From Primordial Seed Magnetic Fields to the Galactic Dynamo
Abstract
:1. Introduction
2. Early Universe Origin
2.1. Generation During Inflation
Constraints and Caveats
2.2. Generation During Phase Transitions
2.2.1. Magnetic Field Evolution in the Early Universe
2.2.2. Predicted Field Strengths and Coherence Scales
3. Astrophysical Batteries and Seed Magnetic Fields
3.1. Biermann Batteries
3.2. Battery Due to Interaction with Radiation
3.3. Plasma Effects
3.4. Seed Fields from Stars and Active Galactic Nuclei (AGN)
3.5. Large-Scale Seed Magnetic Field from Small Scale Fields
4. Turbulent Dynamos and Their Challenges
4.1. Fluctuation or Small-Scale Dynamos
4.2. Mean-Field or Large-Scale Dynamos and Galactic Magnetism
4.2.1. Magnetic Helicity Conservation
4.2.2. Mean-Field Dynamo in Presence of the Fluctuation Dynamo
5. Final Thoughts
Funding
Acknowledgments
Conflicts of Interest
References
- Fletcher, A. Magnetic Fields in Nearby Galaxies. In The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey; Kothes, R., Landecker, T.L., Willis, A.G., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2010; Volume 438, p. 197. [Google Scholar]
- Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2016, 24, 4. [Google Scholar] [CrossRef]
- Haverkorn, M.; Brown, J.C.; Gaensler, B.M.; McClure-Griffiths, N.M. The Outer Scale of Turbulence in the Magnetoionized Galactic Interstellar Medium. Astrophys. J. 2008, 680, 362–370. [Google Scholar] [CrossRef]
- Bernet, M.L.; Miniati, F.; Lilly, S.J.; Kronberg, P.P.; Dessauges-Zavadsky, M. Strong magnetic fields in normal galaxies at high redshift. Nature 2008, 454, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Farnes, J.S.; O’Sullivan, S.P.; Corrigan, M.E.; Gaensler, B.M. Faraday Rotation from Magnesium II Absorbers toward Polarized Background Radio Sources. Astrophys. J. 2014, 795, 63. [Google Scholar] [CrossRef]
- Mao, S.A.; Carilli, C.; Gaensler, B.M.; Wucknitz, O.; Keeton, C.; Basu, A.; Beck, R.; Kronberg, P.P.; Zweibel, E. Detection of microgauss coherent magnetic fields in a galaxy five billion years ago. Nat. Astron. 2017, 1, 621–626. [Google Scholar] [CrossRef]
- Govoni, F.; Feretti, L. Magnetic fields in clusters of galaxies. Int. J. Mod. Phys. D 2004, 13, 1549–1594. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science 2010, 328, 73. [Google Scholar] [CrossRef]
- Taylor, A.M.; Vovk, I.; Neronov, A. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 2011, 529, A144. [Google Scholar] [CrossRef]
- Broderick, A.E.; Chang, P.; Pfrommer, C. The Cosmological Impact of Luminous TeV Blazars. I. Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. Astrophys. J. 2012, 752, 22. [Google Scholar] [CrossRef]
- Dib, S.; Bell, E.; Burkert, A. The Supernova Rate-Velocity Dispersion Relation in the Interstellar Medium. Astrophys. J. 2006, 638, 797–810. [Google Scholar] [CrossRef]
- Armstrong, J.W.; Cordes, J.M.; Rickett, B.J. Density power spectrum in the local interstellar medium. Nature 1981, 291, 561–564. [Google Scholar] [CrossRef]
- Durrer, R.; Neronov, A. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 2013, 21, 62. [Google Scholar] [CrossRef]
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. Rep. Progr. Phys. 2016, 79, 076901. [Google Scholar] [CrossRef]
- Trivedi, P.; Subramanian, K.; Seshadri, T.R. Primordial magnetic field limits from the CMB trispectrum: Scalar modes and Planck constraints. Phys. Rev. D 2014, 89, 043523. [Google Scholar] [CrossRef]
