Biosignatures Search in Habitable Planets
Abstract
:1. Introduction
2. Atmospheric Biosignatures
2.1. Metabolic Biosignatures
2.2. Organic Matter Building By–Products
2.3. Secondary Metabolic Biosignatures
3. Bioindicators
4. Surface and Industrial Biosignatures
5. False Posivitves
6. Where to Find a Habitable World?
7. The Long Way to Exoplanet Atmospheres Characterization
8. Perspectives
- PLATO:
- PLAnetary Transit and Oscillations of stars (PLATO, launch expected in 2026) is a ESA transit survey mission devoted to the detection and prime planet parameters characterization for new planets orbiting bright stars [187,188]. The photometric perfomances that PLATO will achieve are light curves that are precise enough to detect and determine the radius of an Earth-sized planet around a G0V star of m = 10 mag with an accuracy of 3%. On the other hand, it will be able to asteroseismologically measure the age and the radius of the same star with an accuracy of 10% and 1–2%, respectively. The payload concept is a bus containing 26 cameras with a pupil size of 120 mm covering a field of view of 1037 square degrees each. 24 cameras out of 26 are CCD based camera with a reading cadence of 25 s. These cameras are devoted to observe stars fainter than m = 8 and are arranged in four groups of six cameras each. Each group has the same field of view but is offset by a 9.2 degree angle from the payload module Z axis, allowing for a total field of view of about 2232 square degrees per pointing. This arrangement results in different sensitivities over the field, with four parts monitored by 24, 18, 12, and 6 cameras. The two remaining cameras have a faster cadence (2.5 s) for star with visual magnitude m, acting also as fine guidance of the satellite.
- JWST:
- NASA’s and ESA’s James Webb Space Telescope (JWST; launch expected in 2021) will enjoy an unprecedented thermal infrared sensitivity and provide powerful capabilities for direct imaging, including coronagraphy (see Figure 4) [189]. It will mount four instruments: a short-wavelength imager NIRCam, NIRISS, a complementary imager that utilise sparse Aperture mask (SAM) in the wavelength range between 1–2.3 m, MIRI, the spectrograph in the 5–28 m wavelength range, and finally NIRSPEC (1–5 m) will be equipped with an integral field spectrograph. Its four instruments will, in addition to direct imaging of planets, attempt transit observations at low–to medium–resolution (100 < R < 1500) in the near- and mid-infrared domain for atmospheric characterisation. The synergy between the discovery possibilities of TESS and the capability of JWST will allow to characterize several super Earths among with some in the HZ and life detection is a possibility if life turns out to be ubiquitous on exoplanets [33].
- ARIEL:
- Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL, launch foreseen in 2028), an ESA mission that will conduct a large, unbiased survey of exoplanets in order to begin to explore the nature of exoplanet atmospheres and interiors and, through this, the key factors affecting the formation and evolution of planetary systems [190,191]. ARIEL, that will be fully dedicated to this aim, will carry a single, passively-cooled, highly capable and stable spectrometer covering 1.95–7.80 m with a resolving power of about 200 mounted on a single optical bench with the telescope and a Fine Guidance Sensor (FGS) that provides closed-loop feedback to the high stability pointing of the spacecraft. ARIEL will observe a large number (∼500) of warm and hot transiting gas giants, Neptunes and super–Earths around a range of host star types using transit spectroscopy in the ∼2–8 m spectral range and broad-band photometry in the optical. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C/O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation in the protoplanetary disk and the history of their evolution.
- FINESSE:
- Fast Infrared Exoplanet Spectroscopy Survey Explore (FINESSE, launch expected in 2021) is a NASA mission purpose-built for characterizing exoplanet atmospheres [192]. The mission concept is very similar to the ARIEL one, the payload will be constituted by a small aperture Cassegrain telescope (0.75 m), that feeds a spectrometer with a wavelength range between 0.5–5 m with a resolution of [email protected] m and [email protected] m. The mission is designed to survey about 500 planets with the main scientific goal of determining the key aspect of the planet formation process studying the exoplanet atmospheres in order to measure their metallicity and the value of the C/O ratio. Furthermore, the mission will be able to have information on the main factor that estabilish planetary climates 4.
- LUVOIR:
- Large UltraViolet Optical and InfraRed surveyor (LUVOIR, launch foreseen 2035) is a project of mission at study by NASA. The baseline design of LUVOIR is a large segmented aperture space telescope (9 m) that will mount coronagraphs in order to suppress the star light. It will carry on board three instruments not optimized for exoplanet science but devoted to general astrophysics. An ultra-high contrast coronagraph with an imaging camera and integral field spectrograph spanning 0.20–2.00 m (ECLIPS), a near-UV to near-IR imager covering 0.20–2.50 m (HDI); a far-UV imager and far-UV + near-UV multi-resolution, multi-object spectrograph covering 0.10 m–0.40 m (LUMOS). Among these, only ECLIPS will be used to directly observe exoplanets and obtain spectra of their atmospheres [193].
- HabEx:
- Habitable Exoplanet Imaging Mission (HabEx, launch foreseen 2035) is a mission at study by NASA. It will be a space observatory, with a primary mirror of 4 m covering ultraviolet, visible and near infrared and consist by two spacecrafts that will fly in formation. One of the spacecraft will carry the 4 m telescope (off–axis) and four science instruments. The four instruments will be a coronagraph, a star–shade instrument (SSI) working in the range m, a wide–field camera (HWC) that will work between 0.5 m and 1.7 m and a wide field high resolution ultraviolet spectrograph (UVS) covering the wavelength range m. The second spacecraft is a 72 m star–shade. The star–shade will fly in formation at a separation of about 120,000 km from the telescope and both will form an externally occulting observatory [194,195,196].
- WFIRST-CGI:
- Wide Field Infrared Survey Telescope (WFIRST, launch expected in 2025) is defined as a technology demonstration mission and is a mission mainly projected for the study of dark matter but in the science case there is also the study and the characterization of extrasolar planets. The concept of the mission is constituited by a small aperture telescope with 2.4 m in diameter, the same size as the Hubble Space Telescope’s primary mirror. WFIRST will have two instruments, the Wide Field Instrument, and the Coronagraph Instrument. The former will be able to provide Wide Field imaging and slitless spectroscopy aimed to dark matter and exoplanets microlensing. Its imaging mode has filters covering 0.48–2.0 m. The two slitless spectroscopy modes cover 1.0–1.93 m with resolving power 450–850, and 0.8–1.8 m (not yet defined) with resolving power of 70–140. The latter, Coronagraph Instrument (CGI [197]), has three coronagraphic modes: the first is a broadband imaging with a Hybrid Lyot Coronagraph with inner working angle (150 mas) in a 0.546–0.604 m bandpass. The second mode is constituted by a Shaped Pupil Coronagraph [198] for spectroscopic imaging with a lenslet-based integral field spectrograph, at spectral resolving power R ∼ 50 in a 0.675–0.785 m bandpass. Finally, a Shaped Pupil Coronagraph for broadband imaging of debris disks at separations ranging 6–20 in a 0.784–0.866 m bandpass. CGI will reach a contrast of [199,200]. The exoplanet science that is possible to do with WFIRST-CGI is described in several papers (e.g., [201,202]).
- OST:
- The Origin Space Telescope (OST, launch foreseen in 2035) is a mission studied to be the follow up of JWST [203,204]. The current baseline is a space telescope with a large aperture (segmented off-axis design with a diameter of ∼9 m) carrying up to five instrument [205,206,207,208,209]: (i) Far-infrared imager and polarimeter (FIP) is a broad band imager able to use two wavebands in parallel at a time, over large angular areas; (ii) the Mid-infrared Imager, Spectrometer and Coronagraph (MISC), which operates between 5 and 28 m, has an ultra-stable spectrometer channel built to do exoplanet transits with high precision; (iii) the OST Survey Spectrometer (OSS) can survey the sky over its whole wavelength range of 25 and 590 m with low resolution spectroscopy with R ∼ 300; (iv) the Heterodyne Receiver for OST (HERO)uses an array of 9 coherent detectors over the wavelength range of 111 to 617 m to achieve the highest spectral resolutions of R ∼ for measurements of simultaneous spectral lines. The MISC instrument will be devoted to the study of transiting systems in order to gather information on the presence of biosignatures also in weird world in the habitable zone of M stars. Moreover the use of the high resolution of OSS and HERO will make possible to study the water distribution and the gas mass in protoplanetary disks, in order to have hints on the development of habitability conditions during the planets formation phase.
- DARWIN/TPF-I:
- it is a project of space mission based on an infrared spectrometer, working in the range between 6 and 20 m, that will be used to directly detect and characterize exo-worlds around nearby stars. The idea of the mission has been developed by ESA [210,211,212,213,214] and NASA [215,216,217] in the end of the last century and the beginning of 2000 s, and was based on the Bracewell’s nulling iterferometer [218]. The activities related to both the proposed missions stopped in 2007 due to the hard technological challengers in maintain the distance among the free floating telescope flotilla controlled at level of nanometer. The main scientific aims of these missions were to gather measurements on the composition of rocky planet atmospheres, their habitability, the detection of biosignatures and the frequency of habitable and inhabited planets. Due to the really current scientific goals of these missions, they are discussed yet and, also if with a more simplified concept, still proposed [219,220,221].
9. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ARIEL | Atmospheric Remote-Sensing Infrared Exoplanet Large-survey |
CARMENES | Calar Alto high-Resolution search for M dwarfs with Exoearths with |
Near-infrared and optical Echelle Spectrographs | |
CFC | Chloro-Fluoro-Carbons |
CFHT | Canada-France-Hawaii Telescope |
CHEOPS | Characterizing Exoplanet Satellite |
CRIRES | Cryogenic high Rsolution Infrared Echelle Spectrograph |
DMS | Dimethyl Sulfide |
E-ELT | European Large Telescope |
FINESSE | Fast Infrared Exoplanet Spectroscopy Survey Explore |
FORS | Focal Reducer Low-dispersion Spectrograph |
GIARPS | GIAno and haRPS |
GMT | Giant Magellanic Telescope |
GPI | Gemini Planets Imager |
HabEx | Habitable Exoplanet Imaging Mission |
HCHR | High Contrast High Resolution |
HZ | Habitable Zone |
IFU | Integral Field Spectrograph |
IWA | Inner Working Angle |
JWST | James Webb Telescope |
LUVOIR | Large UltraViolet Optical and InfraRed surveyor |
METIS | MID-IR ELT Imager and Spectrograph |
NIR | Near Infra Red |
OCS/COS | Carbonyl Sulfide |
OST | Origin Space Telescope |
PLATO | Planetary Transits and Oscillations of Stars |
SPHERE | Spectro-Polarimetric High-contrast Exoplanet REsearch instrument |
TESS | Transiting Exoplanet Survey Satellite |
TMT | Thirty Meter Telescope |
TNG | Telescopio Nazionale Galileo |
VLT | Very Large Telescope |
VOC | Volatile Organic Carbon |
VRE | Vegetation Red Edge |
WFIRST-CGI | Wide Field Infrared Survey Telescope-Coronagraph Instrument |
References
- Cocconi, G.; Morrison, P. Searching for Interstellar Communications. Nature 1959, 184, 844–846. [Google Scholar] [CrossRef]
- Drake, F.D. Project Ozma. Phys. Today 1961, 14, 40–46. [Google Scholar] [CrossRef]
- Tarter, J. The Search for Extraterrestrial Intelligence (SETI). Annu. Rev. Astron. Astrophys. 2001, 39, 511–548. [Google Scholar] [CrossRef] [Green Version]
- Davies, P. The Eerie Silence: Renewing Our Search for Alien Intelligence; Houghton Mifflin Harcourt: Boston, MA, USA, 2010; ISBN 0547133243. [Google Scholar]
- Prigogine, I.; Nicolis, G.; Babloyantz, A. Thermodynamics of evolution. Phys. Today 1972, 25, 23. [Google Scholar] [CrossRef]
- Owen, T. The Search for Early Forms of Life in Other Planetary Systems: Future Possibilities Afforded by Spectroscopic Techniques. In Strategies for the Search for Life in the Universe—Astrophysics and Space Science Library; Papagiannis, M.D., Ed.; Springer: Dordrecht, The Netherlands, 1980; Volume 83, p. 177. [Google Scholar] [CrossRef]
- Des Marais, D.J.; Harwit, M.O.; Jucks, K.W.; Kasting, J.F.; Lin, D.N.C.; Lunine, J.I.; Schneider, J.; Seager, S.; Traub, W.A.; Woolf, N.J. Remote Sensing of Planetary Properties and Biosignatures on Extrasolar Terrestrial Planets. Astrobiology 2002, 2, 153–181. [Google Scholar] [CrossRef] [PubMed]
- Cernicharo, J.; Crovisier, J. Water in Space: The Water World of ISO. Space Sci. Rev. 2005, 119, 29–69. [Google Scholar] [CrossRef]
- Lammer, H.; Bredehöft, J.H.; Coustenis, A.; Khodachenko, M.L.; Kaltenegger, L.; Grasset, O.; Prieur, D.; Raulin, F.; Ehrenfreund, P.; Yamauchi, M. What makes a planet habitable? Astron. Astrophys. Rev. 2009, 17, 181–249. [Google Scholar] [CrossRef]
- Kaltenegger, L. How to Characterize Habitable Worlds and Signs of Life. Annu. Rev. Astron. Astrophys. 2017, 55, 433–485. [Google Scholar] [CrossRef] [Green Version]
- Kaltenegger, L.; Eiroa, C.; Fridlund, C.V.M. Target star catalogue for Darwin Nearby Stellar sample for a search for terrestrial planets. Astrophys. Space Sci. 2010, 326, 233–247. [Google Scholar] [CrossRef]
- Seager, S.; Schrenk, M.; Bains, W. An Astrophysical View of Earth-Based Metabolic Biosignature Gases. Astrobiology 2012, 12, 61–82. [Google Scholar] [CrossRef]
- Seager, S.; Bains, W.; Hu, R. A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases. Astrophys. J. 2013, 775, 104. [Google Scholar] [CrossRef]
- Kasting, J.F.; Kopparapu, R.; Ramirez, R.M.; Harman, C.E. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Natl. Acad. Sci. USA 2014, 111, 12641–12646. [Google Scholar] [CrossRef] [PubMed]
- Harman, C.E.; Schwieterman, E.W.; Schottelkotte, J.C.; Kasting, J.F. Abiotic O2 Levels on Planets around F, G, K, and M Stars: Possible False Positives for Life? Astrophys. J. 2015, 812, 137. [Google Scholar] [CrossRef]
- Seager, S.; Bains, W.; Petkowski, J.J. Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry. Astrobiology 2016, 16, 465–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stüeken, E.E.; Kipp, M.A.; Koehler, M.C.; Schwieterman, E.W.; Johnson, B.; Buick, R. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures. Astrobiology 2016, 16, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Grenfell, J.L. A review of exoplanetary biosignatures. Phys. Rep. 2017, 713, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Krissansen-Totton, J.; Olson, S.; Catling, D.C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 2018, 4, eaao5747. [Google Scholar] [CrossRef] [Green Version]
- Catling, D.C.; Krissansen-Totton, J.; Kiang, N.Y.; Crisp, D.; Robinson, T.D.; DasSarma, S.; Rushby, A.J.; Del Genio, A.; Bains, W.; Domagal-Goldman, S. Exoplanet Biosignatures: A Framework for Their Assessment. Astrobiology 2018, 18, 709–738. [Google Scholar] [CrossRef]
- Kiang, N.Y.; Domagal-Goldman, S.; Parenteau, M.N.; Catling, D.C.; Fujii, Y.; Meadows, V.S.; Schwieterman, E.W.; Walker, S.I. Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations. Astrobiology 2018, 18, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef]
- Walker, S.I.; Bains, W.; Cronin, L.; DasSarma, S.; Danielache, S.; Domagal-Goldman, S.; Kacar, B.; Kiang, N.Y.; Lenardic, A.; Reinhard, C.T.; et al. Exoplanet Biosignatures: Future Directions. Astrobiology 2018, 18, 779–824. [Google Scholar] [CrossRef] [PubMed]
- Lammer, H.; Sproß, L.; Grenfell, J.L.; Scherf, M.; Fossati, L.; Lendl, M.; Cubillos, P.E. The Role of N2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats. Astrobiology 2019, 19, 927–950. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J. Signs of Life: Criterion-System of Exobiology. Nature 1965, 207, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, J.E. A Physical Basis for Life Detection Experiments. Nature 1965, 207, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Lippincott, E.R.; Eck, R.V.; Dayhoff, M.O.; Sagan, C. Thermodynamic Equilibria in Planetary Atmospheres. Astrophys. J. 1967, 147, 753. [Google Scholar] [CrossRef]
- Lovelock, J.E. Thermodynamics and the Recognition of Alien Biospheres. Proc. R. Soc. Lond. Ser. B 1975, 189, 167–180. [Google Scholar] [CrossRef]
- Sagan, C. The Recognition of Extraterrestrial Intelligence. Proc. R. Soc. Lond. Ser. B 1975, 189, 143–153. [Google Scholar] [CrossRef]
- Bains, W.; Seager, S. A Combinatorial Approach to Biochemical Space: Description and Application to the Redox Distribution of Metabolism. Astrobiology 2012, 12, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Krissansen-Totton, J.; Bergsman, D.S.; Catling, D.C. On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. Astrobiology 2016, 16, 39–67. [Google Scholar] [CrossRef] [Green Version]
- Krissansen-Totton, J.; Schwieterman, E.W.; Charnay, B.; Arney, G.; Robinson, T.D.; Meadows, V.; Catling, D.C. Is the Pale Blue Dot Unique? Optimized Photometric Bands for Identifying Earth-like Exoplanets. Astrophys. J. 2016, 817, 31. [Google Scholar] [CrossRef]
- Seager, S. The future of spectroscopic life detection on exoplanets. Proc. Natl. Acad. Sci. USA 2014, 111, 12634–12640. [Google Scholar] [CrossRef] [Green Version]
- Sagan, C.; Thompson, W.R.; Carlson, R.; Gurnett, D.; Hord, C. A search for life on Earth from the Galileo spacecraft. Nature 1993, 365, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.W.; Weissman, P.R.; Smythe, W.D.; Mahoney, J.C. Near-Infrared Mapping Spectrometer experiment on Galileo. Space Sci. Rev. 1992, 60, 457–502. [Google Scholar] [CrossRef]
