Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings
Abstract
:1. Introduction
2. Theory
2.1. Nonadiabatic Phenomenology
2.2. Cosmological Models
2.3. Evolutionary Equation of State
2.4. Evolutionary Gravitational Constant and Speed of Light
3. Results
- (a)
- Assume that the error bars represented by the variance are incorrect in the same proportion for all data points in a dataset, and thus the error in estimating using Equation (30) is affected in the same proportion for all models.
- (b)
- Assume further that the standard CDM model gives , and calculate the corresponding for the degree of freedom for the dataset being analysed.
- (c)
- Compare the above value with that actually determined. Find the ratio of the two values and use it as a multiplier to normalize values of of all the models for the dataset in the category.
- (d)
- Use the normalized values of to determine the probability for each model. Consider models giving higher value than 50% better than the CDM model for the data set used, and vice versa.
4. Discussion
- (a)
- The nonadiabaticity of the universe when considered as dark energy density has redshift dependence proportional to , Equation (18).
- (b)
- Similarly, the equation state parameter for matter can be considered to evolve as Equation (23). Alternatively, the equation of state parameter for dark energy may be taken to be , Equation (24).
- (c)
- All or a portion of the nonadiabadicity of the universe may be due to the variation of the gravitational constant and the speed of light through the relation , Equation (26). This, when combined with the LLR data analysis Equation (29), yields and when we assume all the nonadiabadicity is vested in and .
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- COSINE-100 Collaboration. An experiment to search for dark-matter interactions using sodium iodide detectors. Nature 2018, 564, 83–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; He, H.L.; et al. First model independent results from DAMA/LIBRA-phase2. arXiv 2018, arXiv:1805.10486. Available online: https://arxiv.org/abs/1805.10486 (accessed on 25 June 2019).
- Farnes, J.S. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef]
- Weyl, H. Eine neue Erweiterung der Relativistätstheorie. Annalen der Physik 1919, 59, 129. [Google Scholar]
- Eddington, A.S. New Pathways in Science; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Dirac, P.A.M. The cosmological constants. Nature 1937, 139, 323. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Einstein, A. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch fur Radioaktivitat und Elektronik 1907, 4, 411–462. [Google Scholar]
- Dicke, R.H. Gravitation without a principle of equivalence. Rev. Mod. Phys. 1957, 29, 363. [Google Scholar] [CrossRef]
- Petit, J.P. An interpretation of cosmological model with variable light velocity. Mod. Phys. Lett. 1988, A3, 1527–1532. [Google Scholar] [CrossRef]
- Moffat, J.W. Superluminary universe: A possible solution to the initial value problem in cosmology. Int. J. Mod. Phys. 1993, D2, 351. [Google Scholar] [CrossRef]
- Salzano, V.; Dabrowski, M.P. Statistical hierarchy of varying speed of light theories. Astrophys. J. 2017, 851, 97. [Google Scholar] [CrossRef]
- Duff, M. Comment on time-variation of fundamental constants. arXiv 2016, arXiv:Hep-th/0208093 v4. Available online: https://arxiv.org/abs/hep-th/0208093 (accessed on 25 June 2019).
- Ellis, G.F.R.; Uzan, J.P. ‘c’ is the speed of light, isn’t it? Am. J. Phys. 2005, 73, 240–253. [Google Scholar] [CrossRef]
- Uzan, J.-P. The fundamental constants and their variation: Observational status and theoretical motivation. Rev. Mod. Phys. 2003, 75, 403. [Google Scholar] [CrossRef]
- Uzan, J.P. Varying constants, gravitation and cosmology. Living Rev. Relativ. 2011, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.J. How fundamental are fundamental constants? arXiv 2014, arXiv:1412.2040. Available online: https://arxiv.org/abs/1412.2040 (accessed on 25 June 2019).
- Chiba, T. Constancy of the constants of nature: Updates. Prog. Phys. 2011, 126, 993–1019. [Google Scholar] [CrossRef]
- Martins, C.J.A.P. The status of varying constants: A review of physics, searches and implications. Rep. Prog. Phys. 2017, 80, 126902. [Google Scholar] [CrossRef] [PubMed]
- Magueijo, J. New varying speed of light theories. Rep. Prog. Phys. 2003, 66, 2025. [Google Scholar] [CrossRef]
- Gupta, R.P. Varying physical constants, astrometric anomalies, redshift and Hubble units. Galaxies 2019, 7, 55. [Google Scholar] [CrossRef]
- Gupta, R.P. SNe Ia redshift in a nonadiabatic universe. Universe 2018, 4, 104. [Google Scholar] [CrossRef]
- Chevallier, M.; Polarski, D. Accelerating universe with scaling dark matter. Int. J. Mod. Phys. 2001, D10, 213–223. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef] [PubMed]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The complete light curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon samzple. Astrophys. J. 2018, 859, 101, data file taken from: Catalogs of Cosmologically Useful Type Ia Supernovae from Pan-STARRS (“PS1COSMO”). Available online: https://archive.stsci.edu/hlsps/ps1cosmo/scolnic/hlsp_ps1cosmo_panstarrs_gpc1_all_model_v1_lcparam-full.txt (accessed on 11 December 2018).