- Pandey, K.L.; Choudhury, T.R.; Sethi, S.K.; Ferrara, A. Reionization constraints on primordial magnetic fields. Mon. Not. Roy. Astron. Soc. 2015, 451, 1692–1700. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; et al. Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys. 2016, 594, A19. [Google Scholar]
- Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 1988, 37, 2743–2754. [Google Scholar] [CrossRef]
- Ratra, B. Cosmological ’seed’ magnetic field from inflation. Astrophys. J. Lett. 1992, 391, L1–L4. [Google Scholar] [CrossRef]
- Martin, J.; Yokoyama, J. Generation of large scale magnetic fields in single-field inflation. J. Cosmol. Astropart. Phys. 2008, 1, 25. [Google Scholar] [CrossRef]
- Fujita, T.; Mukohyama, S. Universal upper limit on inflation energy scale from cosmic magnetic field. J. Cosmol. Astropart. Phys. 2012, 10, 034. [Google Scholar] [CrossRef]
- Demozzi, V.; Mukhanov, V.; Rubinstein, H. Magnetic fields from inflation? J. Cosmol. Astropart. Phys. 2009, 8, 25. [Google Scholar] [CrossRef]
- Kobayashi, T.; Afshordi, N. Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe. J. High Energy Phys. 2014, 10, 166. [Google Scholar] [CrossRef]
- Sharma, R.; Jagannathan, S.; Seshadri, T.R.; Subramanian, K. Challenges in inflationary magnetogenesis: Constraints from strong coupling, backreaction, and the Schwinger effect. Phys. Rev. D 2017, 96, 083511. [Google Scholar] [CrossRef]
- Sharma, R.; Subramanian, K.; Seshadri, T.R. Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis. Phys. Rev. D 2018, 97, 083503. [Google Scholar] [CrossRef]
- Hogan, C.J. Magnetohydrodynamic effects of a first-order cosmological phase transition. Phys. Rev. Lett. 1983, 51, 1488–1491. [Google Scholar] [CrossRef]
- Baym, G.; Bödeker, D.; McLerran, L. Magnetic fields produced by phase transition bubbles in the electroweak phase transition. Phys. Rev. D 1996, 53, 662–667. [Google Scholar] [CrossRef]
- Quashnock, J.M.; Loeb, A.; Spergel, D.N. Magnetic field generation during the cosmological QCD phase transition. Astrophys. J. Lett. 1989, 344, L49–L51. [Google Scholar] [CrossRef]
- Sigl, G.; Olinto, A.V.; Jedamzik, K. Primordial magnetic fields from cosmological first order phase transitions. Phys. Rev. D 1997, 55, 4582–4590. [Google Scholar] [CrossRef]
- Vachaspati, T. Magnetic fields from cosmological phase transitions. Phys. Lett. B 1991, 265, 258–261. [Google Scholar] [CrossRef]
- Cornwall, J.M. Speculations on primordial magnetic helicity. Phys. Rev. D 1997, 56, 6146–6154. [Google Scholar] [CrossRef]
- Vachaspati, T. Estimate of the Primordial Magnetic Field Helicity. Phys. Rev. Lett. 2001, 87, 251302. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma. Phys. Rev. Lett. 2012, 109, 111602. [Google Scholar] [CrossRef]
- Brandenburg, A.; Schober, J.; Rogachevskii, I.; Kahniashvili, T.; Boyarsky, A.; Fröhlich, J.; Ruchayskiy, O.; Kleeorin, N. The Turbulent Chiral Magnetic Cascade in the Early Universe. Astrophys. J. Lett. 2017, 845, L21. [Google Scholar] [CrossRef]
- Brandenburg, A.; Enqvist, K.; Olesen, P. Large-scale magnetic fields from hydromagnetic turbulence in the very early Universe. Phys. Rev. D 1996b, 54, 1291–1300. [Google Scholar] [CrossRef]
- Banerjee, R.; Jedamzik, K. Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present. Phys. Rev. D 2004, 70, 123003. [Google Scholar] [CrossRef]
- Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Brandenburg, A.; Kahniashvili, T.; Tevzadze, A.G. Nonhelical Inverse Transfer of a Decaying Turbulent Magnetic Field. Phys. Rev. Lett. 2015, 114, 075001. [Google Scholar] [CrossRef]
- Reppin, J.; Banerjee, R. Nonhelical turbulence and the inverse transfer of energy: A parameter study. Phys. Rev. E 2017, 96, 053105. [Google Scholar] [CrossRef]
- Christensson, M.; Hindmarsh, M.; Brandenburg, A. Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. Phys. Rev. E 2001, 64, 056405. [Google Scholar] [CrossRef]
- Kahniashvili, T.; Brandenburg, A.; Tevzadze, A.G. The evolution of primordial magnetic fields since their generation. Phys. Scr. 2016, 91, 104008. [Google Scholar] [CrossRef]
- Schlickeiser, R.; Ibscher, D.; Supsar, M. Plasma Effects on Fast Pair Beams in Cosmic Voids. Astrophys. J. 2012, 758, 102. [Google Scholar] [CrossRef]
- Miniati, F.; Elyiv, A. Relaxation of Blazar-induced Pair Beams in Cosmic Voids. Astrophys. J. 2013, 770, 54. [Google Scholar] [CrossRef]
- Chang, P.; Broderick, A.E.; Pfrommer, C.; Puchwein, E.; Lamberts, A.; Shalaby, M. The Effect of Nonlinear Landau Damping on Ultrarelativistic Beam Plasma Instabilities. Astrophys. J. 2014, 797, 110. [Google Scholar] [CrossRef]
- Kempf, A.; Kilian, P.; Spanier, F. Energy loss of intergalactic pair beams: Particle-in-Cell simulation. arXiv 2015, arXiv:astro-ph.HE/1512.00662. [Google Scholar] [CrossRef]
- Broderick, A.E.; Tiede, P.; Chang, P.; Lamberts, A.; Pfrommer, C.; Puchwein, E.; Shalaby, M.; Werhahn, M. Missing Gamma-Ray Halos and the Need for New Physics in the Gamma-Ray Sky. Astrophys. J. 2018, 868, 87. [Google Scholar] [CrossRef]
- Bertone, S.; Vogt, C.; Enßlin, T. Magnetic field seeding by galactic winds. Mon. Not. Roy. Astron. Soc. 2006, 370, 319–330. [Google Scholar] [CrossRef]
- Samui, S.; Subramanian, K.; Srianand, R. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM. Mon. Not. Roy. Astron. Soc. 2018, 476, 1680–1695. [Google Scholar] [CrossRef]
- Schwarz, D.J.; Stuke, M. Lepton asymmetry and the cosmic QCD transition. J. Cosmol. Astropart. Phys. 2009, 11, 25. [Google Scholar] [CrossRef]
- Grojean, C.; Servant, G.; Wells, J.D. First-order electroweak phase transition in the standard model with a low cutoff. Phys. Rev. D 2005, 71, 036001. [Google Scholar] [CrossRef]
- Huber, S.J.; Konstandin, T.; Prokopec, T.; Schmidt, M.G. Baryogenesis in the MSSM, nMSSM and NMSSM. Nuclear Phys. A 2007, 785, 206–209. [Google Scholar] [CrossRef]
- Csikor, F.; Fodor, Z.; Heitger, J. The electroweak phase transition at mH≈ 80 GeV from Lt = 2 lattices. Nuclear Phys. B Proc. Suppl. 1998, 63, 569–571. [Google Scholar] [CrossRef]
- Aoki, Y.; Endrődi, G.; Fodor, Z.; Katz, S.D.; Szabó, K.K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef]
- Caprini, C.; Durrer, R.; Servant, G. The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. J. Cosmol. Astropart. Phys. 2009, 12, 024. [Google Scholar] [CrossRef]
- Caprini, C.; Figueroa, D.G. Cosmological backgrounds of gravitational waves. Class. Quantum Gravity 2018, 35, 163001. [Google Scholar] [CrossRef]
- Roper Pol, A.; Mandal, S.; Brandenburg, A.; Kahniashvili, T.; Kosowsky, A. Numerical Simulations of Gravitational Waves from Early-Universe Turbulence. arXiv 2019, arXiv:1903.08585. [Google Scholar]
- Sharma, R.; Subramanian, K.; Seshadri, T.R. Gravitational wave generation in a viable scenario of inflationary magnetogenesis. Unpublished work, in preparation.