- Woolf, N.J.; Smith, P.S.; Traub, W.A.; Jucks, K.W. The Spectrum of Earthshine: A Pale Blue Dot Observed from the Ground. Astrophys. J. 2002, 574, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Montañés-Rodriguez, P.; Pallé, E.; Goode, P.R.; Hickey, J.; Koonin, S.E. Globally Integrated Measurements of the Earth’s Visible Spectral Albedo. Astrophys. J. 2005, 629, 1175–1182. [Google Scholar] [CrossRef]
- Turnbull, M.C.; Traub, W.A.; Jucks, K.W.; Woolf, N.J.; Meyer, M.R.; Gorlova, N.; Skrutskie, M.F.; Wilson, J.C. Spectrum of a Habitable World: Earthshine in the Near-Infrared. Astrophys. J. 2006, 644, 551–559. [Google Scholar] [CrossRef]
- Hamdani, S.; Arnold, L.; Foellmi, C.; Berthier, J.; Billeres, M.; Briot, D.; François, P.; Riaud, P.; Schneider, J. Biomarkers in disk-averaged near-UV to near-IR Earth spectra using Earthshine observations. Astron. Astrophys. 2006, 460, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Briot, D.; Agabi, K.; Aristidi, E.; Arnold, L.; François, P.; Riaud, P.; Rocher, P.; Schneider, J. A test for the detection of vegetation on extrasolar planets: Detection of vegetation in Earthshine spectrum and its diurnal variation. Highlights Astron. 2007, 14, 711–712. [Google Scholar] [CrossRef]
- Coffeen, D.L. Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. J. Opt. Soc. Am. 1979, 69, 1051–1064. [Google Scholar] [CrossRef]
- Sterzik, M.F.; Bagnulo, S.; Palle, E. Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 2012, 483, 64–66. [Google Scholar] [CrossRef]
- Buenzli, E.; Schmid, H.M. A grid of polarization models for Rayleigh scattering planetary atmospheres. Astron. Astrophys. 2009, 504, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Segura, A.; Kasting, J.F.; Meadows, V.; Cohen, M.; Scalo, J.; Crisp, D.; Butler, R.A.H.; Tinetti, G. Biosignatures from Earth-Like Planets Around M Dwarfs. Astrobiology 2005, 5, 706–725. [Google Scholar] [CrossRef] [PubMed]
- Rauer, H.; Gebauer, S.; Paris, P.V.; Cabrera, J.; Godolt, M.; Grenfell, J.L.; Belu, A.; Selsis, F.; Hedelt, P.; Schreier, F. Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. Astron. Astrophys. 2011, 529, A8. [Google Scholar] [CrossRef]
- Rugheimer, S.; Kaltenegger, L.; Zsom, A.; Segura, A.; Sasselov, D. Spectral Fingerprints of Earth-like Planets Around FGK Stars. Astrobiology 2013, 13, 251–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M Stars. Astrophys. J. 2015, 809, 57. [Google Scholar] [CrossRef]
- Airapetian, V.S.; Jackman, C.H.; Mlynczak, M.; Danchi, W.; Hunt, L. Atmospheric Beacons of Life from Exoplanets Around G and K Stars. Sci. Rep. 2017, 7, 14141. [Google Scholar] [CrossRef] [PubMed]
- Kaltenegger, L.; Selsis, F.; Fridlund, M.; Lammer, H.; Beichman, C.; Danchi, W.; Eiroa, C.; Henning, T.; Herbst, T.; Léger, A.; et al. Deciphering Spectral Fingerprints of Habitable Exoplanets. Astrobiology 2010, 10, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Segura, A.; Krelove, K.; Kasting, J.F.; Sommerlatt, D.; Meadows, V.; Crisp, D.; Cohen, M.; Mlawer, E. Ozone Concentrations and Ultraviolet Fluxes on Earth-Like Planets Around Other Stars. Astrobiology 2003, 3, 689–708. [Google Scholar] [CrossRef]
- Samarkin, V.A.; Madigan, M.T.; Bowles, M.W.; Casciotti, K.L.; Priscu, J.C.; McKay, C.P.; Joye, S.B. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 2010, 3, 341. [Google Scholar] [CrossRef]
- Haqq-Misra, J.D.; Domagal-Goldman, S.D.; Kasting, P.J.; Kasting, J.F. A Revised, Hazy Methane Greenhouse for the Archean Earth. Astrobiology 2008, 8, 1127–1137. [Google Scholar] [CrossRef]
- Pavlov, A.A.; Hurtgen, M.T.; Kasting, J.F.; Arthur, M.A. Methane-rich Proterozoic atmosphere? Geology 2003, 31, 87–90. [Google Scholar] [CrossRef]
- Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong Release of Methane on Mars in Northern Summer 2003. Science 2009, 323, 1041. [Google Scholar] [CrossRef]
- Webster, C.R.; Mahaffy, P.R.; Atreya, S.K.; Flesch, G.J.; Mischna, M.A.; Meslin, P.Y.; Farley, K.A.; Conrad, P.G.; Christensen, L.E.; Pavlov, A.A.; et al. Mars methane detection and variability at Gale crater. Science 2015, 347, 415–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, J. Evolution of the Atmosphere; Macmillan: New York, NY, USA, 1977. [Google Scholar]
- Leger, A.; Pirre, M.; Marceau, F.J. Search for primitive life on a distant planet: Relevance of 02 and 03 detections. Astron. Astrophys. 1993, 277, 309. [Google Scholar]
- Kasting, J.F.; Catling, D. Evolution of a Habitable Planet. Annu. Rev. Astron. Astrophys. 2003, 41, 429–463. [Google Scholar] [CrossRef] [Green Version]
- Zahnle, K.J.; Kasting, J.F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 1986, 68, 462–480. [Google Scholar] [CrossRef]
- Lammer, H.; Kislyakova, K.G.; Odert, P.; Leitzinger, M.; Schwarz, R.; Pilat-Lohinger, E.; Kulikov, Y.N.; Khodachenko, M.L.; Güdel, M.; Hanslmeier, A. Pathways to Earth-Like Atmospheres. Extreme Ultraviolet (EUV)-Powered Escape of Hydrogen-Rich Protoatmospheres. Orig. Life Evol. Biosph. 2011, 41, 503–522. [Google Scholar] [CrossRef]
- Luger, R.; Barnes, R. Extreme Water Loss and Abiotic O2Buildup on Planets Throughout the Habitable Zones of M Dwarfs. Astrobiology 2015, 15, 119–143. [Google Scholar] [CrossRef]
- Kiang, N.Y.; Siefert, J.; Blankenship, R.E. Spectral Signatures of Photosynthesis. I. Review of Earth Organisms. Astrobiology 2007, 7, 222–251. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Bains, W. The search for signs of life on exoplanets at the interface of chemistry and planetary science. Sci. Adv. 2015, 1. [Google Scholar] [CrossRef]
- Des Marais, D.J. When Did Photosynthesis Emerge on Earth? Science 2000, 289, 1703–1705. [Google Scholar] [CrossRef]
- Stefels, J.; Steinke, M.; Turner, S.; Malin, G.; Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245–275. [Google Scholar] [CrossRef] [Green Version]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable Zones around Main Sequence Stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef]
- Kopparapu, R.K.; Ramirez, R.; Kasting, J.F.; Eymet, V.; Robinson, T.D.; Mahadevan, S.; Terrien, R.C.; Domagal-Goldman, S.; Meadows, V.; Deshpande, R. Habitable Zones around Main-sequence Stars: New Estimates. Astrophys. J. 2013, 765, 131. [Google Scholar] [CrossRef]
- Domagal-Goldman, S.D.; Meadows, V.S.; Claire, M.W.; Kasting, J.F. Using Biogenic Sulfur Gases as Remotely Detectable Biosignatures on Anoxic Planets. Astrobiology 2011, 11, 419–441. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S. A theory of atmospheric ozone. R. Meteorol. Soc. Mem. 1932, 3, 103–125. [Google Scholar]
- Kaltenegger, L.; Selsis, F. Biomarkers Set in Context. In Extrasolar Planets. Formation, Detection and Dynamics; Dvorak, R., Ed.; Wiley-VCH: Weinheim, Germany, 2007; p. 79. ISBN 978-3-527-40671-5. [Google Scholar]
- Tinetti, G.; Rashby, S.; Yung, Y.L. Detectability of Red-Edge-shifted Vegetation on Terrestrial Planets Orbiting M Stars. Astrophys. J. Lett. 2006, 644, L129–L132. [Google Scholar] [CrossRef]
- Hegde, S.; Paulino-Lima, I.G.; Kent, R.; Kaltenegger, L.; Rothschild, L. Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life. Proc. Natl. Acad. Sci. USA 2015, 112, 3886–3891. [Google Scholar] [CrossRef] [Green Version]
- O’Malley-James, J.T.; Kaltenegger, L. Biofluorescent worlds: Global biological fluorescence as a biosignature. Mon. Not. R. Astron. Soc. 2018, 481, 2487–2496. [Google Scholar] [CrossRef]
- Lin, H.W.; Gonzalez Abad, G.; Loeb, A. Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets. Astrophys. J. Lett. 2014, 792, L7. [Google Scholar] [CrossRef]
- Fossati, L.; Bagnulo, S.; Haswell, C.A.; Patel, M.R.; Busuttil, R.; Kowalski, P.M.; Shulyak, D.V.; Sterzik, M.F. The Habitability and Detection of Earth-like Planets Orbiting Cool White Dwarfs. Astrophys. J. Lett. 2012, 757, L15. [Google Scholar] [CrossRef]
- Wright, J.T. Exoplanets and SETI. In Handbook of Exoplanets; Springer International Publishing AG, Part of Springer Nature: New York, NY, USA, 2018; p. 186. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Harman, C.E.; Domagal-Goldman, S. Biosignature False Positives. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 71. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Schumann, U.; Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007, 7, 3823–3907. [Google Scholar] [CrossRef] [Green Version]
- Segura, A.; Meadows, V.S.; Kasting, J.F.; Crisp, D.; Cohen, M. Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. Astron. Astrophys. 2007, 472, 665–679. [Google Scholar] [CrossRef]
- Kasting, J.F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 1988, 74, 472–494. [Google Scholar] [CrossRef] [Green Version]
- Selsis, F.; Despois, D.; Parisot, J.P. Signature of life on exoplanets: Can Darwin produce false positive detections? Astron. Astrophys. 2002, 388, 985–1003. [Google Scholar] [CrossRef] [Green Version]
- Meadows, V.S. Reflections on O2 as a Biosignature in Exoplanetary Atmospheres. Astrobiology 2017, 17, 1022–1052. [Google Scholar] [CrossRef]
- Selsis, F.; Kasting, J.F.; Levrard, B.; Paillet, J.; Ribas, I.; Delfosse, X. Habitable planets around the star Gliese 581? Astron. Astrophys. 2007, 476, 1373–1387. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Turner, E.L.; Schafer, J.; Ford, E.B. Vegetation’s Red Edge: A Possible Spectroscopic Biosignature of Extraterrestrial Plants. Astrobiology 2005, 5, 372–390. [Google Scholar] [CrossRef]
- Kopparapu, R.K.; Ramirez, R.; Kasting, J.F.; Eymet, V.; Robinson, T.D.; Mahadevan, S.; Terrien, R.C.; Domagal-Goldman, S.; Meadows, V.; Deshpande, R. Erratum: “Habitable Zones around Main-sequence Stars: New Estimates” (2013, ApJ, 765, 131). Astrophys. J. 2013, 770, 82. [Google Scholar] [CrossRef]
- Forget, F.; Pierrehumbert, R.T. Warming Early Mars with Carbon Dioxide Clouds That Scatter Infrared Radiation. Science 1997, 278, 1273. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Lunine, J.I.; McKay, C.P. Titan under a red giant sun: A new kind of “habitable” moon. Geophys. Res. Lett. 1997, 24, 2905–2908. [Google Scholar] [CrossRef]
- Joshi, M. Climate Model Studies of Synchronously Rotating Planets. Astrobiology 2003, 3, 415–427. [Google Scholar] [CrossRef]
- Williams, D.M.; Pollard, D. Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int. J. Astrobiol. 2002, 1, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Lopez, B.; Schneider, J.; Danchi, W.C. Can Life Develop in the Expanded Habitable Zones around Red Giant Stars? Astrophys. J. 2005, 627, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Edson, A.; Lee, S.; Bannon, P.; Kasting, J.F.; Pollard, D. Atmospheric circulations of terrestrial planets orbiting low-mass stars. Icarus 2011, 212, 1–13. [Google Scholar] [CrossRef]
- Zsom, A.; Kaltenegger, L.; Goldblatt, C. A 1D microphysical cloud model for Earth, and Earth-like exoplanets: Liquid water and water ice clouds in the convective troposphere. Icarus 2012, 221, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Leconte, J.; Forget, F.; Charnay, B.; Wordsworth, R.; Selsis, F.; Millour, E.; Spiga, A. 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 2013, 554, A69. [Google Scholar] [CrossRef] [Green Version]
- Leconte, J.; Forget, F.; Charnay, B.; Wordsworth, R.; Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 2013, 504, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Vladilo, G.; Murante, G.; Silva, L.; Provenzale, A.; Ferri, G.; Ragazzini, G. The Habitable Zone of Earth-like Planets with Different Levels of Atmospheric Pressure. Astrophys. J. 2013, 767, 65. [Google Scholar] [CrossRef]
- Wordsworth, R.; Pierrehumbert, R. Abiotic Oxygen-dominated Atmospheres on Terrestrial Habitable Zone Planets. Astrophys. J. Lett. 2014, 785, L20. [Google Scholar] [CrossRef]
- Yang, J.; Cowan, N.B.; Abbot, D.S. Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets. Astrophys. J. Lett. 2013, 771, L45. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; O’Gorman, P.A.; Seager, S. Climate at high-obliquity. Icarus 2014, 243, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Linsenmeier, M.; Pascale, S.; Lucarini, V. Climate of Earth-like planets with high obliquity and eccentric orbits: Implications for habitability conditions. Planet. Space Sci. 2015, 105, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Kopparapu, R.K.; Wolf, E.T.; Haqq-Misra, J.; Yang, J.; Kasting, J.F.; Meadows, V.; Terrien, R.; Mahadevan, S. The Inner Edge of the Habitable Zone for Synchronously Rotating Planets around Low-mass Stars Using General Circulation Models. Astrophys. J. 2016, 819, 84. [Google Scholar] [CrossRef]
- Kitzmann, D. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone. Astron. Astrophys. 2017, 600, A111. [Google Scholar] [CrossRef]
- Ramirez, R.M.; Kaltenegger, L. A Volcanic Hydrogen Habitable Zone. Astrophys. J. Lett. 2017, 837, L4. [Google Scholar] [CrossRef]
- Yang, J.; Boué, G.; Fabrycky, D.C.; Abbot, D.S. Strong Dependence of the Inner Edge of the Habitable Zone on Planetary Rotation Rate. Astrophys. J. Lett. 2014, 787, L2. [Google Scholar] [CrossRef]
- Winn, J.N.; Fabrycky, D.C. The Occurrence and Architecture of Exoplanetary Systems. Annu. Rev. Astron. Astrophys. 2015, 53, 409–447. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.S. The Problem of Life in the Universe and the Mode of Star Formation. Pub. Astron. Soc. Pacific 1959, 71, 421. [Google Scholar] [CrossRef]
- Huang, S.S. Life-Supporting Regions in the Vicinity of Binary Systems. Pub. Astron. Soc. Pacific 1960, 72, 106. [Google Scholar] [CrossRef]
- Haghighipour, N.; Dvorak, R.; Pilat-Lohinger, E. Planetary Dynamics and Habitable Planet Formation in Binary Star Systems. In Planets in Binary Star Systems. Astrophysics and Space Science Library; Haghighipour, N., Ed.; Springer: Dordrecht, The Netherlands, 2010; Volume 366, p. 285. [Google Scholar] [CrossRef]
- Martin, D.V. Populations of Planets in Multiple Star Systems. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 156. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Dvorak, R. Critical orbits in the elliptic restricted three-body problem. Astron. Astrophys. 1986, 167, 379–386. [Google Scholar]
- Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á. New prospects for observing and cataloguing exoplanets in well-detached binaries. Mon. Not. R. Astron. Soc. 2016, 460, 3598–3609. [Google Scholar] [CrossRef] [Green Version]
- Anglada-Escudé, G.; Amado, P.J.; Barnes, J.; Berdiñas, Z.M.; Butler, R.P.; Coleman, G.A.L.; de La Cueva, I.; Dreizler, S.; Endl, M.; Giesers, B.; et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 2016, 536, 437–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kervella, P.; Thévenin, F.; Lovis, C. Proxima’s orbit around α Centauri. Astron. Astrophys. 2017, 598, L7. [Google Scholar] [CrossRef]
- Kaltenegger, L.; Haghighipour, N. Calculating the Habitable Zone of Binary Star Systems. I. S-type Binaries. Astrophys. J. 2013, 777, 165. [Google Scholar] [CrossRef]
- Cottin, H.; Kotler, J.M.; Bartik, K.; Cleaves, H.J.; Cockell, C.S.; de Vera, J.P.P.; Ehrenfreund, P.; Leuko, S.; Ten Kate, I.L.; Martins, Z.; et al. Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Sci. Rev. 2017, 209, 1–42. [Google Scholar] [CrossRef]
- Parkin, K.L.G. The Breakthrough Starshot system model. Acta Astronaut. 2018, 152, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Mayor, M.; Pepe, F.; Queloz, D.; Bouchy, F.; Rupprecht, G.; Lo Curto, G.; Avila, G.; Benz, W.; Bertaux, J.L.; Bonfils, X.; et al. Setting New Standards with HARPS. Messenger 2003, 114, 20–24. [Google Scholar]
- Cosentino, R.; Lovis, C.; Pepe, F.; Collier Cameron, A.; Latham, D.W.; Molinari, E.; Udry, S.; Bezawada, N.; Black, M.; Born, A.; et al. Harps-N: The New Planet Hunter at TNG. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2012; Volume 8446, p. 84461V. [Google Scholar] [CrossRef]
- Davies, R.; Kasper, M. Adaptive Optics for Astronomy. Annu. Rev. Astron. Astrophys. 2012, 50, 305–351. [Google Scholar] [CrossRef] [Green Version]
- Claudi, R. Direct Imaging of Faint Companions. In Methods of Detecting Exoplanets: 1st Advanced School on Exoplanetary Science; Bozza, V., Mancini, L., Sozzetti, A., Eds.; Springer: Cham, Switzerland, 2016; Volume 428, p. 183. [Google Scholar] [CrossRef]
- Mawet, D.; Pueyo, L.; Lawson, P.; Mugnier, L.; Traub, W.; Boccaletti, A.; Trauger, J.T.; Gladysz, S.; Serabyn, E.; Milli, J.; et al. Review of Small-Angle Coronagraphic Techniques in the Wake of Ground-Based Second-Generation Adaptive Optics Systems. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2012; Volume 8442, p. 844204. [Google Scholar] [CrossRef]
- Chauvin, G.; Lagrange, A.M.; Zuckerman, B.; Dumas, C.; Mouillet, D.; Song, I.; Beuzit, J.L.; Lowrance, P.; Bessell, M.S. A companion to AB Pic at the planet/brown dwarf boundary. Astron. Astrophys. 2005, 438, L29–L32. [Google Scholar] [CrossRef]
- Lafrenière, D.; Doyon, R.; Marois, C.; Nadeau, D.; Oppenheimer, B.R.; Roche, P.F.; Rigaut, F.; Graham, J.R.; Jayawardhana, R.; Johnstone, D.; et al. The Gemini Deep Planet Survey. Astrophys. J. 2007, 670, 1367–1390. [Google Scholar] [CrossRef] [Green Version]
- Biller, B.A.; Liu, M.C.; Wahhaj, Z.; Nielsen, E.L.; Hayward, T.L.; Males, J.R.; Skemer, A.; Close, L.M.; Chun, M.; Ftaclas, C.; et al. The Gemini/NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars. Astrophys. J. 2013, 777, 160. [Google Scholar] [CrossRef]
- Beuzit, J.L.; Feldt, M.; Dohlen, K.; Mouillet, D.; Puget, P.; Wildi, F.; Abe, L.; Antichi, J.; Baruffolo, A.; Baudoz, P.; et al. SPHERE: A ’Planet Finder’ Instrument for the VLT. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2008; Volume 7014, p. 701418. [Google Scholar] [CrossRef]
- Beuzit, J.L.; Vigan, A.; Mouillet, D.; Dohlen, K.; Gratton, R.; Boccaletti, A.; Sauvage, J.F.; Schmid, H.M.; Langlois, M.; Petit, C.; et al. SPHERE: The exoplanet imager for the Very Large Telescope. arXiv 2019, arXiv:1902.04080. [Google Scholar] [CrossRef]
- Macintosh, B.A.; Anthony, A.; Atwood, J.; Bauman, B.; Cardwell, A.; Caputa, K.; Chilcote, J.; De Rosa, R.J.; Dillon, D.; Doyon, R.; et al. The Gemini Planet Imager: First Light and Commissioning. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2014; Volume 9148, p. 91480J. [Google Scholar] [CrossRef]
- Macintosh, B.; Graham, J.R.; Ingraham, P.; Konopacky, Q.; Marois, C.; Perrin, M.; Poyneer, L.; Bauman, B.; Barman, T.; Burrows, A.S.; et al. First light of the Gemini Planet Imager. Proc. Natl. Acad. Sci. USA 2014, 111, 12661–12666. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.R. SPHERE SHINE Exoplanet Imaging Survey: Preliminary Statistical Results. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 2019; Volume 233, p. 104.02. [Google Scholar]
- Zurlo, A.; Gratton, R.; Mesa, D.; Desidera, S.; Enia, A.; Sahu, K.; Almenara, J.M.; Kervella, P.; Avenhaus, H.; Girard, J.; et al. The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event. Mon. Not. R. Astron. Soc. 2018, 480, 236–244. [Google Scholar] [CrossRef]
- Zurlo, A.; Mesa, D.; Desidera, S.; Messina, S.; Gratton, R.; Moutou, C.; Beuzit, J.L.; Biller, B.; Boccaletti, A.; Bonavita, M.; et al. Imaging radial velocity planets with SPHERE. Mon. Not. R. Astron. Soc. 2018, 480, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Langlois, M. SHINE, SPHERE High-contrast ImagiNg survey for Exoplanets. In Proceedings of the European Planetary Science Congress, Berlin, Germany, 16–21 September 2018; p. EPSC2018-500. [Google Scholar]
- Dohlen, K.; Langlois, M.; Saisse, M.; Hill, L.; Origne, A.; Jacquet, M.; Fabron, C.; Blanc, J.C.; Llored, M.; Carle, M.; et al. The Infra-Red Dual Imaging and Spectrograph for SPHERE: Design and Performance. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2008; Volume 7014, p. 70143L. [Google Scholar] [CrossRef]
- Claudi, R.U.; Turatto, M.; Gratton, R.G.; Antichi, J.; Bonavita, M.; Bruno, P.; Cascone, E.; De Caprio, V.; Desidera, S.; Giro, E.; et al. SPHERE IFS: The Spectro Differential Imager of the VLT for Exoplanets Search. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2008; Volume 7014, p. 70143E. [Google Scholar] [CrossRef]
- Schmid, H.M.; Bazzon, A.; Roelfsema, R.; Mouillet, D.; Milli, J.; Menard, F.; Gisler, D.; Hunziker, S.; Pragt, J.; Dominik, C.; et al. SPHERE/ZIMPOL high resolution polarimetric imager. I. System overview, PSF parameters, coronagraphy, and polarimetry. Astron. Astrophys. 2018, 619, A9. [Google Scholar] [CrossRef]
- Kemp, J.C.; Henson, G.D.; Steiner, C.T.; Powell, E.R. The optical polarization of the Sun measured at a sensitivity of parts in ten million. Nature 1987, 326, 270–273. [Google Scholar] [CrossRef]
- Seager, S.; Whitney, B.A.; Sasselov, D.D. Photometric Light Curves and Polarization of Close-in Extrasolar Giant Planets. Astrophys. J. 2000, 540, 504–520. [Google Scholar] [CrossRef]
- Stam, D.M.; Hovenier, J.W.; Waters, L.B.F.M. Using polarimetry to detect and characterize Jupiter-like extrasolar planets. Astron. Astrophys. 2004, 428, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Stam, D.M. Spectropolarimetric signatures of Earth-like extrasolar planets. Astron. Astrophys. 2008, 482, 989–1007. [Google Scholar] [CrossRef] [Green Version]
- Wiktorowicz, S.J.; Nofi, L.A.; Jontof-Hutter, D.; Kopparla, P.; Laughlin, G.P.; Hermis, N.; Yung, Y.L.; Swain, M.R. A Ground-based Albedo Upper Limit for HD 189733b from Polarimetry. Astrophys. J. 2015, 813, 48. [Google Scholar] [CrossRef]
- Bott, K.; Bailey, J.; Kedziora-Chudczer, L.; Cotton, D.V.; Lucas, P.W.; Marshall, J.P.; Hough, J.H. The polarization of HD 189733. Mon. Not. R. Astron. Soc. 2016, 459, L109–L113. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Sasselov, D.D. Theoretical Transmission Spectra during Extrasolar Giant Planet Transits. Astrophys. J. 2000, 537, 916–921. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.M. Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres. Astrophys. J. 2001, 553, 1006–1026. [Google Scholar] [CrossRef] [Green Version]
- Charbonneau, D.; Brown, T.M.; Noyes, R.W.; Gilliland, R.L. Detection of an Extrasolar Planet Atmosphere. Astrophys. J. 2002, 568, 377–384. [Google Scholar] [CrossRef]
- Deming, D.; Seager, S.; Richardson, L.J.; Harrington, J. Infrared radiation from an extrasolar planet. Nature 2005, 434, 740–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demory, B.O.; Seager, S.; Madhusudhan, N.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Gillon, M.; Rowe, J.F.; Welsh, W.F.; Adams, E.R.; Dupree, A.; et al. The High Albedo of the Hot Jupiter Kepler-7 b. Astrophys. J. Lett. 2011, 735, L12. [Google Scholar] [CrossRef]
- Evans, T.M.; Pont, F.; Sing, D.K.; Aigrain, S.; Barstow, J.K.; Désert, J.M.; Gibson, N.; Heng, K.; Knutson, H.A.; Lecavelier des Etangs, A. The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths. Astrophys. J. Lett. 2013, 772, L16. [Google Scholar] [CrossRef]
- Demory, B.O.; Gillon, M.; de Wit, J.; Madhusudhan, N.; Bolmont, E.; Heng, K.; Kataria, T.; Lewis, N.; Hu, R.; Krick, J.; et al. A map of the large day-night temperature gradient of a super-Earth exoplanet. Nature 2016, 532, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, G.; Liang, M.C.; Vidal-Madjar, A.; Ehrenreich, D.; Lecavelier des Etangs, A.; Yung, Y.L. Infrared Transmission Spectra for Extrasolar Giant Planets. Astrophys. J. Lett. 2007, 654, L99–L102. [Google Scholar] [CrossRef]
- Sing, D.K.; Fortney, J.J.; Nikolov, N.; Wakeford, H.R.; Kataria, T.; Evans, T.M.; Aigrain, S.; Ballester, G.E.; Burrows, A.S.; Deming, D.; et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 2016, 529, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, D.; Allen, L.E.; Megeath, S.T.; Torres, G.; Alonso, R.; Brown, T.M.; Gilliland, R.L.; Latham, D.W.; Mandushev, G.; O’Donovan, F.T.; et al. Detection of Thermal Emission from an Extrasolar Planet. Astrophys. J. 2005, 626, 523–529. [Google Scholar] [CrossRef]
- Dorn, R.J.; Follert, R.; Bristow, P.; Cumani, C.; Eschbaumer, S.; Grunhut, J.; Haimerl, A.; Hatzes, A.; Heiter, U.; Hinterschuster, R.; et al. The “+” for CRIRES: Enabling Better Science at Infrared Wavelength and High Spectral Resolution at the ESO VLT. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2016; Volume 9908, p. 99080I. [Google Scholar] [CrossRef]
- Claudi, R.; Benatti, S.; Carleo, I.; Ghedina, A.; Guerra, J.; Micela, G.; Molinari, E.; Oliva, E.; Rainer, M.; Tozzi, A.; et al. GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy. Eur. Phys. J. Plus 2017, 132, 364. [Google Scholar] [CrossRef]
- Claudi, R.; Benatti, S.; Carleo, I.; Ghedina, A.; Guerra, J.; Ghinassi, F.; Harutyunyan, A.; Micela, G.; Molinari, E.; Oliva, E.; et al. GIARPS: Commissioning and First Scientific Results. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10702, p. 107020Z. [Google Scholar] [CrossRef]
- Carleo, I.; Benatti, S.; Lanza, A.F.; Gratton, R.; Claudi, R.; Desidera, S.; Mace, G.N.; Messina, S.; Sanna, N.; Sissa, E.; et al. Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b. First data from the GIARPS Commissioning. Astron. Astrophys. 2018, 613, A50. [Google Scholar] [CrossRef]
- Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E. High precision radial velocities with GIANO spectra. Exp. Astron. 2016, 41, 351–376. [Google Scholar] [CrossRef] [Green Version]
- Quirrenbach, A.; Amado, P.J.; Ribas, I.; Reiners, A.; Caballero, J.A.; Seifert, W.; Aceituno, J.; Azzaro, M.; Baroch, D.; Barrado, D.; et al. CARMENES: High-Resolution Spectra and Precise Radial Velocities in the Red and Infrared. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10702, p. 107020W. [Google Scholar] [CrossRef]
- Artigau, É.; Kouach, D.; Donati, J.F.; Doyon, R.; Delfosse, X.; Baratchart, S.; Lacombe, M.; Moutou, C.; Rabou, P.; Parès, L.P.; et al. SPIRou: The Near-Infrared Spectropolarimeter/High-Precision Velocimeter for the Canada-France-Hawaii Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2014; Volume 9147, p. 914715. [Google Scholar] [CrossRef]
- Donati, J.F.; Kouach, D.; Lacombe, M.; Baratchart, S.; Doyon, R.; Delfosse, X.; Artigau, É.; Moutou, C.; Hébrard, G.; Bouchy, F.; et al. SPIRou: A NIR Spectropolarimeter/High-Precision Velocimeter for the CFHT. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 107. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Snellen, I.A.G.; de Kok, R.J.; de Mooij, E.J.W.; Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 2010, 465, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Birkby, J.L. Spectroscopic Direct Detection of Exoplanets. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 16. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Brogi, M.; Giacobbe, P.; Guilluy, G.; de Kok, R.J.; Sozzetti, A.; Mancini, L.; Bonomo, A.S. Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189 733 b. Astron. Astrophys. 2018, 615, A16. [Google Scholar] [CrossRef]
- Brogi, M.; Line, M.; Bean, J.; Désert, J.M.; Schwarz, H. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets. Astrophys. J. Lett. 2017, 839, L2. [Google Scholar] [CrossRef]
- Brogi, M.; de Kok, R.J.; Albrecht, S.; Snellen, I.A.G.; Birkby, J.L.; Schwarz, H. Rotation and Winds of Exoplanet HD 189733 b Measured with High-dispersion Transmission Spectroscopy. Astrophys. J. 2016, 817, 106. [Google Scholar] [CrossRef]
- Guilluy, G.; Sozzetti, A.; Brogi, M.; Bonomo, A.S.; Giacobbe, P.; Claudi, R.; Benatti, S. Exoplanet atmospheres with GIANO. II. Detection of molecular absorption in the dayside spectrum of HD 102195b. Astron. Astrophys. 2019, 625, A107. [Google Scholar] [CrossRef]
- Birkby, J.L.; de Kok, R.J.; Brogi, M.; Schwarz, H.; Snellen, I.A.G. Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b. Astron. J. 2017, 153, 138. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, S.K.; Kawahara, H.; Masuda, K.; Hirano, T.; Kotani, T.; Tajitsu, A. High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b. Astron. J. 2017, 154, 221. [Google Scholar] [CrossRef] [Green Version]
- Allart, R.; Lovis, C.; Pino, L.; Wyttenbach, A.; Ehrenreich, D.; Pepe, F. Search for water vapor in the high-resolution transmission spectrum of HD 189733b in the visible. Astron. Astrophys. 2017, 606, A144. [Google Scholar] [CrossRef]
- Piskorz, D.; Benneke, B.; Crockett, N.R.; Lockwood, A.C.; Blake, G.A.; Barman, T.S.; Bender, C.F.; Carr, J.S.; Johnson, J.A. Detection of Water Vapor in the Thermal Spectrum of the Non-transiting Hot Jupiter Upsilon Andromedae b. Astron. J. 2017, 154, 78. [Google Scholar] [CrossRef]
- Crossfield, I.J.M.; Barman, T.; Hansen, B.M.S. High-resolution, Differential, Near-infrared Transmission Spectroscopy of GJ 1214b. Astrophys. J. 2011, 736, 132. [Google Scholar] [CrossRef]
- Esteves, L.J.; de Mooij, E.J.W.; Jayawardhana, R.; Watson, C.; de Kok, R. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e. Astron. J. 2017, 153, 268. [Google Scholar] [CrossRef] [Green Version]
- Sparks, W.B.; Ford, H.C. Imaging Spectroscopy for Extrasolar Planet Detection. Astrophys. J. 2002, 578, 543–564. [Google Scholar] [CrossRef] [Green Version]
- Riaud, P.; Schneider, J. Improving Earth-like planets’ detection with an ELT: The differential radial velocity experiment. Astron. Astrophys. 2007, 469, 355–361. [Google Scholar] [CrossRef]
- Snellen, I.; de Kok, R.; Birkby, J.L.; Brandl, B.; Brogi, M.; Keller, C.; Kenworthy, M.; Schwarz, H.; Stuik, R. Combining high-dispersion spectroscopy with high contrast imaging: Probing rocky planets around our nearest neighbors. Astron. Astrophys. 2015, 576, A59. [Google Scholar] [CrossRef] [Green Version]
- Snellen, I.A.G.; Brandl, B.R.; de Kok, R.J.; Brogi, M.; Birkby, J.; Schwarz, H. Fast spin of the young extrasolar planet β Pictoris b. Nature 2014, 509, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Lovis, C.; Snellen, I.; Mouillet, D.; Pepe, F.; Wildi, F.; Astudillo-Defru, N.; Beuzit, J.L.; Bonfils, X.; Cheetham, A.; Conod, U.; et al. Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. Astron. Astrophys. 2017, 599, A16. [Google Scholar] [CrossRef] [Green Version]
- Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Mégevand, D.; Zerbi, F.M.; Cabral, A.; Di Marcantonio, P.; et al. ESPRESSO: The next European exoplanet hunter. Astron. Nachrichten 2014, 335, 8. [Google Scholar] [CrossRef]
- Seager, S.; Deming, D. Exoplanet Atmospheres. Annu. Rev. Astron. Astrophys. 2010, 48, 631–672. [Google Scholar] [CrossRef] [Green Version]
- Benz, W.; Ehrenreich, D.; Isaak, K. CHEOPS: CHaracterizing ExOPlanets Satellite. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 84. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Rando, N.; Asquier, J.; Corral Van Damme, C.; Isaak, K.; Ratti, F.; Verhoeve, P.; Safa, F.; Southworth, R.; Broeg, C.; Benz, W. CHEOPS: The ESA Mission for Exo-Planets Characterization. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 106980K. [Google Scholar] [CrossRef]
- Moutou, C.; Deleuil, M.; Guillot, T.; Baglin, A.; Bordé, P.; Bouchy, F.; Cabrera, J.; Csizmadia, S.; Deeg, H.J. CoRoT: Harvest of the exoplanet program. Icarus 2013, 226, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Borucki, W.; Koch, D.; Batalha, N.; Caldwell, D.; Christensen-Dalsgaard, J.; Cochran, W.D.; Dunham, E.; Gautier, T.N.; Geary, J.; Gilliland, R.; et al. KEPLER: Search for Earth-Size Planets in the Habitable Zone. In IAU Symposium: Transiting Planets; Pont, F., Sasselov, D., Holman, M.J., Eds.; Cambridge University Press: Cambridge, UK, 2009; Volume 253, pp. 289–299. [Google Scholar] [CrossRef]
- Ricker, G.R.; Vanderspek, R.; Winn, J.; Seager, S.; Berta-Thompson, Z.; Levine, A.; Villasenor, J.; Latham, D.; Charbonneau, D.; Holman, M.; et al. The Transiting Exoplanet Survey Satellite. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2016; Volume 9904, p. 99042B. [Google Scholar] [CrossRef]
- Brandl, B.R.; Quanz, S.; Snellen, I.; van Dishoeck, E.; Pontoppidan, K.; Le Floch, E.; Bettonvil, F.; van Boekel, R.; Glauser, A.; Hurtado, N. The Mid-IR ELT Imager and Spectrograph (METIS) and its Science Goals in the Context of AKARI. In The Cosmic Wheel and the Legacy of the AKARI Archive: From Galaxies and Stars to Planets and Life; Japan Aerospace Exploration Agency: Tokyo, Japan, 2018; pp. 41–47. [Google Scholar]
- Brandl, B.R.; Absil, O.; Agócs, T.; Baccichet, N.; Bertram, T.; Bettonvil, F.; van Boekel, R.; Burtscher, L.; van Dishoeck, E.; Feldt, M.; et al. Status of the Mid-IR ELT Imager and Spectrograph (METIS). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10702, p. 107021U. [Google Scholar] [CrossRef]
- Quanz, S.P.; Crossfield, I.; Meyer, M.R.; Schmalzl, E.; Held, J. Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS. Int. J. Astrobiol. 2015, 14, 279–289. [Google Scholar] [CrossRef]
- Marconi, A.; Allende Prieto, C.; Amado, P.J.; Amate, M.; Augusto, S.R.; Becerril, S.; Bezawada, N.; Boisse, I.; Bouchy, F.; Cabral, A.; et al. ELT-HIRES, the High Resolution Spectrograph for the ELT: Results from the Phase A Study. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10702, p. 107021Y. [Google Scholar] [CrossRef]
- Magrin, D.; Ragazzoni, R.; Rauer, H.; Pagano, I.; Nascimbeni, V.; Piotto, G.; Viotto, V.; Piazza, D.; Bandy, T.; Basso, S.; et al. PLATO: The ESA Mission for Exo-Planets Discovery. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 106984X. [Google Scholar] [CrossRef]
- Rauer, H.; Heras, A.M. Space Missions for Exoplanet Science: PLATO. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 86. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485–606. [Google Scholar] [CrossRef] [Green Version]
- Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Heske, A.; Leconte, J.; Micela, G.; Ollivier, M.; Pilbratt, G.; Puig, L.; et al. The Science of ARIEL (Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2016; Volume 9904, p. 99041X. [Google Scholar] [CrossRef]
- Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Heske, A.; Leconte, J.; Micela, G.; Ollivier, M.; Pilbratt, G.; Puig, L.; et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 2018, 46, 135–209. [Google Scholar] [CrossRef] [Green Version]
- Swain, M.R. The FINESSE Mission. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 2012; Volume 220, p. 505.05. [Google Scholar]
- Werner, M.; Swain, M.; Vasisht, G.; Wang, X.; Macenka, S.; Mandell, A.; Domagal-Goldman, S.; Green, J.; Stark, C. Extension of ATLAST/LUVOIR’s capabilities to 5 μm or beyond. J. Astron. Telesc. Instrum. Syst. 2016, 2, 041205. [Google Scholar] [CrossRef]
- Alibay, F.; Kuan, G.M.; Warfield, K.R. Habitable Exoplanet Imaging Mission (HabEx): Initial Flight System Design. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2017; Volume 10398, p. 1039803. [Google Scholar] [CrossRef]
- Arya, M.; Webb, D.; McGown, J.; Lisman, P.D.; Shaklan, S.; Bradford, S.C.; Steeves, J.; Hilgemann, E.; Trease, B.; Thomson, M.; et al. Starshade Mechanical Design for the Habitable Exoplanet Imaging Mission Concept (HabEx). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2017; Volume 10400, p. 104001C. [Google Scholar] [CrossRef]
- Kuan, G.M.; Warfield, K.; Mennesson, B.; Kiessling, A.; Martin, S.; Nissen, J.A.; Shaklan, S.B.; Alvarez-Salazar, O.S.; Mandic, M.; Webb, D.R.; et al. Overview of the 4 m Baseline Architecture Concept of the Habitable Exoplanet Imaging Mission (HabEx) Study. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 106980Q. [Google Scholar] [CrossRef]
- Noecker, M.C.; Zhao, F.; Demers, R.; Trauger, J.; Guyon, O.; Jeremy Kasdin, N. Coronagraph instrument for WFIRST-AFTA. J. Astron. Telesc. Instrum. Syst. 2016, 2, 011001. [Google Scholar] [CrossRef]
- Balasubramanian, K.; White, V.; Yee, K.; Echternach, P.; Muller, R.; Dickie, M.; Cady, E.; Prada, C.M.; Ryan, D.; Poberezhskiy, I.; et al. WFIRST-AFTA coronagraph shaped pupil masks: Design, fabrication, and characterization. J. Astron. Telesc. Instrum. Syst.s 2016, 2, 011005. [Google Scholar] [CrossRef]
- Trauger, J.; Moody, D.; Krist, J.; Gordon, B. Hybrid Lyot coronagraph for WFIRST-AFTA: Coronagraph design and performance metrics. J. Astron. Telesc. Instrum. Syst. 2016, 2, 011013. [Google Scholar] [CrossRef]
- Douglas, E.S.; Carlton, A.K.; Cahoy, K.L.; Kasdin, N.J.; Turnbull, M.; Macintosh, B. WFIRST Coronagraph Technology Requirements: Status Update and Systems Engineering Approach. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10705, p. 1070526. [Google Scholar] [CrossRef]
- Montet, B.T.; Yee, J.C.; Penny, M.T. Measuring the Galactic Distribution of Transiting Planets with WFIRST. Pub. Astron. Soc. Pacific 2017, 129, 044401. [Google Scholar] [CrossRef] [Green Version]
- Lacy, B.; Shlivko, D.; Burrows, A. Characterization of Exoplanet Atmospheres with the Optical Coronagraph on WFIRST. Astron. J. 2019, 157, 132. [Google Scholar] [CrossRef]
- Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C.M.; et al. The Far-Infrared Surveyor Mission Atudy: Paper I, the Genesis. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2016; Volume 9904, p. 99040K. [Google Scholar] [CrossRef]
- Meixner, M.; Armus, L.; Battersby, C.; Bauer, J.; Bergin, E.; Cooray, A.; Fortney, J.J.; Kataria, T.; Leisawitz, D.T.; Milam, S.N.; et al. Overview of the Origins Space Telescope: Science Drivers to Observatory Requirements. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 106980N. [Google Scholar] [CrossRef]
- Staguhn, J.; Amatucci, E.; Armus, L.; Bradley, D.; Carter, R.; Chuss, D.; Corsetti, J.; Cooray, A.; Howard, J.; Leisawitz, D.; et al. Origins Space Telescope: The Far Infrared Imager and Polarimeter FIP. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 106981A. [Google Scholar] [CrossRef]
- Sakon, I.; Roellig, T.L.; Ennico-Smith, K.; Matsuo, T.; Ikeda, Y.; Yamamuro, T.; Fujishiro, N.; Enya, K.; Takahashi, A.; Wada, T.; et al. The Mid-Infrared Imager, Spectrometer, Coronagraph (MISC) for the Origins Space Telescope (OST). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 1069817. [Google Scholar] [CrossRef]
- Matsuo, T.; Greene, T.; Roellig, T.L.; McMurray, R.E.; Johnson, R.R.; Kashani, A.; Goda, S.; Ido, M.; Ito, S.; Tsuboi, T.; et al. A Highly Stable Spectrophotometric Capability for the Origins Space Telescope (OST) Mid-Infrared Imager, Spectrometer, Coronagraph (MISC). In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 1069844. [Google Scholar] [CrossRef]
- Bradford, C.M.; Cameron, B.; Moore, B.; Amatucci, E.; Bradley, D.; Corsetti, J.; Leisawitz, D.; Moseley, S.H.; Staguhn, J.; Tuttle, J.; et al. The Origins Survey Spectrometer (OSS): A Far-IR Discovery Machine for the Origins Space Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 1069818. [Google Scholar] [CrossRef]
- Wiedner, M.C.; Aalto, S.; Amatucci, E.G.; Baryshev, A.; Battersby, C.; Belitsky, V.; Bergin, E.A.; Borgo, B.; Carter, R.C.; Cooray, A.; et al. Heterodyne Receiver for the Origins Space Telescope Concept 2. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10698, p. 106981B. [Google Scholar] [CrossRef]
