Radio Galaxies at VHE Energies
Abstract
:1. Introduction
2. Radio Galaxies as VHE Emitters—Experimental Status
2.1. PKS 0625-354
2.2. 3C 264
2.3. NGC 1275
2.4. Centaurus A
2.5. IC 310
2.6. M87
3. Models for the HE-VHE -ray Emission
3.1. Variable VHE and Black Hole Gap Models
3.1.1. Stationary Gap Models
3.1.2. Time-Dependent Models
3.2. Variable VHE and Inner Jet Models
3.2.1. Spine-Shear Scenarios
3.2.2. Reconnection—Mini-Jets and Plasmoids
3.2.3. Jet-Star and Cloud Interactions
3.3. Steady VHE and Extended Jet Models
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Barthel, P.D. Is every quasar beamed? Astrophys. J. 1989, 336, 606–611. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef]
- Ghisellini, G.; Celotti, A. The dividing line between FR I and FR II radio-galaxies. Astron. Astrophys. 2001, 379, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.M.; Ho, L.C.; Staubert, R. The central engines of radio-loud quasars. Astron. Astrophys. 2003, 409, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Kollgaard, R.I.; Wardle, J.F.C.; Roberts, D.H.; Gabuzda, D.C. Radio constraints on the nature of BL Lacertae objects and their parent population. Astron. J. 1992, 104, 1687–1705. [Google Scholar] [CrossRef]
- Antonucci, R. A panchromatic review of thermal and nonthermal active galactic nuclei. Astron. Astrophys. Trans. 2012, 27, 557–602. [Google Scholar]
- Rector, T.A.; Stocke, J.T.; Perlman, E.S.; Morris, S.L.; Gioia, I.M. The Properties of the X-Ray-selected EMSS Sample of BL Lacertae Objects. Astron. J. 2000, 120, 1626–1647. [Google Scholar] [CrossRef] [Green Version]
- Sahakyan, N.; Baghmanyan, V.; Zargaryan, D. Fermi-LAT observation of nonblazar AGNs. Astron. Astrophys. 2018, 614, A6. [Google Scholar] [CrossRef] [Green Version]
- Chiaberge, M.; Capetti, A.; Celotti, A. The BL Lac heart of Centaurus A. Mon. Not. R. Astron. Soc. 2001, 324, L33–L37. [Google Scholar] [CrossRef]
- HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A.G.; Andersson, T.; Angüner, E.O.; Arrieta, M.; Aubert, P.; et al. H.E.S.S. discovery of very high energy γ-ray emission from PKS 0625-354. Mon. Not. R. Astron. Soc. 2018, 476, 4187–4198. [Google Scholar] [CrossRef]
- Mingo, B.; Hardcastle, M.J.; Croston, J.H.; Dicken, D.; Evans, D.A.; Morganti, R.; Tadhunter, C. An X-ray survey of the 2 Jy sample - I. Is there an accretion mode dichotomy in radio-loud AGN? Mon. Not. R. Astron. Soc. 2014, 440, 269–297. [Google Scholar] [CrossRef]
- Wills, K.A.; Morganti, R.; Tadhunter, C.N.; Robinson, T.G.; Villar-Martin, M. Emission lines and optical continuum in low-luminosity radio galaxies. Mon. Not. R. Astron. Soc. 2004, 347, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Ramos Almeida, C.; Tadhunter, C.N.; Inskip, K.J.; Morganti, R.; Holt, J.; Dicken, D. The optical morphologies of the 2 Jy sample of radio galaxies: Evidence for galaxy interactions. Mon. Not. R. Astron. Soc. 2011, 410, 1550–1576. [Google Scholar] [CrossRef]
- Müller, C.; Krauss, F.; Kadler, M.; Trüstedt, J.; Ojha, R.; Ros, E.; Wilms, J.; Böck, M.; Dutka, M.; Carpenter, B.; et al. The TANAMI Program: Southern-Hemisphere AGN on (Sub-)parsec Scales. arXiv, 2013; arXiv:1301.4384. [Google Scholar]
- Fukazawa, Y.; Finke, J.; Stawarz, Ł.; Tanaka, Y.; Itoh, R.; Tokuda, S. Suzaku Observations of γ-Ray Bright Radio Galaxies: Origin of the X-Ray Emission and Broadband Modeling. Astrophys. J. 2015, 798, 74. [Google Scholar] [CrossRef]
- Mukherjee, R. VERITAS discovery of VHE emission from the FRI radio galaxy 3C 264. The Astronomer’s Telegram. March 2018. Available online: http://adsabs.harvard.edu/abs/2018ATel11436....1M (accessed on 5 October 2018).