- Biermann, L. Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter). Z. Naturforsch. A 1950, 5, 65. [Google Scholar]
- Mestel, L.; Roxburgh, I.W. On the thermal generation of toroidal magnetic fields in rotating stars. Astrophys. J. 1962, 136, 615. [Google Scholar] [CrossRef]
- Subramanian, K.; Narasimha, D.; Chitre, S.M. Thermal generation of cosmological seed magnetic fields in ionization fronts. Mon. Not. Roy. Astron. Soc. 1994, 271, L15. [Google Scholar] [CrossRef]
- Kulsrud, R.M.; Cen, R.; Ostriker, J.P.; Ryu, D. The protogalactic origin for cosmic magnetic fields. Astrophys. J. 1997, 480, 481–491. [Google Scholar] [CrossRef]
- Gnedin, N.Y.; Ferrara, A.; Zweibel, E.G. Generation of the Primordial Magnetic Fields during Cosmological Reionization. Astrophys. J. 2000, 539, 505–516. [Google Scholar] [CrossRef]
- Gopal, R.; Sethi, S.K. Generation of magnetic field in the pre-recombination era. Mon. Not. Roy. Astron. Soc. 2005, 363, 521–528. [Google Scholar] [CrossRef]
- Matarrese, S.; Mollerach, S.; Notari, A.; Riotto, A. Large-scale magnetic fields from density perturbations. Phys. Rev. D 2005, 71, 043502. [Google Scholar] [CrossRef]
- Takahashi, K.; Ichiki, K.; Ohno, H.; Hanayama, H. Magnetic Field Generation from Cosmological Perturbations. Phys. Rev. Lett. 2005, 95, 121301. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Maartens, R.; Shiromizu, T.; Takahashi, K. Cosmological magnetic fields from nonlinear effects. Phys. Rev. D 2007, 75, 103501. [Google Scholar] [CrossRef]
- Durrive, J.B.; Langer, M. Intergalactic magnetogenesis at Cosmic Dawn by photoionization. Mon. Not. Roy. Astron. Soc. 2015, 453, 345–356. [Google Scholar] [CrossRef]
- Durrive, J.B.; Tashiro, H.; Langer, M.; Sugiyama, N. Mean energy density of photogenerated magnetic fields throughout the Epoch of Reionization. Mon. Not. Roy. Astron. Soc. 2017, 472, 1649–1658. [Google Scholar] [CrossRef]
- Weibel, E.S. Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution. Phys. Rev. Lett. 1959, 2, 83–84. [Google Scholar] [CrossRef]
- Fried, B.D. Mechanism for Instability of Transverse Plasma Waves. Phys. Fluids 1959, 2, 337. [Google Scholar] [CrossRef]
- Medvedev, M.V.; Silva, L.O.; Kamionkowski, M. Cluster Magnetic Fields from Large-Scale Structure and Galaxy Cluster Shocks. Astrophys. J. Lett. 2006, 642, L1–L4. [Google Scholar] [CrossRef]
- Lazar, M.; Schlickeiser, R.; Wielebinski, R.; Poedts, S. Cosmological Effects of Weibel-Type Instabilities. Astrophys. J. 2009, 693, 1133–1141. [Google Scholar] [CrossRef]
- Kato, T.N.; Takabe, H. Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas. Astrophys. J. Lett. 2008, 681, L93. [Google Scholar] [CrossRef]
- Chang, P.; Spitkovsky, A.; Arons, J. Long-Term Evolution of Magnetic Turbulence in Relativistic Collisionless Shocks: Electron-Positron Plasmas. Astrophys. J. 2008, 674, 378–387. [Google Scholar] [CrossRef]
- Ruzmaikin, A.A.; Shukurov, A.M.; Sokoloff, D.D. Magnetic Fields of Galaxies; Kluwer: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Rees, M.J. The origin and cosmogonic implications of seed magnetic fields. Quart. J. Roy. Astron. Soc. 1987, 28, 197–206. [Google Scholar]
- Rees, M.J. Magnetic Fields in the Early Universe. In Cosmic Magnetic Fields; Wielebinski, R., Beck, R., Eds.; Lecture Notes in Physics; Springer: Berlin, Germany, 2005; Volume 664, p. 1. [Google Scholar]
- Rees, M.J. Origin of cosmic magnetic fields. Astron. Nachr. 2006, 327, 395. [Google Scholar] [CrossRef]
- Durrer, R.; Caprini, C. Primordial magnetic fields and causality. J. Cosmol. Astropart. Phys. 2003, 11, 10. [Google Scholar] [CrossRef]
- Subramanian, K. Unified treatment of small- and large-scale dynamos in helical turbulence. Phys. Rev. Lett. 1999, 83, 2957–2960. [Google Scholar] [CrossRef]
- Brandenburg, A.; Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 2005, 417, 1–209. [Google Scholar] [CrossRef]
- Elmegreen, B.G.; Scalo, J. Interstellar Turbulence I: Observations and Processes. Ann. Rev. Astron. Astrophys. 2004, 42, 211–273. [Google Scholar] [CrossRef]
- Klessen, R.S.; Hennebelle, P. Accretion-driven turbulence as universal process: Galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 2010, 520, A17. [Google Scholar] [CrossRef]
- Elmegreen, B.G.; Burkert, A. Accretion-Driven Turbulence and the Transition to Global Instability in Young Galaxy Disks. Astrophys. J. 2010, 712, 294–302. [Google Scholar] [CrossRef]
- Ceverino, D.; Dekel, A.; Bournaud, F. High-redshift clumpy discs and bulges in cosmological simulations. Mon. Not. Roy. Astron. Soc. 2010, 404, 2151–2169. [Google Scholar] [CrossRef]
- Latif, M.A.; Schleicher, D.R.G.; Schmidt, W.; Niemeyer, J. The small-scale dynamo and the amplification of magnetic fields in massive primordial haloes. Mon. Not. Roy. Astron. Soc. 2013, 432, 668–678. [Google Scholar] [CrossRef]
- Martin-Alvarez, S.; Devriendt, J.; Slyz, A.; Teyssier, R. A three-phase amplification of the cosmic magnetic field in galaxies. Mon. Not. Roy. Astron. Soc. 2018, 479, 3343–3365. [Google Scholar] [CrossRef]
- Kazantsev, A.P. On magnetic field amplification in a conducting fluid. J. Exp. Theor. Phys 1967, 53, 1807–1813. [Google Scholar]
- Rogachevskii, I.; Kleeorin, N. Intermittency and anomalous scaling for magnetic fluctuations. Phys. Rev. E 1997, 56, 417–426. [Google Scholar] [CrossRef]
- Schober, J.; Schleicher, D.R.G.; Federrath, C.; Bovino, S.; Klessen, R.S. Saturation of the turbulent dynamo. Phys. Rev. E 2015, 92, 023010. [Google Scholar] [CrossRef]
- Martins Afonso, M.; Mitra, D.; Vincenzi, D. Kazantsev dynamo in turbulent compressible flows. Proc. R. Soc. A 2019, 475, 20180591. [Google Scholar] [CrossRef]
- Kulsrud, R.M.; Anderson, S.W. The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field. Astrophys. J. 1992, 396, 606–630. [Google Scholar] [CrossRef]
- Subramanian, K. Can the turbulent galactic dynamo generate large-scale magnetic fields? Mon. Not. Roy. Astron. Soc. 1998, 294, 718–728. [Google Scholar] [CrossRef]
- Haugen, N.E.; Brandenburg, A.; Dobler, W. Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E 2004, 70, 016308. [Google Scholar] [CrossRef]
- Schekochihin, A.A.; Cowley, S.C.; Taylor, S.F.; Maron, J.L.; McWilliams, J.C. Simulations of the small-scale turbulent dynamo. Astrophys. J. 2004, 612, 276–307. [Google Scholar] [CrossRef]
- Cho, J.; Ryu, D. Characteristic lengths of magnetic field in magnetohydrodynamic turbulence. Astrophys. J. Lett. 2009, 705, L90–L94. [Google Scholar] [CrossRef]
- Bhat, P.; Subramanian, K. Fluctuation dynamos and their Faraday rotation signatures. Mon. Not. Roy. Astron. Soc. 2013, 429, 2469–2481. [Google Scholar] [CrossRef]
- Porter, D.H.; Jones, T.W.; Ryu, D. Vorticity, Shocks, and Magnetic Fields in Subsonic, ICM-like Turbulence. Astrophys. J. 2015, 810, 93. [Google Scholar] [CrossRef]
- Tobias, S.; Cattaneo, F.; Boldyrev, S. MHD Dynamos and Turbulence. In Ten Chapters in Turbulence; Davidson, P.A., Kaneda, Y., Sreenivasan, K.R., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 351–404. [Google Scholar]
- Federrath, C. Magnetic field amplification in turbulent astrophysical plasmas. J. Plasma Phys. 2016, 82, 535820601. [Google Scholar] [CrossRef]
- Sur, S.; Bhat, P.; Subramanian, K. Faraday rotation signatures of fluctuation dynamos in young galaxies. Mon. Not. Roy. Astron. Soc. 2018, 475, L72–L76. [Google Scholar] [CrossRef]
- Haugen, N.E.L.; Brandenburg, A.; Mee, A.J. Mach number dependence of the onset of dynamo action. Mon. Not. Roy. Astron. Soc. 2004, 353, 947–952. [Google Scholar] [CrossRef]
- Federrath, C.; Chabrier, G.; Schober, J.; Banerjee, R.; Klessen, R.S.; Schleicher, D.R.G. Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows. Phys. Rev. Lett. 2011, 107, 114504. [Google Scholar] [CrossRef] [PubMed]
- Eyink, G.L.; Vishniac, E.; Lalescu, C.; Aluie, H.; Kanov, K.; Bürger, K.; Burns, R.; Meneveau, C.; Szalay, A. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence. Nature 2013, 497, 466–469. [Google Scholar] [CrossRef]
- Subramanian, K.; Shukurov, A.; Haugen, N.E.L. Evolving turbulence and magnetic fields in galaxy clusters. Mon. Not. Roy. Astron. Soc. 2006, 366, 1437–1454. [Google Scholar] [CrossRef]
- Baggaley, A.W.; Barenghi, C.F.; Shukurov, A.; Subramanian, K. Reconnecting flux-rope dynamo. Phys. Rev. E 2009, 80, 055301. [Google Scholar] [CrossRef]
- Rincon, F.; Califano, F.; Schekochihin, A.A.; Valentini, F. Turbulent dynamo in a collisionless plasma. Proc. Natl. Acad. Sci. USA 2016, 113, 3950–3953. [Google Scholar] [CrossRef]
- St-Onge, D.A.; Kunz, M.W. Fluctuation Dynamo in a Collisionless, Weakly Magnetized Plasma. Astrophys. J. Lett. 2018, 863, L25. [Google Scholar] [CrossRef]
- Rieder, M.; Teyssier, R. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields - I. The kinematic phase. Mon. Not. Roy. Astron. Soc. 2016, 457, 1722–1738. [Google Scholar] [CrossRef]
- Rieder, M.; Teyssier, R. A small-scale dynamo in feedback-dominated galaxies—III. Cosmological simulations. Mon. Not. Roy. Astron. Soc. 2017, 472, 4368–4373. [Google Scholar] [CrossRef]
- Pakmor, R.; Gómez, F.A.; Grand, R.J.J.; Marinacci, F.; Simpson, C.M.; Springel, V.; Campbell, D.J.R.; Frenk, C.S.; Guillet, T.; Pfrommer, C.; et al. Magnetic field formation in the Milky Way like disc galaxies of the Auriga project. Mon. Not. Roy. Astron. Soc. 2017, 469, 3185–3199. [Google Scholar] [CrossRef]
- Marinacci, F.; Vogelsberger, M.; Pakmor, R.; Torrey, P.; Springel, V.; Hernquist, L.; Nelson, D.; Weinberger, R.; Pillepich, A.; Naiman, J.; et al. First results from the IllustrisTNG simulations: Radio haloes and magnetic fields. Mon. Not. Roy. Astron. Soc. 2018, 480, 5113–5139. [Google Scholar] [CrossRef]
- Gressel, O.; Elstner, D.; Ziegler, U.; Rüdiger, G. Direct simulations of a supernova-driven galactic dynamo. Astron. Astrophys. 2008, 486, L35–L38. [Google Scholar] [CrossRef]
- Gent, F.A.; Shukurov, A.; Sarson, G.R.; Fletcher, A.; Mantere, M.J. The supernova-regulated ISM - II. The mean magnetic field. Mon. Not. Roy. Astron. Soc. 2013, 430, L40–L44. [Google Scholar] [CrossRef]
- Bendre, A.; Gressel, O.; Elstner, D. Dynamo saturation in direct simulations of the multi-phase turbulent interstellar medium. Astron. Nachr. 2015, 336, 991. [Google Scholar] [CrossRef]
- Balsara, D.S.; Kim, J.; Mac Low, M.M.; Mathews, G.J. Amplification of Interstellar Magnetic Fields by Supernova-driven Turbulence. Astrophys. J. 2004, 617, 339–349. [Google Scholar] [CrossRef]
