From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300
Abstract
:1. Initial Discovery
Understanding the SN 2010da System Prior to Outburst
2. SN 2010da as a High Mass X-Ray Binary
3. The Ultraluminous X-Ray Source
3.1. Period Evolution
3.2. The X-Ray Spectrum
3.3. Beaming
4. Subsequent Monitoring and X-Ray Decline
5. The Circumstellar Environment and Donor Star
6. Open Questions
- What triggered the 2010 outburst? Was this event related to a common envelope phase. tidal interactions between the accretor and donor or a change in radius of the RSG donor?
- What was the mass loss history of the donor star? At what rate is dust currently reforming in the binary?
- What is the origin of the complex optical emission line profiles, and what can the optical spectra tell us about the orbital parameters of the binary or the geometry of the immediate circumstellar environment?
- Can future outbursts or ULX behavior be predicted? Are the apparent changes in X-ray flux due to Lense-Thirring precession, changes in the ultrafast outflow of the system (e.g., clumpy winds) or an intrinsic change in X-ray luminosity?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monard, L.A.G. Supernova 2010da in NGC 300. Cent. Bur. Electron. Telegr. 2010, 2289, 1. [Google Scholar]
- Dalcanton, J.J.; Williams, B.F.; Seth, A.C.; Dolphin, A.; Holtzman, J.; Rosema, K.; Skillman, E.D.; Cole, A.; Girardi, L.; Gogarten, S.M.; et al. The ACS Nearby Galaxy Survey Treasury. Astrophys. J. 2009, 183, 67–108. [Google Scholar] [CrossRef]
- Khan, R.; Stanek, K.Z.; Kochanek, C.S.; Thompson, T.A.; Prieto, J.L. Mid-IR Progenitor of SN 2010da in NGC 300; The Astronomer’s Telegram, 2010; Volume 2632, Available online: http://www.astronomerstelegram.org/?read=2632 (accessed on 18 February 2020).
- Chornock, R.; Berger, E. Spectroscopy of SN 2010da in NGC 300; The Astronomer’s Telegram, 2010; Volume 2637, Available online: http://www.astronomerstelegram.org/?read=2637 (accessed on 18 February 2020).
- Elias-Rosa, N.; Mauerhan, J.C.; van Dyk, S.D. SN 2010da is a SN “impostor”; The Astronomer’s Telegram, 2010; Volume 2636, Available online: http://www.astronomerstelegram.org/?read=2636 (accessed on 18 February 2020).
- Bond, H.E. Optical Photometry of the New Optical Transient SN 2010da in NGC 300; The Astronomer’s Telegram, 2010; Volume 2640, Available online: http://www.astronomerstelegram.org/?read=2640 (accessed on 18 February 2020).
- Prieto, J.L.; Bond, H.E.; Kochanek, C.S.; Khan, R.; Stanek, K.Z.; Thompson, T.A. Optical and Near-IR Follow-up of SN 2010da: Evidence for Warm Dust; The Astronomer’s Telegram, 2010; Volume 2660, Available online: http://www.astronomerstelegram.org/?read=2660 (accessed on 18 February 2020).
- Gal-Yam, A.; Mazzali, P.A.; Manulis, I.; Bishop, D. Supernova Discoveries 2010-2011: Statistics and Trends. Publi. Astrono. Soc. Pac. 2013, 125, 749. [Google Scholar] [CrossRef] [Green Version]
- Lau, R.M.; Kasliwal, M.M.; Bond, H.E.; Smith, N.; Fox, O.D.; Carlon, R.; Cody, A.M.; Contreras, C.; Dykhoff, D.; Gehrz, R.; et al. Rising from the Ashes: Mid-infrared Re-brightening of the Impostor SN 2010da in NGC 300. Astrophys. J. 2016, 830, 142. [Google Scholar] [CrossRef] [Green Version]
- Van Dyk, S.D.; Peng, C.Y.; King, J.Y.; Filippenko, A.V.; Treffers, R.R.; Li, W.; Richmond, M.W. SN 1997bs in M66: Another Extragalactic η Carinae Analog? Publ. Astron. Soc. Pac. 2000, 112, 1532–1541. [Google Scholar] [CrossRef]
- Immler, S.; Brown, P.; Russell, B.R. Swift XRT Detection of Supernova 2010da in X-Rays; The Astronomer’s Telegram, 2010; Volume 2639, Available online: http://www.astronomerstelegram.org/?read=2639 (accessed on 18 February 2020).