- De Ruiter, H.R.; Parma, P.; Fanti, R.; Fanti, C. Far-UV to mid-IR properties of nearby radio galaxies. Astron. Astrophys. 2015, 581, A33. [Google Scholar] [CrossRef]
- Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. 3FHL: The Third Catalog of Hard Fermi-LAT Sources. Astrophys. J. Suppl. Ser. 2017, 232, 18. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.T.; Georganopoulos, M.; Sparks, W.B.; Perlman, E.; van der Marel, R.P.; Anderson, J.; Sohn, S.T.; Biretta, J.; Norman, C.; Chiaberge, M. A kiloparsec-scale internal shock collision in the jet of a nearby radio galaxy. Nature 2015, 521, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; et al. Detection of very-high energy γ-ray emission from NGC 1275 by the MAGIC telescopes. Astron. Astrophys. 2012, 539, L2. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ-rays. Astron. Astrophys. 2014, 564, A5. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Gamma-ray flaring activity of NGC1275 in 2016-2017 measured by MAGIC. Astron. Astrophys. 2018, 617, A91. [Google Scholar] [CrossRef]
- Wilman, R.J.; Edge, A.C.; Johnstone, R.M. The nature of the molecular gas system in the core of NGC 1275. Mon. Not. R. Astron. Soc. 2005, 359, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Cao, X.; Wang, D.X. Evidence for Rapidly Rotating Black Holes in Fanaroff-Riley I Radio Galaxies. Astrophys. J. 2011, 735, 50. [Google Scholar] [CrossRef]
- Walker, R.C.; Romney, J.D.; Benson, J.M. Detection of a VLBI counterjet in NGC 1275: A possible probe of the parsec-scale accretion region. Astrophys. J. 1994, 430, L45–L48. [Google Scholar] [CrossRef]
- Fujita, Y.; Nagai, H. Discovery of a new subparsec counterjet in NGC 1275: the inclination angle and the environment. Mon. Not. R. Astron. Soc. 2017, 465, L94–L98. [Google Scholar] [CrossRef]
- Fujita, Y.; Kawakatu, N.; Shlosman, I.; Ito, H. The young radio lobe of 3C 84: Inferred gas properties in the central 10 pc. Mon. Not. R. Astron. Soc. 2016, 455, 2289–2294. [Google Scholar] [CrossRef]
- Katsoulakos, G.; Rieger, F.M. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei. Astrophys. J. 2018, 852, 112. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Ghisellini, G. On the spine-layer scenario for the very high-energy emission of NGC 1275. Mon. Not. R. Astron. Soc. 2014, 443, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Neumayer, N. The Supermassive Black Hole at the Heart of Centaurus A: Revealed by the Kinematics of Gas and Stars. Publ. Astron. Soc. Aust. 2010, 27, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Whysong, D.; Antonucci, R. Thermal Emission as a Test for Hidden Nuclei in Nearby Radio Galaxies. Astrophys. J. 2004, 602, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Meisenheimer, K.; Tristram, K.R.W.; Jaffe, W.; Israel, F.; Neumayer, N.; Raban, D.; Röttgering, H.; Cotton, W.D.; Graser, U.; Henning, T.; et al. Resolving the innermost parsec of Centaurus A at mid-infrared wavelengths. Astron. Astrophys. 2007, 471, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Fürst, F.; Müller, C.; Madsen, K.K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Baloković, M.; Beuchert, T.; Boggs, S.E.; et al. NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A. Astrophys. J. 2016, 819, 150. [Google Scholar] [CrossRef]
- Müller, C.; Kadler, M.; Ojha, R.; Perucho, M.; Großberger, C.; Ros, E.; Wilms, J.; Blanchard, J.; Böck, M.; Carpenter, B.; et al. TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet. Astron. Astrophys. 2014, 569, A115. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; Anton, G.; de Almeida, U.B.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Boisson, C.; et al. Discovery of Very High Energy γ-Ray Emission from Centaurus a with H.E.S.S. Astrophys. J. 2009, 695, L40–L44. [Google Scholar] [CrossRef]
- HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; et al. The γ-ray spectrum of the core of Centaurus A as observed with H.E.S.S. and Fermi-LAT. arXiv, 2018; arXiv:1807.07375. [Google Scholar]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A. Astrophys. J. 2010, 719, 1433–1444. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Gamma-Ray Imaging of a Radio Galaxy. Science 2010, 328, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.Z.; Sahakyan, N.; de Ona Wilhelmi, E.; Aharonian, F.; Rieger, F. Deep observation of the giant radio lobes of Centaurus A with the Fermi Large Area Telescope. Astron. Astrophys. 2012, 542, A19. [Google Scholar] [CrossRef]
- Sun, X.N.; Yang, R.Z.; Mckinley, B.; Aharonian, F. Giant lobes of Centaurus A as seen in radio and γ-ray images obtained with the Fermi-LAT and Planck satellites. Astron. Astrophys. 2016, 595, A29. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A. Astrophys. J. 2016, 826, 1. [Google Scholar] [CrossRef]
- Sahakyan, N.; Yang, R.; Aharonian, F.A.; Rieger, F.M. Evidence for a Second Component in the High-energy Core Emission from Centaurus A? Astrophys. J. 2013, 770, L6. [Google Scholar] [CrossRef]
- Brown, A.M.; Boehm, C.; Graham, J.; Lacroix, T.; Chadwick, P.; Silk, J. Discovery of a new extragalactic population of energetic particles. Phys. Rev. D 2017, 95, 063018. [Google Scholar] [CrossRef] [Green Version]
- Neronov, A.; Semikoz, D.; Taylor, A.M. Very hard gamma-ray emission from a flare of Mrk 501. Astron. Astrophys. 2012, 541, A31. [Google Scholar] [CrossRef]
- Shukla, A.; Mannheim, K.; Chitnis, V.R.; Roy, J.; Acharya, B.S.; Dorner, D.; Hughes, G.; Biland, A. Detection of Very Hard γ-Ray Spectrum from the TeV Blazar Mrk 501. Astrophys. J. 2016, 832, 177. [Google Scholar] [CrossRef]
- Rieger, F.M.; Aharonian, F.A. Centaurus A as TeV γ-ray and possible UHE cosmic-ray source. Astron. Astrophys. 2009, 506, L41–L44. [Google Scholar] [CrossRef]
- Rieger, F.M. Nonthermal Processes in Black Hole-Jet Magnetospheres. Int. J. Mod. Phys. D 2011, 20, 1547–1596. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Chiaberge, M. Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties. Astron. Astrophys. 2005, 432, 401–410. [Google Scholar] [CrossRef]
- Lenain, J.P.; Boisson, C.; Sol, H.; Katarzyński, K. A synchrotron self-Compton scenario for the very high energy γ-ray emission of the radiogalaxy M 87. Unifying the TeV emission of blazars and other AGNs? Astron. Astrophys. 2008, 478, 111–120. [Google Scholar] [CrossRef]
- Kachelrieß, M.; Ostapchenko, S.; Tomàs, R. TeV Gamma Rays from Ultrahigh Energy Cosmic Ray Interactions in the Cores of Active Galactic Nuclei: Lessons from Centaurus A. Publ. Astron. Soc. Aust. 2010, 27, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; Zhang, B.; Fraija, N. Hadronic-origin TeV γ rays and ultrahigh energy cosmic rays from Centaurus A. Phys. Rev. D 2012, 85, 043012. [Google Scholar] [CrossRef]
- Petropoulou, M.; Lefa, E.; Dimitrakoudis, S.; Mastichiadis, A. One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited. Astron. Astrophys. 2014, 562, A12. [Google Scholar] [CrossRef]
- Reynoso, M.M.; Medina, M.C.; Romero, G.E. A lepto-hadronic model for high-energy emission from FR I radiogalaxies. Astron. Astrophys. 2011, 531, A30. [Google Scholar] [CrossRef]
- Cerruti, M.; Zech, A.; Emery, G.; Guarin, D. Hadronic modeling of TeV AGN: Gammas and neutrinos. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016; Volume 1792, p. 050027. [Google Scholar] [CrossRef]
- Sitarek, J.; Bednarek, W. γ-rays from the IC e+/− pair cascade in the radiation field of an accretion disc: Application to Cen A. Mon. Not. R. Astron. Soc. 2010, 401, 1983–1988. [Google Scholar] [CrossRef]