- Churchill, C.W.; Kacprzak, G.G.; Steidel, C.C. MgII Absorption through Intermediate Redshift Galaxies; IAU Colloq. 199: Probing Galaxies through Quasar Absorption Lines; Williams, P., Shu, C.G., Menard, B., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 24–41. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence, Vols I and II; Dover: Mineola, NY, USA, 2007. [Google Scholar]
- Shukurov, A. Mesoscale magnetic structures in spiral galaxies. In Cosmic Magnetic Fields; Wielebinski, R., Beck, R., Eds.; Lecture Notes in Physics; Springer: Berlin, Germany, 2005; Volume 664, p. 113. [Google Scholar]
- Shukurov, A.; Subramanian, K. Astrophysical Magnetic Fields: From Galaxies to the Early Universe; Cambridge University Press: Cambridge, UK, 2019; in Preparation. [Google Scholar]
- Berger, M.A.; Field, G.B. The topological properties of magnetic helicity. J. Fluid Mech. 1984, 147, 133–148. [Google Scholar] [CrossRef]
- Blackman, E.G. Magnetic Helicity and Large Scale Magnetic Fields: A Primer. Space Sci. Rev. 2015, 188, 59–91. [Google Scholar] [CrossRef]
- Pouquet, A.; Frisch, U.; Leorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 1976, 77, 321–354. [Google Scholar] [CrossRef]
- Blackman, E.G.; Field, G.B. New dynamical mean-field dynamo theory and closure approach. Phys. Rev. Lett. 2002, 89, 265007. [Google Scholar] [CrossRef] [PubMed]
- Rädler, K.H.; Kleeorin, N.; Rogachevskii, I. The mean electromotive force for MHD turbulence: The case of a weak mean magnetic field and slow rotation. Geophys. Astrophys. Fluid Dyn. 2003, 97, 249–274. [Google Scholar] [CrossRef]
- Blackman, E.G.; Field, G.B. Constraints on the magnitude of α in dynamo theory. Astrophys. J. 2000, 534, 984–988. [Google Scholar] [CrossRef]
- Subramanian, K.; Brandenburg, A. Magnetic helicity density and its flux in weakly inhomogeneous turbulence. Astrophys. J. Lett. 2006, 648, L71–L74. [Google Scholar] [CrossRef]
- Moffatt, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117–129. [Google Scholar] [CrossRef]
- Shukurov, A.; Sokoloff, D.; Subramanian, K.; Brandenburg, A. Galactic dynamo and helicity losses through fountain flow. Astron. Astrophys. 2006, 448, L33–L36. [Google Scholar] [CrossRef]
- Sur, S.; Shukurov, A.; Subramanian, K. Galactic dynamos supported by magnetic helicity fluxes. Mon. Not. Roy. Astron. Soc. 2007, 377, 874–882. [Google Scholar] [CrossRef]
- Vishniac, E.T.; Cho, J. Magnetic helicity conservation and astrophysical dynamos. Astrophys. J. 2001, 550, 752–760. [Google Scholar] [CrossRef]
- Kleeorin, N.; Moss, D.; Rogachevskii, I.; Sokoloff, D. Helicity balance and steady-state strength of the dynamo generated galactic magnetic field. Astron. Astrophys. 2000, 361, L5–L8. [Google Scholar]
- Kleeorin, N.; Moss, D.; Rogachevskii, I.; Sokoloff, D. The role of magnetic helicity transport in nonlinear galactic dynamos. Astron. Astrophys. 2002, 387, 453–462. [Google Scholar] [CrossRef]
- Mitra, D.; Candelaresi, S.; Chatterjee, P.; Tavakol, R.; Brandenburg, A. Equatorial magnetic helicity flux in simulations with different gauges. Astron. Nachr. 2010, 331, 130. [Google Scholar] [CrossRef]
- Vishniac, E.T. A Simple Model for the Galactic Dynamo. In American Astronomical Society Meeting Abstracts #220; American Astronomical Society: Washington, DC, USA, 2012; Volume 220, p. 308.05. [Google Scholar]
- Gopalakrishnan, K.; Subramanian, K. Magnetic helicity fluxes from triple correlators. Unpublished work, in preparation.