- Smith, N.; Li, W.; Silverman, J.M.; Ganeshalingam, M.; Filippenko, A.V. Luminous blue variable eruptions and related transients: Diversity of progenitors and outburst properties. Mon. Not. R. Astron. Soc. 2011, 415, 773–810. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.A.; Chu, Y.H. An X-Ray Survey of Wolf-Rayet Stars in the Magellanic Clouds. I. The Chandra ACIS Data Set. Astrophys. J. 2008, 177, 216–237. [Google Scholar] [CrossRef] [Green Version]
- Nazé, Y.; Rauw, G.; Hutsemékers, D. The first X-ray survey of Galactic luminous blue variables. Astron. Astrophys. 2012, 538, A47. [Google Scholar] [CrossRef] [Green Version]
- Laskar, T.; Berger, E.; Chornock, R. Significant Brightening of the Progenitor of SN2010da at 3.6 Micron 6 Months Prior to the Eruption; The Astronomer’s Telegram, 2010; Volume 2648, Available online: http://www.astronomerstelegram.org/?read=2648 (accessed on 18 February 2020).
- Massey, P.; McNeill, R.T.; Olsen, K.A.G.; Hodge, P.W.; Blaha, C.; Jacoby, G.H.; Smith, R.C.; Strong, S.B. A Survey of Local Group Galaxies Currently Forming Stars. III. A Search for Luminous Blue Variables and Other Hα Emission-Line Stars. Astron. J. 2007, 134, 2474–2503. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Stanek, K.Z.; Prieto, J.L.; Kochanek, C.S.; Thompson, T.A.; Beacom, J.F. Census of Self-obscured Massive Stars in Nearby Galaxies with Spitzer: Implications for Understanding the Progenitors of SN 2008S-like Transients. Astrophys. J. 2010, 715, 1094–1108. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.A.; Prieto, J.L.; Stanek, K.Z.; Kistler, M.D.; Beacom, J.F.; Kochanek, C.S. A New Class of Luminous Transients and a First Census of their Massive Stellar Progenitors. Astrophys. J. 2009, 705, 1364–1384. [Google Scholar] [CrossRef]
- Berger, E.; Chornock, R. Deep Optical Limits for the Progenitor of SN2010da and Its Broad-Band SED; The Astronomer’s Telegram, 2010; Volume 2638, Available online: http://www.astronomerstelegram.org/?read=2638 (accessed on 18 February 2020).
- Berger, E.; Soderberg, A.M.; Chevalier, R.A.; Fransson, C.; Foley, R.J.; Leonard, D.C.; Debes, J.H.; Diamond-Stanic, A.M.; Dupree, A.K.; Ivans, I.I.; et al. An Intermediate Luminosity Transient in NGC 300: The Eruption of a Dust-Enshrouded Massive Star. Astrophys. J. 2009, 699, 1850–1865. [Google Scholar] [CrossRef]
- Bond, H.E.; Bedin, L.R.; Bonanos, A.Z.; Humphreys, R.M.; Monard, L.A.G.B.; Prieto, J.L.; Walter, F.M. The 2008 Luminous Optical Transient in the Nearby Galaxy NGC 300. Astrophys. J. 2009, 695, L154–L158. [Google Scholar] [CrossRef] [Green Version]
- Binder, B.; Williams, B.F.; Kong, A.K.H.; Gaetz, T.J.; Plucinsky, P.P.; Dalcanton, J.J.; Weisz, D.R. Chandra Detection of SN 2010da Four Months After Outburst: Evidence for a High-mass X-Ray Binary in NGC 300. Astrophys. J. 2011, 739, L51. [Google Scholar] [CrossRef] [Green Version]
- Binder, B.; Williams, B.F.; Kong, A.K.H.; Gaetz, T.J.; Plucinsky, P.P.; Skillman, E.D.; Dolphin, A. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300. Mon. Not. R. Astron. Soc. 2016, 457, 1636–1643. [Google Scholar] [CrossRef] [Green Version]
- Ivezic, Z.; Elitzur, M. Self-similarity and scaling behaviour of infrared emission from radiatively heated dust-I. Theory. Mon. Not. R. Astron. Soc. 1997, 287, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, C.S. The Astrophysical Implications of Dust Formation during the Eruptions of Hot, Massive Stars. Astrophys. J. 2011, 743, 73. [Google Scholar] [CrossRef] [Green Version]
- Villar, V.A.; Berger, E.; Chornock, R.; Margutti, R.; Laskar, T.; Brown, P.J.; Blanchard, P.K.; Czekala, I.; Lunnan, R.; Reynolds, M.T. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption, and Aftermath of a Peculiar Supergiant High-mass X-Ray Binary. Astrophys. J. 2016, 830, 11. [Google Scholar] [CrossRef] [Green Version]