- Ryden, B. Introduction to Cosmology; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints of the equation of state of the universe in various parametrization. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Luongo, O.; Ruggeri, A.C. Cosmographic constraints and cosmic fluids. Galaxies 2013, 1, 216–260. [Google Scholar] [CrossRef]
- Gruber, C.; Luongo, D. Cosmographic analysis of the equation of state of the universe through Padé approximations. Phys. Rev. D 2014, 89, 103506. [Google Scholar] [CrossRef]
- Dunsby, P.K.S.; Luongo, O. On the theory and application of modern cosmography. Int. J. Geom. Meth. Mod. Phys. 2016, 13, 1630002. [Google Scholar] [CrossRef]
- Capoziello, S.; D’Agostino, R.; Luongo, O. Cosmographic Analysis with Chebyshev polynomials. Mon. Not. Roy. Astron. Soc. 2018, 476, 3924–3938. [Google Scholar] [CrossRef]
- Aviles, A.; Bravetti, A.; Capozziello, S.; Luongo, O. Precision cosmology with Padé rational approximations: Theoretical predictions versus observational limits. Phys. Rev. D 2014, 90, 043531. [Google Scholar] [CrossRef]
- Gupta, R.P. Static and dynamic components of the redshift. Int. J. Astron. Astrophys. 2018, 8, 219–229. [Google Scholar] [CrossRef]
- Hofmann, F.; Müller, J. Relativistic tests with lunar laser ranging. Class. Quant. Grav. 2018, 35, 035015. [Google Scholar] [CrossRef]
- Merkowitz, S.M. Test of gravity using lunar laser ranging. Living. Rev. Rel. 2010, 13, 7. [Google Scholar] [CrossRef]
- Gupta, R.P. Weighing Cosmological Models with SNe Ia and Gamma Ray Burst Redshift Data. Universe 2019, 5, 102. [Google Scholar] [CrossRef]
- Walker, J. Chi-Square Calculator. 2019. Available online: https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html (accessed on 25 June 2019).
- Vishwakarma, R.G.; Narlikar, J.V. Is it no longer necessary to test cosmologies with type 1a supernovae? Universe 2018, 4, 73. [Google Scholar] [CrossRef]
Action/Item | S-ΛCDM | N-ΛCDM | EdeS-NA | S-ΛCDM | N-ΛCDM | EdeS-NA | S-ΛCDM | N-ΛCDM | EdeS-NA |
---|---|---|---|---|---|---|---|---|---|
Parameterized | Model dataset z < 0.5; 832 points | Model dataset z < 1.0; 1025 points | Model dataset z < 1.5; 1042 points | ||||||
R0 | 4259 ± 34 | 4228 ± 35 | 4327 ± 18 | 4269 ± 27 | 4207 ± 29 | 4333 ± 16 | 4271 ± 26 | 4205 ± 28 | 4333 ± 16 |
Ωm,0 | 0.2601 ± 0.0457 | 0.4345 ± .035 | 1 (Fixed) | 0.2793 ± 0.0261 | 0.4069 ± 0.0219 | 1 (Fixed) | 0.2818 ± 0.0249 | 0.4042 ± 0.0210 | 1 (Fixed) |
H0 | 70.39 ± 0.56 | 70.90 ± 0.58 | 69.29 ± 0.29 | 70.23 ± 0.44 | 71.26 ± 0.49 | 69.19 ± 0.25 | 70.19 ± 0.42 | 71.30 ± 0.47 | 69.19 ± 0.25 |
χ2 | 863.5 | 861.9 | 881.2 | 1018 | 1022 | 1038 | 1033 | 1036 | 1052 |
DOF | 830 | 831 | 1023 | 1024 | 1040 | 1041 | |||
P% | 20.39 | 21.49 | 11.05 | 53.82 | 50.29 | 37.34 | 55.53 | 52.91 | 39.95 |
R2 | 0.9961 | 0.9961 | 0.9961 | 0.9969 | 0.9969 | 0.9969 | 0.9970 | 0.9970 | 0.9969 |
RMSE | 1.020 | 1.019 | 1.030 | 0.9977 | 0.9993 | 1.007 | 0.9965 | 0.9982 | 1.005 |
Model Fit | Dataset z > 0.5; 216 points | Dataset z > 0.5; 216 points | Dataset z > 0.5; 216 points | ||||||
χ2 | 176.9 | 185.7 | 175.1 | NOT APPLICABLE SINCE THIS DATASET INCLUDES THE DATASET USED TO PARAMETERIZE THE MODEL | NOT APPLICABLE SINCE THIS DATASET INCLUDES THE DATASET USED TO PARAMETERIZE THE MODEL | ||||