- Chamandy, L.; Shukurov, A.; Subramanian, K. Magnetic spiral arms and galactic outflows. Mon. Not. Roy. Astron. Soc. 2015, 446, L6–L10. [Google Scholar] [CrossRef]
- Beck, R.; Hoernes, P. Magnetic spiral arms in the galaxy NGC 6946. Nature 1996, 379, 47–49. [Google Scholar] [CrossRef]
- Chamandy, L.; Subramanian, K.; Shukurov, A. Galactic spiral patterns and dynamo action - I. A new twist on magnetic arms. Mon. Not. Roy. Astron. Soc. 2013, 428, 3569–3589. [Google Scholar] [CrossRef]
- Rodrigues, L.F.S.; Shukurov, A.; Fletcher, A.; Baugh, C.M. Galactic magnetic fields and hierarchical galaxy formation. Mon. Not. Roy. Astron. Soc. 2015, 450, 3472–3489. [Google Scholar] [CrossRef]
- Rodrigues, L.F.S.; Chamandy, L.; Shukurov, A.; Baugh, C.M.; Taylor, A.R. Evolution of galactic magnetic fields. Mon. Not. Roy. Astron. Soc. 2019, 483, 2424–2440. [Google Scholar] [CrossRef]
- Bhat, P.; Subramanian, K.; Brandenburg, A. A unified large/small-scale dynamo in helical turbulence. Mon. Not. Roy. Astron. Soc. 2016, 461, 240–247. [Google Scholar] [CrossRef]
- Subramanian, K.; Brandenburg, A. Traces of large-scale dynamo action in the kinematic stage. Mon. Not. Roy. Astron. Soc. 2014, 445, 2930–2940. [Google Scholar] [CrossRef]
- Bhat, P.; Subramanian, K.; Brandenburg, A. A tale of two dynamos. Unpublished work, in preparation.
- Gaensler, B.M.; Beck, R.; Feretti, L. The origin and evolution of cosmic magnetism. New. Astron. Rev. 2004, 48, 1003–1012. [Google Scholar] [CrossRef]
- Roy, S.; Sur, S.; Subramanian, K.; Mangalam, A.; Seshadri, T.R.; Chand, H. Probing Magnetic Fields with Square Kilometre Array and its Precursors. J. Astrophys. Astron. 2016, 37, 42. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, K. From Primordial Seed Magnetic Fields to the Galactic Dynamo. Galaxies 2019, 7, 47. https://doi.org/10.3390/galaxies7020047
Subramanian K. From Primordial Seed Magnetic Fields to the Galactic Dynamo. Galaxies. 2019; 7(2):47. https://doi.org/10.3390/galaxies7020047
Chicago/Turabian StyleSubramanian, Kandaswamy. 2019. "From Primordial Seed Magnetic Fields to the Galactic Dynamo" Galaxies 7, no. 2: 47. https://doi.org/10.3390/galaxies7020047
APA StyleSubramanian, K. (2019). From Primordial Seed Magnetic Fields to the Galactic Dynamo. Galaxies, 7(2), 47. https://doi.org/10.3390/galaxies7020047