- Roustazadeh, P.; Böttcher, M. Very High Energy Gamma-ray-induced Pair Cascades in the Radiation Fields of Dust Tori of Active Galactic Nuclei: Application to Cen A. Astrophys. J. 2011, 728, 134. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Aharonian, F.; Wagner, S.; Ostrowski, M. Absorption of nuclear γ-rays on the starlight radiation in FR I sources: The case of Centaurus A. Mon. Not. R. Astron. Soc. 2006, 371, 1705–1716. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Sikora, M.; Ostrowski, M. High-Energy Gamma Rays from FR I Jets. Astrophys. J. 2003, 597, 186–201. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Modelling TeV γ-ray emission from the kiloparsec-scale jets of Centaurus A and M87. Mon. Not. R. Astron. Soc. 2011, 415, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M. Gamma-rays from non-blazar AGN. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016; Volume 1792, p. 020008. [Google Scholar] [CrossRef]
- Sanchez, D.; Holler, M.; Taylor, A.; Rieger, F.; DeNaurois, M.; HESS Collaboration. Morphology study of a radio galaxy. In Proceedings of the TeVPA Conference, Berlin, Germany, 27–31 August 2018. [Google Scholar]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; et al. Detection of Very High Energy γ-ray Emission from the Perseus Cluster Head-Tail Galaxy IC 310 by the MAGIC Telescopes. Astrophys. J. 2010, 723, L207–L212. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J.A.; González, J.B.; Bednarek, W.; Bernardini, E.; et al. Black hole lightning due to particle acceleration at subhorizon scales. Science 2014, 346, 1080–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310. Astron. Astrophys. 2017, 603, A25. [Google Scholar] [CrossRef] [Green Version]
- Berton, M.; Foschini, L.; Ciroi, S.; Cracco, V.; La Mura, G.; Lister, M.L.; Mathur, S.; Peterson, B.M.; Richards, J.L.; Rafanelli, P. Parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2015, 578, A28. [Google Scholar] [CrossRef]
- Kadler, M.; Eisenacher, D.; Ros, E.; Mannheim, K.; Elsässer, D.; Bach, U. The blazar-like radio structure of the TeV source IC 310. Astron. Astrophys. 2012, 538, L1. [Google Scholar] [CrossRef]
- Giannios, D. Reconnection-driven plasmoids in blazars: Fast flares on a slow envelope. Mon. Not. R. Astron. Soc. 2013, 431, 355–363. [Google Scholar] [CrossRef]
- Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V.; Kelner, S.R.; Khangulyan, D. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2012, 749, 119. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Barkov, M.V.; Khangulyan, D. Scenarios for Ultrafast Gamma-Ray Variability in AGN. Astrophys. J. 2017, 841, 61. [Google Scholar] [CrossRef] [Green Version]
- Hirotani, K.; Pu, H.Y. Energetic Gamma Radiation from Rapidly Rotating Black Holes. Astrophys. J. 2016, 818, 50. [Google Scholar] [CrossRef]
- Sijbring, D.; de Bruyn, A.G. Multifrequency radio continuum observations of head-tail galaxies in the Perseus cluster. Astron. Astrophys. 1998, 331, 901–915. [Google Scholar]
- Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.G.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.L.; Cortina, J.; et al. Is the giant radio galaxy M 87 a TeV gamma-ray emitter? Astron. Astrophys. 2003, 403, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.L.; Barth, A.J.; Ho, L.C.; Sarzi, M. The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations. Astrophys. J. 2013, 770, 86. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Di Matteo, T.; Fabian, A.C.; Hwang, U.; Canizares, C.R. The ‘quiescent’ black hole in M87. Mon. Not. R. Astron. Soc. 1996, 283, L111–L116. [Google Scholar] [CrossRef]
- Bird, S.; Harris, W.E.; Blakeslee, J.P.; Flynn, C. The inner halo of M 87: A first direct view of the red-giant population. Astron. Astrophys. 2010, 524, A71. [Google Scholar] [CrossRef]
- Doeleman, S.S.; Fish, V.L.; Schenck, D.E.; Beaudoin, C.; Blundell, R.; Bower, G.C.; Broderick, A.E.; Chamberlin, R.; Freund, R.; Friberg, P.; et al. Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 2012, 338, 355. [Google Scholar] [CrossRef] [PubMed]
- Kino, M.; Takahara, F.; Hada, K.; Akiyama, K.; Nagai, H.; Sohn, B.W. Magnetization Degree at the Jet Base of M87 Derived from the Event Horizon Telescope Data: Testing the Magnetically Driven Jet Paradigm. Astrophys. J. 2015, 803, 30. [Google Scholar] [CrossRef]
- Akiyama, K.; Lu, R.S.; Fish, V.L.; Doeleman, S.S.; Broderick, A.E.; Dexter, J.; Hada, K.; Kino, M.; Nagai, H.; Honma, M.; et al. 230 GHz VLBI Observations of M87: Event-horizon-scale Structure during an Enhanced Very-high-energy γ-Ray State in 2012. Astrophys. J. 2015, 807, 150. [Google Scholar] [CrossRef]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Akiyama, K.; Tazaki, F.; Lico, R.; Giroletti, M.; Giovannini, G.; et al. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. Astrophys. J. 2016, 817, 131. [Google Scholar] [CrossRef]
- Mertens, F.; Lobanov, A.P.; Walker, R.C.; Hardee, P.E. Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys. 2016, 595, A54. [Google Scholar] [CrossRef]
- Globus, N.; Levinson, A. The collimation of magnetic jets by disc winds. Mon. Not. R. Astron. Soc. 2016, 461, 2605–2615. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M.; Aharonian, F. Probing the Central Black Hole in M87 with Gamma-Rays. Mod. Phys. Lett. A 2012, 27, 1230030. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. Fast Variability of Tera-Electron Volt γ Rays from the Radio Galaxy M87. Science 2006, 314, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; et al. Very High Energy Gamma-Ray Observations of Strong Flaring Activity in M87 in 2008 February. Astrophys. J. 2008, 685, L23. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Butt, Y.; et al. Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy. Science 2009, 325, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. VERITAS Observations of Day-scale Flaring of M 87 in 2010 April. Astrophys. J. 2012, 746, 141. [Google Scholar] [CrossRef]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; et al. The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87. Astrophys. J. 2012, 746, 151. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; et al. Fermi Large Area Telescope Gamma-Ray Detection of the Radio Galaxy M87. Astrophys. J. 2009, 707, 55–60. [Google Scholar] [CrossRef]
- Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Third Source Catalog. Astrophys. J. Suppl. Ser. 2015, 218, 23. [Google Scholar] [CrossRef]
- Ait Benkhali, F.; Chakraborty, N.; Rieger, F.M. The complex gamma-ray behaviour of the Radio Galaxy M87. arXiv, 2018; arXiv:1802.03103. [Google Scholar]
- Tavecchio, F.; Ghisellini, G. Spine-sheath layer radiative interplay in subparsec-scale jets and the TeV emission from M87. Mon. Not. R. Astron. Soc. 2008, 385, L98–L102. [Google Scholar] [CrossRef]
- Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability from misaligned minijets in the jet of M87. Mon. Not. R. Astron. Soc. 2010, 402, 1649–1656. [Google Scholar] [CrossRef] [Green Version]
- Reimer, A.; Protheroe, R.J.; Donea, A.C. M87 as a misaligned synchrotron-proton blazar. Astron. Astrophys. 2004, 419, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Georganopoulos, M.; Perlman, E.S.; Kazanas, D. Is the Core of M87 the Source of Its TeV Emission? Implications for Unified Schemes. Astrophys. J. 2005, 634, L33–L36. [Google Scholar] [CrossRef]
- Rieger, F.M.; Aharonian, F.A. Variable VHE gamma-ray emission from non-blazar AGNs. Astron. Astrophys. 2008, 479, L5–L8. [Google Scholar] [CrossRef]
- Levinson, A.; Rieger, F. Variable TeV Emission as a Manifestation of Jet Formation in M87? Astrophys. J. 2011, 730, 123. [Google Scholar] [CrossRef]
- Rieger, F.M. On the origin of very high energy γ-rays from radio galaxies. In Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy, Heidelberg, Germany, 9–13 July 2012; Volume 1505, pp. 80–87. [Google Scholar] [CrossRef]
- Beilicke, M.; VERITAS Collaboration. VERITAS observations of M87 in 2011/2012. In Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy, Heidelberg, Germany, 9–13 July 2012; Volume 1505, pp. 586–589. [Google Scholar] [CrossRef]
- Bangale, P.; Manganaro, M.; Schultz, C.; Colin, P.; Mazin, D. Long term variability study for the radio galaxy M87 with MAGIC. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 759. [Google Scholar]
- Hada, K.; Kino, M.; Nagai, H.; Doi, A.; Hagiwara, Y.; Honma, M.; Giroletti, M.; Giovannini, G.; Kawaguchi, N. VLBI Observations of the Jet in M 87 during the Very High Energy γ-Ray Flare in 2010 April. Astrophys. J. 2012, 760, 52. [Google Scholar] [CrossRef]
- Hada, K.; Giroletti, M.; Kino, M.; Giovannini, G.; D’Ammando, F.; Cheung, C.C.; Beilicke, M.; Nagai, H.; Doi, A.; Akiyama, K.; et al. A Strong Radio Brightening at the Jet Base of M 87 during the Elevated Very High Energy Gamma-Ray State in 2012. Astrophys. J. 2014, 788, 165. [Google Scholar] [CrossRef]
- Broderick, A.E.; Tchekhovskoy, A. Horizon-scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87. Astrophys. J. 2015, 809, 97. [Google Scholar] [CrossRef]
- Ptitsyna, K.; Neronov, A. Particle acceleration in the vacuum gaps in black hole magnetospheres. Astron. Astrophys. 2016, 593, A8. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef] [Green Version]
- Beskin, V.S.; Istomin, Y.N.; Parev, V.I. Filling the Magnetosphere of a Supermassive Black-Hole with Plasma. Sov. Astron. 1992, 36, 642. [Google Scholar]
- Hirotani, K.; Okamoto, I. Pair Plasma Production in a Force-free Magnetosphere around a Supermassive Black Hole. Astrophys. J. 1998, 497, 563–572. [Google Scholar] [CrossRef]
- Levinson, A. Particle Acceleration and Curvature TeV Emission by Rotating, Supermassive Black Holes. Phys. Rev. Lett. 2000, 85, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Neronov, A.; Aharonian, F.A. Production of TeV Gamma Radiation in the Vicinity of the Supermassive Black Hole in the Giant Radio Galaxy M87. Astrophys. J. 2007, 671, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Hirotani, K.; Pu, H.Y.; Lin, L.C.C.; Chang, H.K.; Inoue, M.; Kong, A.K.H.; Matsushita, S.; Tam, P.H.T. Lepton Acceleration in the Vicinity of the Event Horizon: High-energy and Very-high-energy Emissions from Rotating Black Holes with Various Masses. Astrophys. J. 2016, 833, 142. [Google Scholar] [CrossRef]
- Lin, L.C.C.; Pu, H.Y.; Hirotani, K.; Kong, A.K.H.; Matsushita, S.; Chang, H.K.; Inoue, M.; Tam, P.H.T. Searching for High-energy, Horizon-scale Emissions from Galactic Black Hole Transients during Quiescence. Astrophys. J. 2017, 845, 40. [Google Scholar] [CrossRef] [Green Version]
- Levinson, A.; Segev, N. Existence of steady gap solutions in rotating black hole magnetospheres. Phys. Rev. D 2017, 96, 123006. [Google Scholar] [CrossRef] [Green Version]
- Hirotani, K.; Pu, H.Y.; Lin, L.C.C.; Kong, A.K.H.; Matsushita, S.; Asada, K.; Chang, H.K.; Tam, P.H.T. Lepton Acceleration in the Vicinity of the Event Horizon: Very High Energy Emissions from Supermassive Black Holes. Astrophys. J. 2017, 845, 77. [Google Scholar] [CrossRef] [Green Version]
- Globus, N.; Levinson, A. Jet Formation in GRBs: A Semi-analytic Model of MHD Flow in Kerr Geometry with Realistic Plasma Injection. Astrophys. J. 2014, 796, 26. [Google Scholar] [CrossRef]
- Levinson, A.; Cerutti, B. Particle-in-cell simulations of pair discharges in a starved magnetosphere of a Kerr black hole. Astron. Astrophys. 2018, 616, A184. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Yuan, Y.; Yang, H. Physics of Pair Producing Gaps in Black Hole Magnetospheres. Astrophys. J. 2018, 863, L31. [Google Scholar] [CrossRef]
- Levinson, A.; Melrose, D.; Judge, A.; Luo, Q. Large-Amplitude, Pair-creating Oscillations in Pulsar and Black Hole Magnetospheres. Astrophys. J. 2005, 631, 456–465. [Google Scholar] [CrossRef]
- Chiaberge, M.; Celotti, A.; Capetti, A.; Ghisellini, G. Does the unification of BL Lac and FR I radio galaxies require jet velocity structures? Astron. Astrophys. 2000, 358, 104–112. [Google Scholar]
- Meyer, E.T.; Fossati, G.; Georganopoulos, M.; Lister, M.L. From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy in Radio-loud Active Galactic Nuclei. Astrophys. J. 2011, 740, 98. [Google Scholar] [CrossRef]
- Sbarrato, T.; Padovani, P.; Ghisellini, G. The jet-disc connection in AGN. Mon. Not. R. Astron. Soc. 2014, 445, 81–92. [Google Scholar] [CrossRef]
- Rieger, F.M.; Duffy, P. Shear Acceleration in Relativistic Astrophysical Jets. Astrophys. J. 2004, 617, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Ghisellini, G. On the magnetization of BL Lac jets. Mon. Not. R. Astron. Soc. 2016, 456, 2374–2382. [Google Scholar] [CrossRef]
- Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33. [Google Scholar] [CrossRef]
- Nalewajko, K.; Giannios, D.; Begelman, M.C.; Uzdensky, D.A.; Sikora, M. Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 2011, 413, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, B.; Werner, G.R.; Uzdensky, D.A.; Begelman, M.C. Beaming and Rapid Variability of High-energy Radiation from Relativistic Pair Plasma Reconnection. Astrophys. J. 2012, 754, L33. [Google Scholar] [CrossRef]
- Kadowaki, L.H.S.; de Gouveia Dal Pino, E.M.; Singh, C.B. The Role of Fast Magnetic Reconnection on the Radio and Gamma-ray Emission from the Nuclear Regions of Microquasars and Low Luminosity AGNs. Astrophys. J. 2015, 802, 113. [Google Scholar] [CrossRef]
- Sironi, L.; Petropoulou, M.; Giannios, D. Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 2015, 450, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Werner, G.R.; Uzdensky, D.A.; Cerutti, B.; Nalewajko, K.; Begelman, M.C. The Extent of Power-law Energy Spectra in Collisionless Relativistic Magnetic Reconnection in Pair Plasmas. Astrophys. J. 2016, 816, L8. [Google Scholar] [CrossRef]
- Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.I.; Hardee, P.E. Three-dimensional Relativistic Magnetohydrodynamic Simulations of Current-driven Instability. III. Rotating Relativistic Jets. Astrophys. J. 2012, 757, 16. [Google Scholar] [CrossRef]
- O’Neill, S.M.; Beckwith, K.; Begelman, M.C. Local simulations of instabilities in relativistic jets—I. Morphology and energetics of the current-driven instability. Mon. Not. R. Astron. Soc. 2012, 422, 1436–1452. [Google Scholar] [CrossRef]
- Guan, X.; Li, H.; Li, S. Relativistic MHD Simulations of Poynting Flux-driven Jets. Astrophys. J. 2014, 781, 48. [Google Scholar] [CrossRef]
- Parfrey, K.; Giannios, D.; Beloborodov, A.M. Black hole jets without large-scale net magnetic flux. Mon. Not. R. Astron. Soc. 2015, 446, L61–L65. [Google Scholar] [CrossRef]
- Levinson, A.; Globus, N. The effect of Compton drag on the dynamics of dissipative Poynting-dominated flows: Implications for the unification of radio loud AGN. Mon. Not. R. Astron. Soc. 2016, 458, 2269–2274. [Google Scholar] [CrossRef]
- Cui, Y.D.; Yuan, Y.F.; Li, Y.R.; Wang, J.M. A General Relativistic External Compton-Scattering Model for TeV Emission from M87. Astrophys. J. 2012, 746, 177. [Google Scholar] [CrossRef]
- Lyubarsky, Y.E. On the relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 2005, 358, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, M.; Pelletier, G. Particle acceleration at relativistic shock waves. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016; Volume 1792, p. 020006. [Google Scholar] [CrossRef]
- Zenitani, S.; Hoshino, M. The Generation of Nonthermal Particles in the Relativistic Magnetic Reconnection of Pair Plasmas. Astrophys. J. 2001, 562, L63–L66. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Y.H.; Daughton, W.; Li, H. Particle Acceleration and Plasma Dynamics during Magnetic Reconnection in the Magnetically Dominated Regime. Astrophys. J. 2015, 806, 167. [Google Scholar] [CrossRef]
- Sironi, L.; Giannios, D.; Petropoulou, M. Plasmoids in relativistic reconnection, from birth to adulthood: First they grow, then they go. Mon. Not. R. Astron. Soc. 2016, 462, 48–74. [Google Scholar] [CrossRef]
- Petropoulou, M.; Christie, I.M.; Sironi, L.; Giannios, D. Plasmoid statistics in relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 2018, 475, 3797–3812. [Google Scholar] [CrossRef] [Green Version]
- Perucho, M.; Bosch-Ramon, V.; Barkov, M.V. Impact of red giant/AGB winds on active galactic nucleus jet propagation. Astron. Astrophys. 2017, 606, A40. [Google Scholar] [CrossRef] [Green Version]
- Wykes, S.; Hardcastle, M.J.; Karakas, A.I.; Vink, J.S. Internal entrainment and the origin of jet-related broad-band emission in Centaurus A. Mon. Not. R. Astron. Soc. 2015, 447, 1001–1013. [Google Scholar] [CrossRef]
- Barkov, M.V.; Aharonian, F.A.; Bosch-Ramon, V. Gamma-ray Flares from Red Giant/Jet Interactions in Active Galactic Nuclei. Astrophys. J. 2010, 724, 1517–1523. [Google Scholar] [CrossRef]
- Bosch-Ramon, V.; Perucho, M.; Barkov, M.V. Clouds and red giants interacting with the base of AGN jets. Astron. Astrophys. 2012, 539, A69. [Google Scholar] [CrossRef] [Green Version]
- Araudo, A.T.; Bosch-Ramon, V.; Romero, G.E. Gamma-ray emission from massive stars interacting with active galactic nuclei jets. Mon. Not. R. Astron. Soc. 2013, 436, 3626–3639. [Google Scholar] [CrossRef] [Green Version]
- Khangulyan, D.V.; Barkov, M.V.; Bosch-Ramon, V.; Aharonian, F.A.; Dorodnitsyn, A.V. Star-Jet Interactions and Gamma-Ray Outbursts from 3C454.3. Astrophys. J. 2013, 774, 113. [Google Scholar] [CrossRef]
- Bednarek, W.; Banasiński, P. Non-thermal Radiation from Collisions of Compact Objects with Intermediate-scale Jets in Active Galaxies. Astrophys. J. 2015, 807, 168. [Google Scholar] [CrossRef]
- Bosch-Ramon, V. Non-thermal emission from standing relativistic shocks: An application to red giant winds interacting with AGN jets. Astron. Astrophys. 2015, 575, A109. [Google Scholar] [CrossRef]
- De la Cita, V.M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei. Astron. Astrophys. 2016, 591, A15. [Google Scholar] [CrossRef]
- Zacharias, M.; Böttcher, M.; Jankowsky, F.; Lenain, J.P.; Wagner, S.J.; Wierzcholska, A. Cloud Ablation by a Relativistic Jet and the Extended Flare in CTA 102 in 2016 and 2017. Astrophys. J. 2017, 851, 72. [Google Scholar] [CrossRef] [Green Version]
- Vieyro, F.L.; Torres-Albà, N.; Bosch-Ramon, V. Collective non-thermal emission from an extragalactic jet interacting with stars. Astron. Astrophys. 2017, 604, A57. [Google Scholar] [CrossRef] [Green Version]
- Barkov, M.V.; Bosch-Ramon, V.; Aharonian, F.A. Interpretation of the Flares of M87 at TeV Energies in the Cloud-Jet Interaction Scenario. Astrophys. J. 2012, 755, 170. [Google Scholar] [CrossRef]
- Harris, D.E.; Krawczynski, H. X-Ray Emission from Extragalactic Jets. Annu. Rev. Astron. Astrophys. 2006, 44, 463–506. [Google Scholar] [CrossRef] [Green Version]
- Georganopoulos, M.; Meyer, E.; Perlman, E. Recent Progress in Understanding the Large Scale Jets of Powerful Quasars. Galaxies 2016, 4, 65. [Google Scholar] [CrossRef]
- Liu, R.Y.; Rieger, F.M.; Aharonian, F.A. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets. Astrophys. J. 2017, 842, 39. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.N.; Yang, R.Z.; Rieger, F.M.; Liu, R.Y.; Aharonian, F. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra. Astron. Astrophys. 2018, 612, A106. [Google Scholar] [CrossRef] [Green Version]
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Samarai, I.A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array. arXiv, 2017; arXiv:1709.07997. [Google Scholar]
1 | |
2 | |
3 | A null surface exists in a pulsar outer gap for other reasons. |
4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rieger, F.M.; Levinson, A. Radio Galaxies at VHE Energies. Galaxies 2018, 6, 116. https://doi.org/10.3390/galaxies6040116
Rieger FM, Levinson A. Radio Galaxies at VHE Energies. Galaxies. 2018; 6(4):116. https://doi.org/10.3390/galaxies6040116
Chicago/Turabian StyleRieger, Frank M., and Amir Levinson. 2018. "Radio Galaxies at VHE Energies" Galaxies 6, no. 4: 116. https://doi.org/10.3390/galaxies6040116
APA StyleRieger, F. M., & Levinson, A. (2018). Radio Galaxies at VHE Energies. Galaxies, 6(4), 116. https://doi.org/10.3390/galaxies6040116