Next Article in Journal
ASASSN-13db 2014–2017 Eruption as an Intermediate Luminosity Optical Transient
Previous Article in Journal
High Energy Radiation from Spider Pulsars
Previous Article in Special Issue
Blazar Optical Polarimetry: Current Progress in Observations and Theories
Open AccessReview

Relativistic Jets from AGN Viewed at Highest Angular Resolution

Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-12 Hoshigaoka, Mizusawa, Oshu, Iwate 023-0861, Japan
Galaxies 2020, 8(1), 1; https://doi.org/10.3390/galaxies8010001
Received: 31 October 2019 / Revised: 30 November 2019 / Accepted: 2 December 2019 / Published: 18 December 2019
(This article belongs to the Special Issue Jet Physics of Accreting Super Massive Black Holes)
Accreting supermassive black holes in active galactic nuclei (AGN) produce powerful relativistic jets that shine from radio to GeV/TeV γ-rays. Over the past decade, AGN jets have extensively been studied in various energy bands and our knowledge about the broadband emission and rapid flares are now significantly updated. Meanwhile, the progress of magnetohydrodynamic simulations with a rotating black hole have greatly improved our theoretical understanding of powerful jet production. Nevertheless, it is still challenging to observationally resolve such flaring sites or jet formation regions since the relevant spatial scales are tiny. Observations with very long baseline interferometry (VLBI) are currently the only way to directly access such compact scales. Here we overview some recent progress of VLBI studies of AGN jets. As represented by the successful black hole shadow imaging with the Event Horizon Telescope, the recent rapid expansion of VLBI capability is remarkable. The last decade has also seen a variety of advances thanks to the advent of RadioAstron, GMVA, new VLBI facilities in East Asia as well as to the continued upgrade of VLBA. These instruments have resolved the innermost regions of relativistic jets for a number of objects covering a variety of jetted AGN classes (radio galaxies, blazars, and narrow-line Seyfert 1 galaxies), and the accumulated results start to establish some concrete (and likely universal) picture on the collimation, acceleration, recollimation shocks, magnetic field topology, and the connection to high-energy flares in the innermost part of AGN jets. View Full-Text
Keywords: active galaxies; supermassive black holes; relativistic jets; high-resolution radio observations active galaxies; supermassive black holes; relativistic jets; high-resolution radio observations
Show Figures

Figure 1

MDPI and ACS Style

Hada, K. Relativistic Jets from AGN Viewed at Highest Angular Resolution. Galaxies 2020, 8, 1.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop