Magnetizing the Cosmic Web during Reionization
Abstract
:1. Introduction
2. Outline of the Physical Mechanism
3. Resulting Magnetic Fields
4. Average Magnetic Energy Density Seeded in the IGM
- First, along the lines outlined in Section 2, we considered an isolated source and a gas inhomogeneity in its vicinity. We then condensed all the details into a simpler and more tractable version of the results we obtained in [53]. We then derived an efficient expression for the magnetic energy density associated with any cloud of mass m at a given distance D of the ionizing source.
- Second, we summed up the contributions of all the clouds surrounding the source. For this, we needed to estimate the distribution of such baryonic clouds, which we did by considering their underlying DM halos. Using the PS formalism, we obtained that the source, contained in a DM halo of mass M, contributes to the magnetization of the IGM by injecting a magnetic energy density
- Third, we considered the full cosmological context, as illustrated in the right panel of Figure 3. The energy density generated around each source must be integrated over the distribution of DM halos containing the sources. However, ionized bubbles of individual sources start to overlap toward the end of the epoch of reionization. Since the mechanism outlined in Section 2 takes place only in the neutral IGM, the efficiency of magnetic field generation actually decreases as reionization proceeds. Hence, we weighed the contribution of all sources by a factor (where is the volume filling factor of ionized bubbles at redshift z) when summing them up in order to reduce the generated magnetic field energy as time increases according to the ionization of the IGM. We thus estimated the mean physical magnetic energy density generated by photoionizations during the epoch or reionization as
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Widrow, L.M. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 2002, 74, 775–823. [Google Scholar] [CrossRef] [Green Version]
- Beck, R.; Wielebinski, R. Magnetic Fields in Galaxies. In Planets, Stars and Stellar Systems—Volume 5: Galactic Structure and Stellar Populations; Oswalt, T.D., Gilmore, G., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 641–723. [Google Scholar] [Green Version]
- Vallée, J.P. Magnetic fields in the nearby Universe, as observed in solar and planetary realms, stars, and interstellar starforming nurseries. New Astron. Rev. 2011, 55, 23–90. [Google Scholar] [CrossRef]
- Vallée, J.P. Magnetic fields in the galactic Universe, as observed in supershells, galaxies, intergalactic and cosmic realms. New Astron. Rev. 2011, 55, 91–154. [Google Scholar] [CrossRef]
- Govoni, F.; Feretti, L. Magnetic Fields in Clusters of Galaxies. Int. J. Mod. Phys. D 2004, 13, 1549–1594. [Google Scholar] [CrossRef]
- Feretti, L.; Giovannini, G.; Govoni, F.; Murgia, M. Clusters of galaxies: Observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 2012, 20, 54. [Google Scholar] [CrossRef]
- Han, J. Observing Interstellar and Intergalactic Magnetic Fields. Annu. Rev. Astron. Astrophys. 2017, 55, 111–157. [Google Scholar] [CrossRef]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; et al. Search for an extended VHE γ-ray emission from Mrk 421 and Mrk 501 with the MAGIC Telescope. Astron. Astrophys. 2010, 524, A77. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science 2010, 328, 73–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavecchio, F.; Ghisellini, G.; Bonnoli, G.; Foschini, L. Extreme TeV blazars and the intergalactic magnetic field. Mon. Not. R. Astron. Soc. 2011, 414, 3566–3576. [Google Scholar] [CrossRef] [Green Version]
- Finke, J.D.; Reyes, L.C.; Georganopoulos, M.; Reynolds, K.; Ajello, M.; Fegan, S.J.; McCann, K. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars. Astrophys. J. 2015, 814, 20. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. Astrophys. J. Suppl. Ser. 2018, 237, 32. [Google Scholar] [CrossRef]
- Brandenburg, A.; Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 2005, 417, 1–209. [Google Scholar] [CrossRef] [Green Version]
- Schober, J.; Schleicher, D.R.G.; Klessen, R.S. Magnetic field amplification in young galaxies. Astron. Astrophys. 2013, 560, A87. [Google Scholar] [CrossRef]
- Schober, J.; Schleicher, D.R.G.; Federrath, C.; Bovino, S.; Klessen, R.S. Saturation of the turbulent dynamo. Phys. Rev. E 2015, 92, 023010. [Google Scholar] [CrossRef] [PubMed]
- Federrath, C. Magnetic field amplification in turbulent astrophysical plasmas. J. Plasma Phys. 2016, 82, 535820601. [Google Scholar] [CrossRef]
- Falceta-Gonçalves, D.; Kowal, G. Fast Magnetic Field Amplification in the Early Universe: Growth of Collisionless Plasma Instabilities in Turbulent Media. Astrophys. J. 2015, 808, 65. [Google Scholar] [CrossRef]
- Arshakian, T.G.; Beck, R.; Krause, M.; Sokoloff, D. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array. Astron. Astrophys. 2009, 494, 21–32. [Google Scholar] [CrossRef]
- Ryu, D.; Schleicher, D.R.G.; Treumann, R.A.; Tsagas, C.G.; Widrow, L.M. Magnetic Fields in the Large-Scale Structure of the Universe. Space Sci. Rev. 2012, 166, 1–35. [Google Scholar] [CrossRef]
- Donnert, J.; Vazza, F.; Brüggen, M.; ZuHone, J. Magnetic Field Amplification in Galaxy Clusters and Its Simulation. Space Sci. Rev. 2018, 214, 122. [Google Scholar] [CrossRef]
- Wasserman, I. On the origins of galaxies, galactic angular momenta, and galactic magnetic fields. Astrophys. J. 1978, 224, 337–343. [Google Scholar] [CrossRef]
- Kim, E.J.; Olinto, A.V.; Rosner, R. Generation of Density Perturbations by Primordial Magnetic Fields. Astrophys. J. 1996, 468, 28. [Google Scholar] [CrossRef]
- Tashiro, H.; Sugiyama, N. Early reionization with primordial magnetic fields. Mon. Not. R. Astron. Soc. 2006, 368, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Marinacci, F.; Vogelsberger, M. Effects of simulated cosmological magnetic fields on the galaxy population. Mon. Not. R. Astron. Soc. Lett. 2016, 456, L69–L73. [Google Scholar] [CrossRef]
- Varalakshmi, C.; Nigam, R. Corrections to halo model in presence of primordial magnetic field. Astrophys. Space Sci. 2017, 362, 16. [Google Scholar] [CrossRef]
- Kulsrud, R.M.; Zweibel, E.G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 2008, 71, 046901. [Google Scholar] [CrossRef] [Green Version]
- Widrow, L.M.; Ryu, D.; Schleicher, D.R.G.; Subramanian, K.; Tsagas, C.G.; Treumann, R.A. The First Magnetic Fields. Space Sci. Rev. 2012, 166, 37–70. [Google Scholar] [CrossRef]
- Durrer, R.; Neronov, A. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 2013, 21, 62. [Google Scholar] [CrossRef]
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 2016, 79, 076901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruzinov, A. Gamma-Ray Burst Phenomenology, Shock Dynamo, and the First Magnetic Fields. Astrophys. J. 2001, 563, L15–L18. [Google Scholar] [CrossRef]
- Schlickeiser, R.; Shukla, P.K. Cosmological Magnetic Field Generation by the Weibel Instability. Astrophys. J. 2003, 599, L57–L60. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, M.V.; Silva, L.O.; Kamionkowski, M. Cluster Magnetic Fields from Large-Scale Structure and Galaxy Cluster Shocks. Astrophys. J. 2006, 642, L1–L4. [Google Scholar] [CrossRef]
- Lazar, M.; Schlickeiser, R.; Wielebinski, R.; Poedts, S. Cosmological Effects of Weibel-type Instabilities. Astrophys. J. 2009, 693, 1133–1141. [Google Scholar] [CrossRef]
- Bret, A. Weibel, Two-Stream, Filamentation, Oblique, Bell, Buneman...Which one grows faster? Astrophys. J. 2009, 699, 990–1003. [Google Scholar] [CrossRef]
- Schlickeiser, R. Cosmic Magnetization: From Spontaneously Emitted Aperiodic Turbulent to Ordered Equipartition Fields. Phys. Rev. Lett. 2012, 109, 261101. [Google Scholar] [CrossRef] [PubMed]
- Biermann, L. Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (mit einem Anhang von A. Schlüter). Zeitschrift Naturforschung Teil A 1950, 5, 65–71. [Google Scholar]
- Pudritz, R.E.; Silk, J. The origin of magnetic fields and primordial stars in protogalaxies. Astrophys. J. 1989, 342, 650–659. [Google Scholar] [CrossRef]
- Subramanian, K.; Narasimha, D.; Chitre, S.M. Thermal generation of cosmological seed magnetic fields in ionization fronts. Mon. Not. R. Astron. Soc. 1994, 271, L15–L18. [Google Scholar] [CrossRef]
- Ryu, D.; Kang, H.; Biermann, P.L. Cosmic Magnetic Fields in Large Scale Filaments and Sheets. Astron. Astrophys. 1998, 335, 19–25. [Google Scholar]
- Gnedin, N.Y.; Ferrara, A.; Zweibel, E.G. Generation of the Primordial Magnetic Fields during Cosmological Reionization. Astrophys. J. 2000, 539, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Naoz, S.; Narayan, R. Generation of Primordial Magnetic Fields on Linear Overdensity Scales. Phys. Rev. Lett. 2013, 111, 051303. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.R. Generation of Magnetic Fields in the Radiation Era. Mon. Not. R. Astron. Soc. 1970, 147, 279–286. [Google Scholar] [CrossRef]
- Mishustin, I.N.; Ruzmaikin, A.A. Occurrence of ‘Priming’ Magnetic Fields During The Formation of Protogalaxies. Sov. Phys. JETP 1972, 34, 233–235. [Google Scholar]
- Harrison, E.R. Origin of Magnetic Fields in the Early Universe. Phys. Rev. Lett. 1973, 30, 188–190. [Google Scholar] [CrossRef]
- Birk, G.T.; Wiechen, H.; Lesch, H. Generation of magnetic seed fields in self-gravitating protogalactic clouds. Astron. Astrophys. 2002, 393, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Langer, M.; Puget, J.L.; Aghanim, N. Cosmological magnetogenesis driven by radiation pressure. Phys. Rev. D 2003, 67, 043505. [Google Scholar] [CrossRef]
- Langer, M.; Aghanim, N.; Puget, J.L. Magnetic fields from reionization. Astron. Astrophys. 2005, 443, 367–372. [Google Scholar] [CrossRef]
- Fenu, E.; Pitrou, C.; Maartens, R. The seed magnetic field generated during recombination. Mon. Not. R. Astron. Soc. 2011, 414, 2354–2366. [Google Scholar] [CrossRef] [Green Version]
- Saga, S.; Ichiki, K.; Takahashi, K.; Sugiyama, N. Magnetic field spectrum at cosmological recombination revisited. Phys. Rev. D 2015, 91, 123510. [Google Scholar] [CrossRef]
- Hutschenreuter, S.; Dorn, S.; Jasche, J.; Vazza, F.; Paoletti, D.; Lavaux, G.; Enßlin, T.A. The primordial magnetic field in our cosmic backyard. Class. Quantum Gravity 2018, 35, 154001. [Google Scholar] [CrossRef] [Green Version]
- Beck, R. Future Observations of Cosmic Magnetic Fields with LOFAR, SKA and Its Precursors. In Magnetic Fields in Diffuse Media; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–17. [Google Scholar]
- Bourke, T.L.; Braun, R.; Fender, R.; Govoni, F.; Green, J.; Hoare, M.; Jarvis, M.; Johnston-Hollitt, M.; Keane, E.; Koopmans, L.; et al. Advancing Astrophysics with the Square Kilometre Array; Dolman Scott Ltd.: Thatcham, UK, 2015; Volume 1. [Google Scholar]
- Durrive, J.B.; Langer, M. Intergalactic magnetogenesis at Cosmic Dawn by photoionization. Mon. Not. R. Astron. Soc. 2015, 453, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Durrive, J.B.; Tashiro, H.; Langer, M.; Sugiyama, N. Mean energy density of photogenerated magnetic fields throughout the Epoch of Reionization. Mon. Not. R. Astron. Soc. 2017, 472, 1649–1658. [Google Scholar] [CrossRef] [Green Version]
- Kulsrud, R.M.; Cen, R.; Ostriker, J.P.; Ryu, D. The Protogalactic Origin for Cosmic Magnetic Fields. Astrophys. J. 1997, 480, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Hanayama, H.; Takahashi, K.; Kotake, K.; Oguri, M.; Ichiki, K.; Ohno, H. Biermann mechanism in primordial supernova remnants and seed magnetic fields. Astrophys. J. 2005, 633, 941–945. [Google Scholar] [CrossRef]
- Rees, M.J. The origin and cosmogonic implications of seed magnetic fields. R. Astron. Soc. Q. J. 1987, 28, 197–206. [Google Scholar]
- Daly, R.A.; Loeb, A. A possible origin of galactic magnetic fields. Astrophys. J. 1990, 364, 451. [Google Scholar] [CrossRef]
- Kronberg, P.P. Extragalactic magnetic fields. Rep. Prog. Phys. 1994, 57, 325–382. [Google Scholar] [CrossRef]
- Kronberg, P.P.; Lesch, H.; Hopp, U. Magnetization of the Intergalactic Medium by Primeval Galaxies. Astrophys. J. 1999, 511, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Furlanetto, S.R.; Loeb, A. Intergalactic Magnetic Fields from Quasar Outflows. Astrophys. J. 2001, 556, 619–634. [Google Scholar] [CrossRef] [Green Version]
- Hanasz, M.; Lesch, H.; Naab, T.; Gawryszczak, A.; Kowalik, K.; Wóltański, D. Cosmic Rays Can Drive Strong Outflows from Gas-rich High-redshift Disk Galaxies. Astrophys. J. 2013, 777, L38. [Google Scholar] [CrossRef]
- Beck, A.M.; Hanasz, M.; Lesch, H.; Remus, R.S.; Stasyszyn, F.A. On the magnetic fields in voids. Mon. Not. R. Astron. Soc. 2013, 429, L60–L64. [Google Scholar] [CrossRef]
- Ciardi, B.; Ferrara, A.; Marri, S.; Raimondo, G. Cosmological reionization around the first stars: Monte Carlo radiative transfer. Mon. Not. R. Astron. Soc. 2001, 324, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, A.H.; Rahmati, A.; Schaye, J.; Jeon, M.; Dalla Vecchia, C. The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results. Mon. Not. R. Astron. Soc. 2017, 466, 960–973. [Google Scholar] [CrossRef]
- Barkana, R.; Loeb, A. In the beginning: The first sources of light and the reionization of the universe. Phys. Rep. 2001, 349, 125–238. [Google Scholar] [CrossRef]
- Mo, H.J.; White, S.D.M. The abundance and clustering of dark haloes in the standard ΛCDM cosmogony. Mon. Not. R. Astron. Soc. 2002, 336, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Schechter, P. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. Astrophys. J. 1974, 187, 425. [Google Scholar] [CrossRef]
- McQuinn, M. The Evolution of the Intergalactic Medium. Annu. Rev. Astron. Astrophys. 2016, 54, 313–362. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Munshi, D.; Adam, R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardin, M.; Banday, A.J.; Planck Collaboration. Planck intermediate results. XLVII. Planck constraints on reionization history. Astron. Astrophys. 2016, 596, A108. [Google Scholar] [CrossRef]
- Greif, T.H.; Johnson, J.L.; Klessen, R.S.; Bromm, V. The first galaxies: assembly, cooling and the onset of turbulence. Mon. Not. R. Astron. Soc. 2008, 387, 1021–1036. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Federrath, C.; Schleicher, D.R.G.; Banerjee, R.; Klessen, R.S. Magnetic field amplification during gravitational collapse—Influence of turbulence, rotation and gravitational compression. Mon. Not. R. Astron. Soc. 2012, 423, 3148–3162. [Google Scholar] [CrossRef]
- Rauch, M.; Sargent, W.L.W.; Barlow, T.A. Small-Scale Structure at High Redshift. II. Physical Properties of the C IV Absorbing Clouds. Astrophys. J. 2001, 554, 823–840. [Google Scholar] [CrossRef]
- Ryu, D.; Kang, H.; Cho, J.; Das, S. Turbulence and magnetic fields in the large-scale structure of the universe. Science 2008, 320, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Shannon, R.M.; Bailes, M.; Bannister, K.; Bhandari, S.; Bhat, N.D.R.; Burke-Spolaor, S.; Caleb, M.; Flynn, C.; Jameson, A.; et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 2016, 354, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Miniati, F.; Bell, A.R. Resistive Magnetic Field Generation at Cosmic Dawn. Astrophys. J. 2011, 729, 73. [Google Scholar] [CrossRef]
- Akahori, T.; Kumazaki, K.; Takahashi, K.; Ryu, D. Exploring the intergalactic magnetic field by means of Faraday tomography. Astron. Soc. Jpn. 2014, 66, 65. [Google Scholar] [CrossRef]
- Akahori, T.; Nakanishi, H.; Sofue, Y.; Fujita, Y.; Ichiki, K.; Ideguchi, S.; Kameya, O.; Kudoh, T.; Kudoh, Y.; Machida, M.; et al. Cosmic magnetism in centimeter- and meter-wavelength radio astronomy. Astron. Soc. Jpn. 2018, 70, R21–R244. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P.M. Simulations of extragalactic magnetic fields and of their observables. Class. Quantum Gravity 2017, 34, 234001. [Google Scholar] [CrossRef] [Green Version]
- Katz, H.; Martin-Alvarez, S.; Devriendt, J.; Slyz, A.; Kimm, T. Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields. arXiv, 2018; arXiv:1810.08619. [Google Scholar]
- Venumadhav, T.; Oklopčić, A.; Gluscevic, V.; Mishra, A.; Hirata, C.M. New probe of magnetic fields in the prereionization epoch. I. Formalism. Phys. Rev. D 2017, 95, 083010. [Google Scholar] [CrossRef] [Green Version]
- Gluscevic, V.; Venumadhav, T.; Fang, X.; Hirata, C.; Oklopčić, A.; Mishra, A. New probe of magnetic fields in the pre-reionization epoch. II. Detectability. Phys. Rev. D 2017, 95, 083011. [Google Scholar] [CrossRef] [Green Version]
1 | Among the possible contributions is the resistive mechanism suggested in [76], in which temperature inhomogeneities of the IGM are responsible for spatial variations of the resistivity that induce rotational electric fields thanks to cosmic ray driven return currents. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langer, M.; Durrive, J.-B. Magnetizing the Cosmic Web during Reionization. Galaxies 2018, 6, 124. https://doi.org/10.3390/galaxies6040124
Langer M, Durrive J-B. Magnetizing the Cosmic Web during Reionization. Galaxies. 2018; 6(4):124. https://doi.org/10.3390/galaxies6040124
Chicago/Turabian StyleLanger, Mathieu, and Jean-Baptiste Durrive. 2018. "Magnetizing the Cosmic Web during Reionization" Galaxies 6, no. 4: 124. https://doi.org/10.3390/galaxies6040124
APA StyleLanger, M., & Durrive, J. -B. (2018). Magnetizing the Cosmic Web during Reionization. Galaxies, 6(4), 124. https://doi.org/10.3390/galaxies6040124