The Power of Low Frequencies: Faraday Tomography in the Sub-GHz Regime
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. Properties of RM Synthesis at Low Frequencies
2.2. Producing Faraday-Thin Features
2.3. Other Wavelength-Dependent Depolarization Effects
3. Recent Observations
4. Future Observations
5. Summary
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASKAP | Australian Square-Kilometer Array Pathfinder |
ISM | Interstellar medium |
GLEAM | GaLactic and Extragalactic All-sky MWA Survey |
GMIMS | Global Magneto-Ionic Medium Survey |
LOFAR | Low Frequency Array |
LOTSS | LOFAR Two-meter Sky Survey |
MWA | Murchison Widefield Array |
PSF | Point Spread Function |
RM | Rotation measure |
RMSF | Rotation measure spread function |
VLA | Karl G. Jansky Very Large Array |
WRST | Westerbork Radio Synthesis Telescope |
References
- Woltjer, L. Remarks on the galactic magnetic field. In Radio Astronomy and the Galactic System, Proceedings of the IAU Symposium, Noordwijk, The Netherlands, 25 August–1 September 1966; van Woerden, H., Ed.; Academic Press: London, UK, 1967; p. 479. [Google Scholar]
- Gardner, F.F.; Whiteoak, J.B. Polarization of 20-cm Wavelength Radiation From Radio Sources. Phys. Rev. Lett. 1962, 9, 197–199. [Google Scholar] [CrossRef]
- Cooper, B.F.C.; Price, R.M. Faraday Rotation Effects associated with the Radio Source Centaurus A. Nature 1962, 195, 1084–1085. [Google Scholar] [CrossRef]
- Hiltner, W.A. Polarization of Radiation from Distant Stars by the Interstellar Medium. Nature 1949, 163, 283. [Google Scholar] [CrossRef] [PubMed]
- Stein, W. Infrared Radiation from Interstellar Grains. Astrophys. J. 1966, 144, 318. [Google Scholar] [CrossRef]
- Hale, G.E. On the Probable Existence of a Magnetic Field in Sun-Spots. Astrophys. J. 1908, 28, 315. [Google Scholar] [CrossRef]
- Burn, B.J. On the depolarization of discrete radio sources by Faraday dispersion. Mon. Not. Roy. Astron. Soc. 1966, 133, 67. [Google Scholar] [CrossRef]
- Brentjens, M.A.; de Bruyn, A.G. Faraday rotation measure synthesis. Astron. Astrophys. 2005, 441, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.T.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.; Bailes, M.; Bartel, N.; Baugh, C.; Bietenholz, M.; Blake, C.; Braun, R.; Brown, J.; Chatterjee, S.; Darling, J.; et al. Science with the Australian Square Kilometre Array Pathfinder. Proc. Natl. Acad. Sci. USA 2007, 24, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2015, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Rand, R.J.; Lyne, A.G. New Rotation Measures of Distant Pulsars in the Inner Galaxy and Magnetic Field Reversals. Mon. Not. Roy. Astron. Soc. 1994, 268, 497. [Google Scholar] [CrossRef]
- Brown, J.C.; Taylor, A.R.; Jackel, B.J. Rotation Measures of Compact Sources in the Canadian Galactic Plane Survey. Astrophys. J. Suppl. S. 2003, 145, 213–223. [Google Scholar] [CrossRef] [Green Version]
- de Bruyn, A.G.; Brentjens, M.A. Diffuse polarized emission associated with the Perseus cluster. Astron. Astrophys. 2005, 441, 931–947. [Google Scholar] [CrossRef] [Green Version]
- Brentjens, M.A. Wide field polarimetry around the Perseus cluster at 350 MHz. Astron. Astrophys. 2011, 526, A9. [Google Scholar] [CrossRef]
- Heald, G.; Braun, R.; Edmonds, R. The Westerbork SINGS survey. II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 2009, 503, 409–435. [Google Scholar] [CrossRef]
- Harvey-Smith, L.; Gaensler, B.M.; Kothes, R.; Townsend, R.; Heald, G.H.; Ng, C.Y.; Green, A.J. Faraday Rotation of the Supernova Remnant G296.5+10.0: Evidence for a Magnetized Progenitor Wind. Astrophys. J. 2010, 712, 1157–1165. [Google Scholar] [CrossRef]
- Mao, S.A.; Zweibel, E.; Fletcher, A.; Ott, J.; Tabatabaei, F. Properties of the Magneto-ionic Medium in the Halo of M51 Revealed by Wide-band Polarimetry. Astrophys. J. 2015, 800, 92. [Google Scholar] [CrossRef]
- Mulcahy, D.D.; Beck, R.; Heald, G.H. Resolved magnetic structures in the disk-halo interface of NGC 628. Astron. Astrophys. 2017, 600, A6. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Mao, S.A.; Kepley, A.A.; Robishaw, T.; Zweibel, E.G.; Gallagher, J.S., III. Detection of an ~20 kpc coherent magnetic field in the outskirt of merging spirals: The Antennae galaxies. Mon. Not. Roy. Astron. Soc. 2017, 464, 1003–1017. [Google Scholar] [CrossRef]
- Irwin, J.A.; Schmidt, P.; Damas-Segovia, A.; Beck, R.; English, J.; Heald, G.; Henriksen, R.N.; Krause, M.; Li, J.T.; Rand, R.J.; et al. CHANG-ES–VIII. Uncovering hidden AGN activity in radio polarization. Mon. Not. Roy. Astron. Soc. 2017, 464, 1333–1346. [Google Scholar] [CrossRef]
- Mao, S.A.; McClure-Griffiths, N.M.; Gaensler, B.M.; Brown, J.C.; van Eck, C.L.; Haverkorn, M.; Kronberg, P.P.; Stil, J.M.; Shukurov, A.; Taylor, A.R. New Constraints on the Galactic Halo Magnetic Field Using Rotation Measures of Extragalactic Sources toward the Outer Galaxy. Astrophys. J. 2012, 755, 21. [Google Scholar] [CrossRef]
- Sun, X.H.; Landecker, T.L.; Gaensler, B.M.; Carretti, E.; Reich, W.; Leahy, J.P.; McClure-Griffiths, N.M.; Crocker, R.M.; Wolleben, M.; Haverkorn, M.; et al. Faraday Tomography of the North Polar Spur: Constraints on the Distance to the Spur and on the Magnetic Field of the Galaxy. Astrophys. J. 2015, 811, 40. [Google Scholar] [CrossRef]
- Hill, A.S.; Landecker, T.L.; Carretti, E.; Douglas, K.; Sun, X.H.; Gaensler, B.M.; Mao, S.A.; McClure-Griffiths, N.M.; Reich, W.; Wolleben, M.; et al. The Fan Region at 1.5 GHz. I: Polarized synchrotron emission extending beyond the Perseus Arm. arXiv, 2017; arXiv:1702.02200. [Google Scholar]
- Tingay, S.J.; Goeke, R.; Bowman, J.D.; Emrich, D.; Ord, S.M.; Mitchell, D.A.; Morales, M.F.; Booler, T.; Crosse, B.; Wayth, R.B.; et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. Proc. Natl. Acad. Sci. USA 2013, 30, e007. [Google Scholar] [CrossRef]
- Brown, S.; Bergerud, B.; Costa, A.; Gaensler, B.M.; Isbell, J.; LaRocca, D.; Norris, R.; Purcell, C.; Rudnick, L.; Sun, X. Classifying Complex Faraday Spectra with Convolutional Neural Networks. arXiv 2017, arXiv:astro-ph.IM/1711.03252. [Google Scholar]
- Kumazaki, K.; Akahori, T.; Ideguchi, S.; Kurayama, T.; Takahashi, K. Properties of intrinsic polarization angle ambiguities in Faraday tomography. Publ. Astron. Soc. Jpn. 2014, 66, 61. [Google Scholar] [CrossRef]
- Vallee, J.P. The rotation measures of radio sources and their data processing. Astron. Astrophys. 1980, 86, 251–253. [Google Scholar]
- Anderson, C.S.; Gaensler, B.M.; Feain, I.J. A Study of Broadband Faraday Rotation and Polarization Behavior over 1.3–10 GHz in 36 Discrete Radio Sources. Astrophys. J. 2016, 825, 59. [Google Scholar] [CrossRef]
- Mao, S.A.; McClure-Griffiths, N.M.; Gaensler, B.M.; Haverkorn, M.; Beck, R.; McConnell, D.; Wolleben, M.; Stanimirović, S.; Dickey, J.M.; Staveley-Smith, L. Magnetic Field Structure of the Large Magellanic Cloud from Faraday Rotation Measures of Diffuse Polarized Emission. Astrophys. J. 2012, 759, 25. [Google Scholar] [CrossRef]
- Beck, R.; Frick, P.; Stepanov, R.; Sokoloff, D. Recognizing magnetic structures by present and future radio telescopes with Faraday rotation measure synthesis. Astron. Astrophys. 2012, 543, A113. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, C.L.; Haverkorn, M.; Alves, M.I.R.; Beck, R.; de Bruyn, A.G.; Enßlin, T.; Farnes, J.S.; Ferrière, K.; Heald, G.; Horellou, C.; et al. Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342. Astron. Astrophys. 2017, 597, A98. [Google Scholar] [CrossRef] [Green Version]
- Lenc, E.; Gaensler, B.M.; Sun, X.H.; Sadler, E.M.; Willis, A.G.; Barry, N.; Beardsley, A.P.; Bell, M.E.; Bernardi, G.; Bowman, J.D.; et al. Low-frequency Observations of Linearly Polarized Structures in the Interstellar Medium near the South Galactic Pole. Astrophys. J. 2016, 830, 38. [Google Scholar] [CrossRef]
- Van Eck, C.L.; Haverkorn, M.; Alves, M.I.R.; Beck, R.; Best, P.; Carretti, E.; Chyży, K.T.; Farnes, J.S.; Ferrière, K.; Hardcastle, M.J.; et al. Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog. Astron. Astrophys. 2018, 613, A58. [Google Scholar] [CrossRef] [Green Version]
- Shimwell, T.W.; Röttgering, H.J.A.; Best, P.N.; Williams, W.L.; Dijkema, T.J.; de Gasperin, F.; Hardcastle, M.J.; Heald, G.H.; Hoang, D.N.; Horneffer, A.; et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 2017, 598, A104. [Google Scholar] [CrossRef]
- Wayth, R.B.; Lenc, E.; Bell, M.E.; Callingham, J.R.; Dwarakanath, K.S.; Franzen, T.M.O.; For, B.Q.; Gaensler, B.; Hancock, P.; Hindson, L.; et al. GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey. Proc. Natl. Acad. Sci. USA 2015, 32, e025. [Google Scholar] [CrossRef]
- Riseley, C.J.; Lenc, E.; Van Eck, C.L.; Heald, G.; Gaensler, B.M.; Anderson, C.S.; Hancock, P.J.; Hurley-Walker, N.; Sridhar, S.S.; White, S.V. The POlarised GLEAM Survey (POGS) I: First Results from a Low-Frequency Radio Linear Polarisation Survey of the Southern Sky. arXiv 2018, arXiv:1809.09327. [Google Scholar]
- Schnitzeler, D.H.F.M.; Lee, K.J. Rotation measure synthesis revisited. Mon. Not. Roy. Astron. Soc. 2015, 447, L26–L30. [Google Scholar] [CrossRef]
- Bell, M.R.; Junklewitz, H.; Enßlin, T.A. Faraday caustics. Singularities in the Faraday spectrum and their utility as probes of magnetic field properties. Astron. Astrophys. 2011, 535, A85. [Google Scholar] [CrossRef]
- Bell, A.R. Cosmic ray acceleration. Astropart. Phys. 2013, 43, 56–70. [Google Scholar] [CrossRef]
- Tahani, M.; Plume, R.; Brown, J.C.; Kainulainen, J. Helical magnetic fields in molecular clouds?. A new method to determine the line-of-sight magnetic field structure in molecular clouds. Astron. Astrophys. 2018, 614, A100. [Google Scholar] [CrossRef]
- Schnitzeler, D.H.F.M.; Katgert, P.; de Bruyn, A.G. WSRT Faraday tomography of the Galactic ISM at λ ~ 0.86 m. I. The GEMINI data set at (l, b) = (181∘, 20∘). Astron. Astrophys. 2009, 494, 611–622. [Google Scholar] [CrossRef]
- Pizzo, R.F.; de Bruyn, A.G.; Bernardi, G.; Brentjens, M.A. Deep multi-frequency rotation measure tomography of the galaxy cluster A2255. Astron. Astrophys. 2011, 525, A104. [Google Scholar] [CrossRef]
- Iacobelli, M.; Haverkorn, M.; Katgert, P. Rotation measure synthesis at the 2 m wavelength of the FAN region: Unveiling screens and bubbles. Astron. Astrophys. 2013, 549, A56. [Google Scholar] [CrossRef]
- Jelić, V.; de Bruyn, A.G.; Mevius, M.; Abdalla, F.B.; Asad, K.M.B.; Bernardi, G.; Brentjens, M.A.; Bus, S.; Chapman, E.; Ciardi, B.; et al. Initial LOFAR observations of epoch of reionization windows. II. Diffuse polarized emission in the ELAIS-N1 field. Astron. Astrophys. 2014, 568, A101. [Google Scholar] [CrossRef]