- Léger, A.; Mariotti, J.M.; Mennesson, B.; Ollivier, M.; Puget, J.L.; Rouan, D.; Schneider, J. Could We Search for Primitive Life on Extrasolar Planets in the Near Future? Icarus 1996, 123, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Léger, A.; Mariotti, J.M.; Mennesson, B.; Ollivier, M.; Puget, J.L.; Rouan, D.; Schneider, J. The DARWIN project. Astrophys. Space Sci. 1996, 241, 135–146. [Google Scholar] [CrossRef]
- Fridlund, C.V.M. Darwin—The Infrared Space Interferometer. In ESA Special Publication: Darwin and Astronomy: The Infrared Space Interferometer; Schürmann, B., Ed.; European Space Agency: Noordwijk, The Netherlands, 2000; Volume 451, p. 11. [Google Scholar]
- Fridlund, C.V.M. The DARWIN Project—An ESA Cornerstone Candidate Mission. In IAU Symposium Planetary Systems in the Universe; Penny, A., Ed.; Cambridge University Press: Cambridge, UK, 2004; Volume 202, p. 451. [Google Scholar]
- Fridlund, C.V.M.; d’Arcio, L.; den Hartog, R.; Karlsson, A. Status and recent progress of the Darwin mission in the Cosmic Vision program. SPIE 2006, 6268, 62680R. [Google Scholar] [CrossRef]
- Angel, J.R.; Burge, J.H.; Woolf, N.J. Detection and Spectroscopy of Exo-Planets Like Earth. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Ardeberg, A.L., Ed.; SPIE: Bellingham, WA, USA, 1997; Volume 2871, pp. 516–519. [Google Scholar] [CrossRef]
- Woolf, N.; Angel, J.R. Astronomical Searches for Earth-Like Planets and Signs of Life. Annu. Rev. Astron. Astrophys. 1998, 36, 507–538. [Google Scholar] [CrossRef]
- Beichman, C.A.; Woolf, N.J.; Lindensmith, C.A. The Terrestrial Planet Finder (TPF): A NASA Origins Program to Search for Habitable Planets; Jet Propulsion Laboratory California: Pasadena, CA, USA, 1999. [Google Scholar]
- Bracewell, R.N. Detecting nonsolar planets by spinning infrared interferometer. Nature 1978, 274, 780–781. [Google Scholar] [CrossRef]
- Defrère, D.; Absil, O.; Beichman, C.A. Interferometric Space Missions for Exoplanet Science: Legacy of Darwin/TPF. In Handbook of Exoplanets; Springer International Publishing AG, part of Springer Nature: New York, NY, USA, 2018; p. 82. ISBN 978-3-319-55332-0. [Google Scholar] [CrossRef]
- Defrère, D.; Léger, A.; Absil, O.; Garcia Munoz, A.; Grenfell, J.L.; Godolt, M.; Loicq, J.; Kammerer, J.; Quanz, S.; Rauer, H.; et al. Characterizing the Atmosphere of Proxima b with a Space-Based Mid-Infrared Nulling Interferometer. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2018; Volume 10701, p. 107011H. [Google Scholar] [CrossRef]
- Defrère, D.; Léger, A.; Absil, O.; Beichman, C.; Biller, B.; Danchi, W.C.; Ergenzinger, K.; Eiroa, C.; Ertel, S.; Fridlund, M.; et al. Space-based infrared interferometry to study exoplanetary atmospheres. Exp. Astron. 2018, 46, 543–560. [Google Scholar] [CrossRef] [Green Version]
- Domagal-Goldman, S.D.; Segura, A.; Claire, M.W.; Robinson, T.D.; Meadows, V.S. Abiotic Ozone and Oxygen in Atmospheres Similar to Prebiotic Earth. Astrophys. J. 2014, 792, 90. [Google Scholar] [CrossRef]
- Tinetti, G.; Encrenaz, T.; Coustenis, A. Spectroscopy of planetary atmospheres in our Galaxy. Astron. Astrophys. Rev. 2013, 21, 63. [Google Scholar] [CrossRef] [Green Version]
- Bétrémieux, Y.; Kaltenegger, L. Transmission Spectrum of Earth as a Transiting Exoplanet from the Ultraviolet to the Near-infrared. Astrophys. J. Lett. 2013, 772, L31. [Google Scholar] [CrossRef]
1 | Redox chemistry adds or removes electrons from an atom or molecule (reduction or oxidation, respectively). Redox chemistry is used by all life on Earth and thought to enable more flexibility than non—redox chemistry. |
2 | |
3 | IWA is universally defined as the 50% off–axis throughput point of a coronagraphic system, expressed usually in (resolution element) |
4 |
Reductant | Oxidant | Output | Comment |
---|---|---|---|
Oxidation of Organic Matter | |||
CHO | O | CO, HO | |
Hydrogen Oxidation | |||
H | O | HO | |
H | HO | HO | |
Sulfur Compound Oxidation | |||
HS | O | SO | |
HS | O | S | |
S | O | SO | |
S | O | SO | |
Iron Oxidation | |||
Fe | O | Fe, OH | |
Ammonia Oxidation | |||
NH | O | NO, HO | Acqueous (Nitrite) |
NH | O | NO, HO | Acqueous (Nitrite) |
NO | O | NO | Biological/Abiological |
Reductant | Oxidant | Output | Comment |
---|---|---|---|
Denitrification | |||
H | NO | NO, HO | Biological/Abiological |
H | NO | NO, HO | Weak spectral feature |
H | NO | NO, HO | Weak spectral feature |
H | NO | N, HO | Metabolic product |
Fe | NO | NO, Fe | Weak spectral feature |
Fe | NO | NO, Fe | Weak spectral feature |
Fe | NO | NO, Fe | Weak spectral feature |
Fe | NO | N, Fe | Metabolic product |
Iron Reduction | |||
Organics | Fe | Fe | Anaerobic bacteria, precipitating minerals |
H | Fe | Fe, Fe | Precipitating minerals |
Sulfur Reduction | |||
Organics | SO | SO, SO, H, CO | |
H | SO | SO, SO, H | |
H | SO | SO, H | |
H | SO | S, H | |
H | SO | HS, H | |
CH | SO | HS, CO | |
Methanogenesis | |||
Organics | CO | CH, HO | |
H | CO | CH, HO | Abiotic Pathway |
Anammox | |||
NH | NO | N, HO | |
NH | NO | N, HO | |
NH | NO | N, HO | |
NH | NO | N, HO |
Input | Radiation | Output | Comment |
---|---|---|---|
Oxigenic Photosynthesis | |||
HO | O | Solid biosignature | |
Anoxygenic Photosynthesis | |||
HS | S | ||
SO | HSO | ||
S | HSO | ||
H | HO | ||
Fe | Fe | ||
NO | NO |
System | S | D [pc] | Orb. Type | a[au] | a[au] | M/MM | mM | Method |
Binary star systems | ||||||||
OGLE-2013-BLG-o341 b | ?/? | − | − | 0.702 | − | − | 1.57 | -Lens |
Kepler 68 c | G/? | 135.0 | S | 1450 | 0.0906 | 1.08/0.175 | 2.20 | Transit |
Kepler 68 b | 0.0617 | 5.98 | Transit | |||||
K2-288 b | M2V/M3V | 69.3 | S | 54.8 | 0.164 | 0.52/0.33 | 2.83 | Transit |
GJ 676 d | M0V/M3.5V | 16.45 | S | 800 | 0.0413 | 0.71/0.17 | 4.40 | RV |
Gliese 15 b | M2V/M3.5 | 3.6 | S | 93 | 0.072 | 0.38/0.15 | 5.35 | RV |
55 Cnc e | G8V/M3.5-4V | 1302 | S | 1050 | 0.0156 | 0.95/0.13 | 8.20 | Transit |
Kepler-453 AB b | ?/? | P | 0.1848 | 0.790 | 0.94/0.19 | 9.43 | Transit | |
Multiple star systems | ||||||||
System | S | D[pc] | Orb. Type | a[au] | a[au] | MM | mM | Method |
Cen AB/Prox Cen b System | ||||||||
Alpha Cen A | G2V / | 1.1 | ||||||
Alpha Cen B | K1V / | 0.934 | ||||||
Prox Cen b | M5.5V | 1.30 | 8700 | 0.0485 | 0.12 | 1.26 | RV | |
Gliese 667 ABC System | ||||||||
Gliese 667 A | K5V/ | 0.73 | ||||||
Gliese 667 B | K3V/ | 0.69 | ||||||
Gliese 667 C b | M1.5V | 43.03 | 230 | 0.0505 | 0.33 | 5.54 | RV | |
Gliese 667 C c | 0.125 | 3.74 | RV | |||||
Gliese 667 C d | 0.276 | 5.03 | RV | |||||
Gliese 667 C e | 0.213 | 2.67 | RV | |||||
Gliese 667 C f | 0.156 | 2.67 | RV | |||||
Gliese 667 Cg | 0.549 | 4.56 | RV |
Biosignatures | Example | Pros | Cons |
---|---|---|---|
Inorganic Gases | O; O; CH | Detectable | Also abiotic |
process | |||
Organic Gases | DMS; isoprene etc. | Only bio by–product | Small Concentration |
Many different Compounds | |||
Photopigments | Chlorophyll | Unique | Complex in detecting |
(surface reflectance) | and dependent on evolution | ||
Industrial | CF; CClF | complex evolved | Small Concentration |
and polluting life |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claudi, R.; Alei, E. Biosignatures Search in Habitable Planets. Galaxies 2019, 7, 82. https://doi.org/10.3390/galaxies7040082
Claudi R, Alei E. Biosignatures Search in Habitable Planets. Galaxies. 2019; 7(4):82. https://doi.org/10.3390/galaxies7040082
Chicago/Turabian StyleClaudi, Riccardo, and Eleonora Alei. 2019. "Biosignatures Search in Habitable Planets" Galaxies 7, no. 4: 82. https://doi.org/10.3390/galaxies7040082
APA StyleClaudi, R., & Alei, E. (2019). Biosignatures Search in Habitable Planets. Galaxies, 7(4), 82. https://doi.org/10.3390/galaxies7040082