DOF | 216 | ||||||||
P% | 97.59 | 93.31 | 98.10 | ||||||
R2 | 0.9605 | 0.9585 | 0.9609 | ||||||
RMSE | 0.905 | 0.9271 | 0.9003 | ||||||
Model Fit | Dataset z > 1.0; 23 points | Dataset z > 1.0; 23 points | |||||||
χ2 | 19.54 | 18.81 | 17.83 | 17.59 | 16.55 | 17.95 | NOT APPLICABLE SINCE THIS DATASET INCLUDES THE DATASET USED TO PARAMETERIZE THE MODEL | ||
DOF | 23 | ||||||||
P% | 66.94 | 71.21 | 76.66 | 77.93 | 83.07 | 76.01 | |||
R2 | 0.8741 | 0.8788 | 0.8851 | 0.8867 | 0.8934 | 0.8844 | |||
RMSE | 0.9216 | 0.9044 | 0.8805 | 0.8746 | 0.8483 | 0.8834 | |||
Model Fit | Dataset z > 1.5; 6 points | ||||||||
χ2 | 4.090 | 2.066 | 3.569 | 3.167 | 1.745 | 3.649 | 3.076 | 1.731 | 3.649 |
DOF | 6 | ||||||||
P% | 66.44 | 91.35 | 73.49 | 78.76 | 94.15 | 72.40 | 79.92 | 94.27 | 72.40 |
R2 | 0.5993 | 0.7975 | 0.6504 | 0.6897 | 0.8291 | 0.6424 | 0.6986 | 0.8304 | 0.6424 |
RMSE | 0.8256 | 0.5869 | 0.7712 | 0.7265 | 0.5392 | 0.7799 | 0.716 | 0.5371 | 0.7799 |
Action/Item | S-ΛCDM | N-ΛCDM | EdeS-NA | S-ΛCDM | N-ΛCDM | EdeS-NA | S-ΛCDM | N-ΛCDM | EdeS-NA |
---|---|---|---|---|---|---|---|---|---|
Parameterized | Model dataset z < 0.5; 832 points | Model dataset z < 1.0; 1025 points | Model dataset z < 1.5; 1042 points | ||||||
Normalized χ2 | 829.3 | 827.8 | 846.3 | 1018 | 1022 | 1038 | 1033 | 1036 | 1052 |
DOF | 830 | 831 | 1023 | 1024 | 1040 | 1041 | |||
Normalized P% | 50.00 | 51.50 | 34.85 | 50.00 | 46.77 | 34.08 | 50.00 | 47.66 | 35.00 |
Model Fit | Dataset z > 0.5; 216 points | Dataset z > 0.5; 216 points | Dataset z > 0.5; 216 points | ||||||
Normalized χ2 | 215.3 | 226 | 213.1 | NOT APPLICABLE SINCE THIS DATASET INCLUDES THE DATASET USED TO PARAMETERIZE THE MODEL | NOT APPLICABLE SINCE THIS DATASET INCLUDES THE DATASET USED TO PARAMETERIZE THE MODEL | ||||
DOF | 216 | ||||||||
Normalized P% | 50.00 | 30.64 | 54.30 | ||||||
Model Fit | Dataset z > 1.0; 23 points | Dataset z > 1.0; 23 points | |||||||
Normalized χ2 | 22.34 | 21.50 | 20.38 | 22.34 | 21.02 | 22.79 | NOT APPLICABLE SINCE THIS DATASET INCLUDES THE DATASET USED TO PARAMETERIZE THE MODEL | ||
DOF | 23 | ||||||||
Normalized P% | 50.00 | 55.05 | 61.88 | 50.00 | 57.98 | 47.30 | |||
Model Fit | Dataset z > 1.5; 6 points | ||||||||
Normalized χ2 | 5.348 | 2.702 | 4.667 | 5.348 | 2.947 | 6.162 | 5.348 | 3.019 | 6.344 |
DOF | 6 | ||||||||
Normalized P% | 50.00 | 84.52 | 58.71 | 50.00 | 81.54 | 40.52 | 50.00 | 80.64 | 38.57 |
Average P% | 50.00 | 55.43 | 52.44 | 50.00 | 62.10 | 40.63 | 50.00 | 64.15 | 36.79 |
Av. Pred. P% | 50.00 | 56.74 | 58.30 | 50.00 | 69.76 | 43.91 | 50.00 | 80.64 | 38.57 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.P. Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings. Galaxies 2019, 7, 67. https://doi.org/10.3390/galaxies7030067
Gupta RP. Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings. Galaxies. 2019; 7(3):67. https://doi.org/10.3390/galaxies7030067
Chicago/Turabian StyleGupta, Rajendra P. 2019. "Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings" Galaxies 7, no. 3: 67. https://doi.org/10.3390/galaxies7030067
APA StyleGupta, R. P. (2019). Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings. Galaxies, 7(3), 67. https://doi.org/10.3390/galaxies7030067