413, 489. [Google Scholar] [CrossRef]
- Landau, R.; Golisch, B.; Jones, T.J.; Jones, T.W.; Pedelty, J.; Rudnick, L.; Sitko, M.L.; Kenney, J.; Roellig, T.; Salonen, E.; et al. Active Extragalactic Sources: Nearly Simultaneous Observations from 20 Centimeters to 1400 Angstrom. Astrophys. J. 1986, 308, 78–92. [Google Scholar] [CrossRef]
- Massaro, F.; Tramacere, A.; Cavaliere, A.; Perri, M.; Giommi, P. X-ray spectral evolution of TeV BL Lacertae objects: Eleven years of observations with BeppoSAX, XMM-Newton and Swift satellites. Astron. Astrophys. 2008, 478, 395. [Google Scholar] [CrossRef] [Green Version]
- Kardashev, N.S. Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission. Sov. Astron. 1962, 6, 317. [Google Scholar]
- Tramacere, A.; Massaro, F.; Cavaliere, A. Signatures of synchrotron emission and of electron acceleration in the X-ray spectra of Mrk 421. Astron. Astrophys. 2007, 466, 521–529. [Google Scholar] [CrossRef]
- Tramacere, A.; Giommi, P.; Massaro, E.; Perri, M.; Nesci, R.; Colafrancesco, S.; Tagliaferri, G.; Chincarini, G.; Falcone, A.; Burrows, D.N.; et al. SWIFT observations of TeV BL Lacertae objects. Astron. Astrophys. 2007, 467, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, S. X-ray Spectral Variations of Synchrotron Peak in BL Lacs. Astrophys. J. 2019, 885, 8W. [Google Scholar] [CrossRef]
- Massaro, E.; Tramacere, A.; Perri, M.; Giommi, P.; Tosti, G. Log-parabolic spectra and particle acceleration in blazars III. SSC emission in the TeV band from Mkn 501. Astron. Astrophys. 2006, 448, 861–871. [Google Scholar] [CrossRef]
- Chen, L. Curvature of the spectral energy distributions of blazars. Astrophys. J. 2014, 788, 179. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, A.; Massaro, E.; Taylor, A.M. stochastic acceleration and the evolution of spectral distributions in synchro-self-compton sources: A self-consistent modeling of blazars’ flares. Astrophys. J. 2011, 739, 66. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Shukla, A.; Misra, R.; Chitnis, V.R.; Rao, A.R.; Acharya, B.S. Underlying particle spectrum of Mkn 421 during the huge X-ray flare in April 2013. Astron. Astrophys. 2015, 580, A100. [Google Scholar] [CrossRef]
- Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Mannheim, K.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Takalo, L.; Kapanadze, S.; et al. The prolonged X-ray flaring activity of Mrk 501 in 2014. Mon. Not. R. Astron. Soc. 2017, 469, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Kapanadze, B.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kharshiladze, O.; Kapanadze, S.; Tabagari, L. Swift Observations of Mrk 421 in Selected Epochs. I. The Spectral and Flux Variability in 2005–2008. Astrophys. J. 2018, 854, 66. [Google Scholar] [CrossRef]
- Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Aller, H.; Aller, M.; Hughes, P.; Reynolds, M.; Kapanadze, S.; Tabagari, L. X-ray Flaring Activity of Mrk 421 In The First Half Of 2013. Astrophys. J. 2016, 831, 102. [Google Scholar] [CrossRef]
- Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Kapanadze, S.; Tabagari, L. Mrk 421 after the Giant X-ray Outburst in 2013. Astrophys. J. 2017, 848, 103. [Google Scholar] [CrossRef]
- Katarzyński, K.; Ghisellini, G.; Mastichiadis, A.; Tavecchio, F.; Maraschi, L. Stochastic particle acceleration and synchrotron self-Compton radiation in TeV blazars. Astron. Astrophys. 2006, 453, 47. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Gupta, A.C.; Wiita, P.J. X-ray Intraday Variability of Five TeV Blazars with NuSTAR. Astrophys. J. 2017, 841, 123. [Google Scholar] [CrossRef] [Green Version]
- Paliya, V.S.; Böttcher, M.; Diltz, C.; Stalin, C.S.; Sahayanathan, S.; Ravikumar, C.D. The Violent Hard X-ray Variability of Mrk 421 Observed by NuSTAR in 2013 April. Astrophys. J. 2015, 811, 143. [Google Scholar] [CrossRef] [Green Version]
- Baloković, M.; Paneque, D.; Madejski, G.; Furniss, A.; Chiang, J.; Ajello, M.; Alexander, D.M.; Barret, D.; Blandford, R.D.; Boggs, S.E.; et al. Multiwavelength Study of Quiescent States of Mrk 421 With Unprecedented Hard X-ray Coverage Provided By NuSTAR in 2013. Astrophys. J. 2016, 819, 156. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, H. X-ray Spectral Evolution of High Energy Peaked Blazars. Galaxies 2020, 8, 62. https://doi.org/10.3390/galaxies8030062
Gaur H. X-ray Spectral Evolution of High Energy Peaked Blazars. Galaxies. 2020; 8(3):62. https://doi.org/10.3390/galaxies8030062
Chicago/Turabian StyleGaur, Haritma. 2020. "X-ray Spectral Evolution of High Energy Peaked Blazars" Galaxies 8, no. 3: 62. https://doi.org/10.3390/galaxies8030062
APA StyleGaur, H. (2020). X-ray Spectral Evolution of High Energy Peaked Blazars. Galaxies, 8(3), 62. https://doi.org/10.3390/galaxies8030062