- Jelić, V.; de Bruyn, A.G.; Pandey, V.N.; Mevius, M.; Haverkorn, M.; Brentjens, M.A.; Koopmans, L.V.E.; Zaroubi, S.; Abdalla, F.B.; Asad, K.M.B.; et al. Linear polarization structures in LOFAR observations of the interstellar medium in the 3C 196 field. Astron. Astrophys. 2015, 583, A137. [Google Scholar] [CrossRef]
- Zaroubi, S.; Jelić, V.; de Bruyn, A.G.; Boulanger, F.; Bracco, A.; Kooistra, R.; Alves, M.I.R.; Brentjens, M.A.; Ferrière, K.; Ghosh, T.; et al. Galactic interstellar filaments as probed by LOFAR and Planck. Mon. Not. Roy. Astron. Soc. 2015, 454, L46–L50. [Google Scholar] [CrossRef]
- Jelić, V.; Prelogović, D.; Haverkorn, M.; Remeijn, J.; Klindžić, D. Magnetically aligned straight depolarization canals and the rolling Hough transform. Astron. Astrophys. 2018, 615, L3. [Google Scholar] [CrossRef]
- Van Eck, C.L. Exploring the Threefold Invisible Universe: Low-Frequency Spectropolarimetry with LOFAR as a Probe of Galactic Magnetism. Ph.D. Thesis, Radboud University Nijmegen, Nijmegen, The Netherlands, 9 October 2017. [Google Scholar]
- Mulcahy, D.D.; Horneffer, A.; Beck, R.; Heald, G.; Fletcher, A.; Scaife, A.; Adebahr, B.; Anderson, J.M.; Bonafede, A.; Brüggen, M.; et al. The nature of the low-frequency emission of M 51. First observations of a nearby galaxy with LOFAR. Astron. Astrophys. 2014, 568, A74. [Google Scholar] [CrossRef]
- Farnes, J.S.; Green, D.A.; Kantharia, N.G. Probing Magnetic Fields using the Giant Metrewave Radio Telescope. arXiv 2013, arXiv:astro-ph.IM/1309.4646. [Google Scholar]
- Wolleben, M.; Landecker, T.L.; Carretti, E.; Dickey, J.M.; Fletcher, A.; Gaensler, B.M.; Han, J.L.; Haverkorn, M.; Leahy, J.P.; McClure-Griffiths, N.M.; et al. GMIMS: The Global Magneto-Ionic Medium Survey. In Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, Proceedings of the International Astronomical Union, IAU Symposium, Puerto Santiago, Spain, 3–7 November 2008; Strassmeier, K.G., Kosovichev, A.G., Beckman, J.E., Eds.; Cambridge University Press: Cambridge, UK, 2009; Volume 259, pp. 89–90. [Google Scholar] [CrossRef]
- Astropy Collaboration; Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef] [Green Version]
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Pérez, F.; Granger, B.E. IPython: A System for Interactive Scientific Computing. Comput. Sci. Eng. 2007, 9, 21–29. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
1. | All quantities with a tilde denote complex quantities, specifically polarization phasors. |
2. | It is important to note that while both and are called the Faraday depth, is the independent variable in the Faraday depth spectrum and spans the range of possible amounts of Faraday rotation ( to ∞ rad m), while is the specific Faraday depth that would be observed for polarized emission produced at a given distance. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Eck, C.L. The Power of Low Frequencies: Faraday Tomography in the Sub-GHz Regime. Galaxies 2018, 6, 112. https://doi.org/10.3390/galaxies6040112
Van Eck CL. The Power of Low Frequencies: Faraday Tomography in the Sub-GHz Regime. Galaxies. 2018; 6(4):112. https://doi.org/10.3390/galaxies6040112
Chicago/Turabian StyleVan Eck, Cameron L. 2018. "The Power of Low Frequencies: Faraday Tomography in the Sub-GHz Regime" Galaxies 6, no. 4: 112. https://doi.org/10.3390/galaxies6040112
APA StyleVan Eck, C. L. (2018). The Power of Low Frequencies: Faraday Tomography in the Sub-GHz Regime. Galaxies, 6(4), 112. https://doi.org/10.3390/galaxies6040112