Features of Structure and Absorption in the Jet-Launching Region of M87
Abstract
:1. Introduction
2. Observations and Data Reduction
3. Results
3.1. Transverse Jet Structure
3.2. Spectral-Index Distribution
4. Discussion
4.1. Jet Recollimation with Absorption
4.2. Jet Interruption with Absorption
4.3. Temporal Features and Short-Lived Instability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harris, D.E.; Cheung, C.C.; Stawarz, L.; Biretta, J.A.; Perlman, E.S. Variability Timescales in the M87 Jet: Signatures of E 2 Losses, Discovery of a Quasi Period in HST-1, and the Site of TeV Flaring. Astrophys. J. 2009, 699, 305. [Google Scholar] [CrossRef]
- Harms, R.J.; Ford, H.C.; Tsvetanov, Z.I.; Hartig, G.F.; Dressel, L.L.; Kriss, G.A.; Bohlin, R.; Davidsen, A.F.; Margon, B.; Kochhar, A.K. HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole. Astrophys. J. 1994, 435, 35–38. [Google Scholar] [CrossRef]
- Gebhardt, K.; Adams, J.; Richstone, D.; Lauer, T.R.; Faber, S.M.; Gultekin, K.; Murphy, J.; Tremaine, S. The Black Hole Mass in M87 from Gemini/NIFS Adaptive Optics Observations. Astrophys. J. 2011, 729, 119. [Google Scholar] [CrossRef]
- Oldham, L.J.; Auger, M.W. Galaxy structure from multiple tracers—II. M87 from parsec to megaparsec scales. Mon. Not. R. Astron. Soc. 2016, 457, 421. [Google Scholar] [CrossRef]
- Hada, K.; Doi, A.; Kino, M.; Nagai, H.; Hagiwara, Y.; Kawaguchi, N. An origin of the radio jet in M87 at the location of the central black hole. Nature 2011, 477, 185. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, 1. [Google Scholar] [CrossRef]
- Hada, K.; Park, J.H.; Kino, M.; Niinuma, K.; Sohn, B.W.; Ro, H.W.; Jung, T.; Algaba, J.-C.; Zhao, G.-Y.; Lee, S.-S.; et al. Pilot KaVA monitoring on the M 87 jet: Confirming the inner jet structure and superluminal motions at sub-pc scales. Publ. Astron. Soc. Jpn. 2017, 69, 7. [Google Scholar] [CrossRef]
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. Astrophys. J. 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Krichbaum, T.P.; Lu, R.S.; Ros, E.; Bach, U.; Bremer, M.; de Vicente, P.; Lindqvist, M.; Zensus, J.A. The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale. Astron. Astrophys. 2018, 616, 188. [Google Scholar] [CrossRef]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Akiyama, K.; Tazaki, F.; Lico, R.; Giroletti, M.; Giovannini, G.; et al. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. Astrophys. J. 2016, 817, 131. [Google Scholar] [CrossRef]
- Asada, K.; Nakamura, M. The Structure of the M87 Jet: A Transition from Parabolic to Conical Streamlines. Astrophys. J. Lett. 2012, 745, 28. [Google Scholar] [CrossRef]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Hagiwara, Y.; Giroletti, M.; Giovannini, G.; Kawaguchi, N. The Innermost Collimation Structure of the M87 Jet Down to 10 Schwarzschild Radii. Astrophys. J. 2013, 775, 70. [Google Scholar] [CrossRef]
- Lee, S.S.; Lobanov, A.P.; Krichbaum, T.P. A Global 86 GHz VLBI Survey of Compact Radio Sources. Astron. J. 2008, 136, 159. [Google Scholar] [CrossRef]
- Güijosa, A.; Daly, R. Equipartition Doppler Factors for a Sample of Active Galactic Nuclei. Astrophys. J. 1996, 461, 600. [Google Scholar] [CrossRef]
- Croke, S.M.; Gabuzda, D.C. Aligning VLBI images of active galactic nuclei at different frequencies. Mon. Not. R. Astron. Soc. 2008, 386, 619. [Google Scholar] [CrossRef]
- Frey, S.; Paragi, Z.; Fogasy, J.O.; Gurvits, L.I. The first estimate of radio jet proper motion at z > 5. Mon. Not. R. Astron. Soc. 2015, 446, 292. [Google Scholar] [CrossRef]
- Molina, S.; Agudo, I.; Gómez, J.L.; Krichbaum, T.P.; Martí-Vidal, I.; Roy, A.L. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150. Galaxy 2016, 4, 70. [Google Scholar] [CrossRef]
- Plavin, A.V.; Kovalev, Y.Y.; Pushkarev, A.B.; Lobanov, A.P. Significant core shift variability in parsec-scale jets of active galactic nuclei. Mon. Not. R. Astron. Soc. 2019, 485, 1822. [Google Scholar] [CrossRef]
- Park, J.; Hada, K.; Kino, M.; Nakamura, M.; Ro, H.; Trippe, S. Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet. Astrophys. J. 2019, 871, 257. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Trippe, S. VIMAP: An Interactive Program Providing Radio Spectral Index Maps of Active Galactic Nuclei. J. Korean Astron. Soc. 2014, 47, 195. [Google Scholar] [CrossRef]
- Gómez, J.L.; Martí, J.M.; Marscher, A.P.; Ibóñez, J.M.; Alberdi, A. Hydrodynamical Models of Superluminal Sources. Astrophys. J. Lett. 1997, 482, L33. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Falle, S.A.E.G. Simulations of Superluminal Radio Sources. Mon. Not. R. Astron. Soc. 1997, 288, 833. [Google Scholar] [CrossRef]
- Agudo, I.; Gómez, J.L.; Martí, J.M.; Ibóñez, J.M.; Marscher, A.P.; Alberdi, A.; Aloy, M.A.; Hardee, P.E. Jet Stability and the Generation of Superluminal and Stationary Components. Astrophys. J. 2001, 549, 183. [Google Scholar] [CrossRef]
- Matsumoto, J.; Masada, Y.; Shibata, K. Effect of Interacting Rarefaction Waves on Relativistically Hot Jets. Astrophys. J. 2012, 751, 140. [Google Scholar] [CrossRef]
- Mizuno, Y.; Lyubarsky, Y.; Nishikavwa, K.-I.; Hardee, P. Three-dimensional Relativistic Magnetohydrodynamic Simulations of Current-driven Instability. III. Rotating Relativistic Jets. Astrophys. J. 2012, 757, 16. [Google Scholar] [CrossRef]
- Mizuno, Y.; Gómez, J.L.; Nishikawa, K.-I.; Meli, A.; Hardee, P.E.; Rezzolla, L. Recollimation Shocks in Magnetized Relativistic Jets. Astrophys. J. 2015, 809, 38. [Google Scholar] [CrossRef]
- Martí, J.M.; Perucho, M.; Gómez, J.L. The Internal Structure of overpressured, Magnetized, Relativistic Jets. Astrophys. J. 2016, 831, 163. [Google Scholar] [CrossRef]
- Fuentes, A.; Gómez, J.L.; Martí, J.M.; Perucho, M. Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets. Astrophys. J. 2018, 860, 121. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529. [Google Scholar] [CrossRef]
- Marscher, A.P. Accurate formula for the self-Compton X-ray flux density from a uniform, spherical, compact radio source. Astrophys. J. 1983, 264, 296. [Google Scholar] [CrossRef]
- Ly, C.; Walker, R.C.; Junor, W. High-Frequency VLBI Imaging of the Jet Base of M87. Astrophys. J. 2007, 660, 200. [Google Scholar] [CrossRef]
- Singh, C.B.; Mizuno, Y.; de Gouveia dal Pino, E.M. Spatial Growth of Current-driven Instability in Relativistic Rotating Jets and the Search for Magnetic Reconnection. Astrophys. J. 2016, 824, 48. [Google Scholar] [CrossRef]
- Bromberg, O.; Tchekhovskoy, A. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation. Mon. Not. R. Astron. Soc. 2016, 456, 1739. [Google Scholar] [CrossRef]
- Striani, E.; Mignone, A.; Vaidya, B.; Bodo, G.; Ferrari, A. MHD simulations of three-dimensional resistive reconnection in a cylindrical plasma column. Mon. Not. R. Astron. Soc. 2016, 462, 2970. [Google Scholar] [CrossRef]
- Britzen, S.; Fendt, C.; Eckart, A.; Karas, V. A new view on the M 87 jet origin: Turbulent loading leading to large-scale episodic wiggling. Astron. Astrophys. 2017, 601A, 52B. [Google Scholar] [CrossRef]
Date | Frequency | Telescopes | On-Source Time | Beam Size | ||
---|---|---|---|---|---|---|
(GHz) | (Min) | (mas × mas, deg) | (mJy beam) | (mJy beam) | ||
28 March 2015 | 22.72 | VLBA | 124 | 0.93 × 0.45, 12.6 | 1054 | 0.360 |
43.12 | VLBA | 124 | 0.56 × 0.23, 16.7 | 726 | 0.224 | |
3 April 2015 | 86.28 | VLBA | 289 | 0.24 × 0.12, −17.7 | 501.4 | 0.217 |
Frequency | Flux Density | Radius | Theta | Major Axis | Axial Ratio e | Phi | Brightness Temperature |
---|---|---|---|---|---|---|---|
(GHz) | (mJy) | (deg) | (deg) | ||||
22 | 1605 ± 195 | 19.9 ± 2.1 | −80.8 ± 6.1 | 479.2 ± 1.1 | 0.84 | 43.4 | 3.1 |
43 | 1016 ± 122 | 3.6 ± 0.4 | −142.8 ± 5.8 | 261.2 ± 0.2 | 0.62 | 20.2 | 2.3 |
86 | 580 ± 58 | 3.6 ± 0.3 | −44.7 ± 4.4 | 73.0 ± 0.2 | 0.52 | 31.8 | 5.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Hong, X.; An, T.; Li, X.; Cheng, X.; Wu, F. Features of Structure and Absorption in the Jet-Launching Region of M87. Galaxies 2019, 7, 86. https://doi.org/10.3390/galaxies7040086
Zhao W, Hong X, An T, Li X, Cheng X, Wu F. Features of Structure and Absorption in the Jet-Launching Region of M87. Galaxies. 2019; 7(4):86. https://doi.org/10.3390/galaxies7040086
Chicago/Turabian StyleZhao, Wei, Xiaoyu Hong, Tao An, Xiaofeng Li, Xiaopeng Cheng, and Fang Wu. 2019. "Features of Structure and Absorption in the Jet-Launching Region of M87" Galaxies 7, no. 4: 86. https://doi.org/10.3390/galaxies7040086
APA StyleZhao, W., Hong, X., An, T., Li, X., Cheng, X., & Wu, F. (2019). Features of Structure and Absorption in the Jet-Launching Region of M87. Galaxies, 7(4), 86. https://doi.org/10.3390/galaxies7040086