- Linden, T.; Kalogera, V.; Sepinsky, J.F.; Prestwich, A.; Zezas, A.; Gallagher, J.S. The Effect of Starburst Metallicity on Bright X-ray Binary Formation Pathways. Astrophys. J. 2010, 725, 1984–1994. [Google Scholar] [CrossRef] [Green Version]
- Carpano, S.; Haberl, F.; Maitra, C.; Vasilopoulos, G. Discovery of pulsations from NGC 300 ULX1 and its fast period evolution. Mon. Not. R. Astron. Soc. 2018, 476, L45–L49. [Google Scholar] [CrossRef] [Green Version]
- Kaaret, P.; Feng, H.; Roberts, T.P. Ultraluminous X-Ray Sources. Annu. Rev. 2017, 55, 303–341. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Poutanen, J.; Lipunova, G.; Fabrika, S.; Butkevich, A.G.; Abolmasov, P. Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2007, 377, 1187–1194. [Google Scholar] [CrossRef]
- Narayan, R.; Sa̧dowski, A.; Soria, R. Spectra of black hole accretion models of ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2017, 469, 2997–3014. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulos, G.; Petropoulou, M.; Koliopanos, F.; Ray, P.S.; Bailyn, C.D.; Haberl, F.; Gendreau, K. NGC 300 ULX1: Spin evolution, super-Eddington accretion and outflows. arXiv 2019, arXiv:1905.03740. [Google Scholar] [CrossRef]
- Christodoulou, D.M.; Laycock, S.G.T.; Kazanas, D. Not an oxymoron: Some X-ray binary pulsars with enormous spin-up rates reveal weak magnetic fields. Mon. Not. R. Astron. Soc. 2018, 478, 3506–3512. [Google Scholar] [CrossRef] [Green Version]
- Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Ingram, A. Optically thick envelopes around ULXs powered by accreating neutron stars. Mon. Not. R. Astron. Soc. 2017, 467, 1202–1208. [Google Scholar] [CrossRef]
- Walton, D.J.; Fürst, F.; Heida, M.; Harrison, F.A.; Barret, D.; Stern, D.; Bachetti, M.; Brightman, M.; Fabian, A.C.; Middleton, M.J. Evidence for Pulsar-like Emission Components in the Broadband ULX Sample. Astrophys. J. 2018, 856, 128. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulos, G.; Haberl, F.; Carpano, S.; Maitra, C. NGC 300 ULX1: A test case for accretion torque theory. Astron. Astrophys. 2018, 620, L12. [Google Scholar] [CrossRef]
- Ray, P.S.; Guillot, S.; Ho, W.C.G.; Kerr, M.; Enoto, T.; Gendreau, K.C.; Arzoumanian, Z.; Altamirano, D.; Bogdanov, S.; Campion, R.; et al. Anti-glitches in the Ultraluminous Accreting Pulsar NGC 300 ULX-1 Observed with NICER. Astrophys. J. 2019, 879, 130. [Google Scholar] [CrossRef] [Green Version]
- Becker, P.A.; Wolff, M.T. Thermal and Bulk Comptonization in Accretion-powered X-Ray Pulsars. Astrophys. J. 2007, 654, 435–457. [Google Scholar] [CrossRef]
- Kosec, P.; Pinto, C.; Walton, D.J.; Fabian, A.C.; Bachetti, M.; Brightman, M.; Fürst, F.; Grefenstette, B.W. Evidence for a variable Ultrafast Outflow in the newly discovered Ultraluminous Pulsar NGC 300 ULX-1. Mon. Not. R. Astron. Soc. 2018, 479, 3978–3986. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Ingram, A.; Middleton, M.; Nagirner, D.I.; van der Klis, M. Timing properties of ULX pulsars: Optically thick envelopes and outflows. Mon. Not. R. Astron. Soc. 2019, 484, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Walton, D.J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A.C.; Grefenstette, B.W.; Harrison, F.A.; Heida, M.; Kennea, J.; et al. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton. Astrophys. J. 2018, 857, L3. [Google Scholar] [CrossRef] [Green Version]
- Koliopanos, F.; Vasilopoulos, G.; Buchner, J.; Maitra, C.; Haberl, F. Investigating ULX accretion flows and cyclotron resonance in NGC 300 ULX1. Astron. Astrophys. 2019, 621, A118. [Google Scholar] [CrossRef]
- Steiner, J.F.; Narayan, R.; McClintock, J.E.; Ebisawa, K. A Simple Comptonization Model. Publ. Astron. Soc. Pac. 2009, 121, 1279. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Wilms, J. X-ray pulsars: A review. Mem. Soc. Astron. Ital. 2012, 83, 230. [Google Scholar]
- Binder, B.; Levesque, E.M.; Dorn-Wallenstein, T. No Strong Geometric Beaming in the Ultraluminous Neutron Star Binary NGC 300 ULX-1 (SN 2010da) from Swift and Gemini. Astrophys. J. 2018, 863, 141. [Google Scholar] [CrossRef] [Green Version]
- King, A.; Lasota, J.P. No magnetars in ULXs. Mon. Not. R. Astron. Soc. 2019, 485, 3588–3594. [Google Scholar] [CrossRef]
- King, A.R. Masses, beaming and Eddington ratios in ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2009, 393, L41–L44. [Google Scholar] [CrossRef] [Green Version]
- Kaaret, P.; Ward, M.J.; Zezas, A. High-resolution imaging of the HeII λ4686 emission line nebula associated with the ultraluminous X-ray source in Holmberg II. Mon. Not. R. Astron. Soc. 2004, 351, L83–L88. [Google Scholar] [CrossRef] [Green Version]
- Maitra, C.; Carpano, S.; Haberl, F.; Vasilopoulos, G. NGC 300 ULX1: A new ULX pulsar in NGC 300. arXiv 2018, arXiv:1811.04807,. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Petterson, J.A. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. Astrophys. J. 1975, 195, L65. [Google Scholar] [CrossRef]
- Truemper, J.; Kahabka, P.; Oegelman, H.; Pietsch, W.; Voges, W. EXOSAT Observations of the 35 Day Cycle of Hercules X-1: Evidence for Neutron Star Precession. Astrophys. J. 1986, 300, L63. [Google Scholar] [CrossRef]
- Lau, R.M.; Heida, M.; Walton, D.J.; Kasliwal, M.M.; Adams, S.M.; Cody, A.M.; De, K.; Gehrz, R.D.; Fürst, F.; Jencson, J.E.; et al. Uncovering Red and Dusty Ultraluminous X-Ray Sources with Spitzer. Astrophys. J. 2019, 878, 71. [Google Scholar] [CrossRef] [Green Version]
- Kasliwal, M.M.; Bally, J.; Masci, F.; Cody, A.M.; Bond, H.E.; Jencson, J.E.; Tinyanont, S.; Cao, Y.; Contreras, C.; Dykhoff, D.A.; et al. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer. Astrophys. J. 2017, 839, 88. [Google Scholar] [CrossRef] [Green Version]
- Bonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J.; Meixner, M.; Babler, B.L.; Bracker, S.; Meade, M.R.; et al. Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud. Astron. J. 2009, 138, 1003–1021. [Google Scholar] [CrossRef] [Green Version]
- Lamers, H.J.G.L.M.; Zickgraf, F.J.; de Winter, D.; Houziaux, L.; Zorec, J. An improved classification of B[e]-type stars. Astron. Astrophys. 1998, 340, 117–128. [Google Scholar]
- Heida, M.; Lau, R.M.; Davies, B.; Brightman, M.; Fürst, F.; Grefenstette, B.W.; Kennea, J.A.; Tramper, F.; Walton, D.J.; Harrison, F.A. Discovery of a Red Supergiant Donor Star in SN2010da/NGC 300 ULX-1. Astron. J. Lett. 2019, 883, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Neutron star high-mass binaries as the origin of SGR/AXP. Astronomische Nachrichten 2016, 337, 254. [Google Scholar] [CrossRef]
- Tao, L.; Feng, H.; Grisé, F.; Kaaret, P. Compact Optical Counterparts of Ultraluminous X-Ray Sources. Astrophys. J. 2011, 737, 81. [Google Scholar] [CrossRef] [Green Version]
- Levesque, E.M. Astrophysics of Red Supergiants; Iop Publishing Ltd: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- El Mellah, I.; Sundqvist, J.O.; Keppens, R. Wind Roche lobe overflow in high-mass X-ray binaries. A possible mass-transfer mechanism for ultraluminous X-ray sources. Astron. Astrophys. 2019, 622, L3. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, B.A.; Carpano, S.; Heida, M.; Lau, R. From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300. Galaxies 2020, 8, 17. https://doi.org/10.3390/galaxies8010017
Binder BA, Carpano S, Heida M, Lau R. From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300. Galaxies. 2020; 8(1):17. https://doi.org/10.3390/galaxies8010017
Chicago/Turabian StyleBinder, Breanna A., Stefania Carpano, Marianne Heida, and Ryan Lau. 2020. "From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300" Galaxies 8, no. 1: 17. https://doi.org/10.3390/galaxies8010017
APA StyleBinder, B. A., Carpano, S., Heida, M., & Lau, R. (2020). From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300. Galaxies, 8(1), 17. https://doi.org/10.3390/galaxies8010017