Towards the Provision of Accurate Atomic Data for Neutral Iron
Abstract
:1. Introduction
2. Atomic Structure
3. Radiative Data
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
 Hilborn, R.C. Einstein coefficients, cross sections, f values, dipole moments, and all that. arXiv, 2002; arXiv:physics/0202029. [Google Scholar]
 Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Version 5.5.6). 2018. Available online: https://physics.nist.gov/asd (accessed on 19 June 2018).
 Holzreuter, R.; Solanki, S.K. Threedimensional nonLTE radiative transfer effects in Fe lines  I. Flux sheet and flux tube geometries. Astron. Astrophys. 2012, 547, A46. [Google Scholar] [CrossRef]
 Bautista; Manuel, A.; Lind, K.; Bergemann, M. Photoionization and electron impact excitation cross sections for Fe. Astron. Astrophys. 2017, 606, A127. [Google Scholar] [CrossRef]
 Bergemann, M.; Lind, K.; Collet, R.; Magic, Z.; Asplund, M. NonLTE line formation of Fe in latetype stars I. Standard stars with 1D and 3D model atmospheres. Mon. Not. R. Astron. Soc. 2012, 427, 27–49. [Google Scholar] [CrossRef]
 Dyall, K.P.; Grant, I.P.; Johnson, C.T.; Parpia, F.A.; Plummer, E.P. GRASP: A generalpurpose relativistic atomic stucture program. Comput. Phys. Commun. 1996, 94, 249. [Google Scholar] [CrossRef]
 Parpia, F.A.; Grant, I.P. Software for relativistic atomic theory: The GRASP project at Oxford. J. Phys. IV Fr. 1991, 1, C1:33–C1:46. [Google Scholar] [CrossRef]
 Smyth, R.T.; Johnson, C.A.; Ennis, D.A.; Loch, S.D.; Ramsbottom, C.A.; Ballance, C.P. Relativistic Rmatrix calculations for the electronimpact excitation of neutral molybdenum. Phys. Rev. A 2017, 96, 042713. [Google Scholar] [CrossRef]
 Smyth, R.T.; Ballance, C.P.; Ramsbottom, C.A.; Johnson, C.A.; Ennis, D.A.; Loch, S.D. Dirac Rmatrix calculations for the electronimpact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion. Phys. Rev. A 2018, 97, 052705. [Google Scholar] [CrossRef]
 Aggarwal, K.M. Discrepancies in Atomic Data and Suggestions for Their Resolutions. Atoms 2017, 5, 37. [Google Scholar] [CrossRef]
1.  This updated version of GRASP${}^{0}$ is freely available at http://connorb.freeshell.org/. 
Model 1  Model 2  Model 3  Model 4  Model 5  Model 6 

3p${}^{6}$3d${}^{6}$4s${}^{2}$  3p${}^{4}$3d${}^{8}$4s${}^{2}$  3d${}^{8}$4d${}^{6}$  3p${}^{6}$3d${}^{6}$4s5s  3p${}^{6}$3d${}^{7}$5p  3p${}^{4}$3d${}^{9}$4p 
3p${}^{6}$3d${}^{6}$4s4p  3p${}^{4}$3d${}^{9}$4s  3p${}^{6}$3d${}^{7}$4d  3p${}^{6}$3d${}^{7}$5s  3p${}^{6}$3d${}^{6}$5p${}^{2}$  3p${}^{4}$3d${}^{9}$4d 
3p${}^{6}$3d${}^{7}$4s  3p${}^{6}$3d${}^{6}$4s4d  3p${}^{6}$3d${}^{6}$5s${}^{2}$  3p${}^{4}$3d${}^{9}$5s  
3p${}^{6}$3d${}^{7}$4p  3p${}^{6}$3d${}^{6}$4p4d  3p${}^{4}$3d${}^{8}$5s${}^{2}$  
3p${}^{6}$3d${}^{8}$  
3p${}^{6}$3d${}^{6}$4p${}^{2}$ 
No.  Level  NIST  GRASP${}^{0}$  

Model 1  Model 2  Model 3  Model 4  Model 5  Model 6  
1  3d${}^{6}$4s${}^{2}$ ${}^{5}$D${}_{4}$  0.00000  —  —  —  —  —  — 
2  3d${}^{6}$4s${}^{2}$ ${}^{5}$D${}_{3}$  0.00379  0.8  1.0  −9.9  −9.6  −9. 0  −7.2 
3  3d${}^{6}$4s${}^{2}$ ${}^{5}$D${}_{2}$  0.00642  1.7  1.4  −9.1  −8.8  −8.3  −6.6 
4  3d${}^{6}$4s${}^{2}$ ${}^{5}$D${}_{1}$  0.00809  2.4  1.7  −8.6  −8.3  −7.7 
$$6.1$$

5  3d${}^{6}$4s${}^{2}$ ${}^{5}$D${}_{0}$  0.00891  2.6  1.9  −8.4  −8.1  −7.5  −5.9 
6  3d${}^{7}$4s ${}^{5}$F${}_{5}$  0.06314  489.2  522.4  −77.5  −67.5  −53.2  −10.8 
7  3d${}^{7}$4s ${}^{5}$F${}_{4}$  0.06722  457.9  489.0  −72.9  −63.7  −50.1  −10.1 
8  3d${}^{7}$4s ${}^{5}$F${}_{3}$  0.07042  435.4  465.5  −69.7  −60.9  −47.9  −9.7 
9  3d${}^{7}$4s ${}^{5}$F${}_{2}$  0.07277  420.8  449.6  −67.6  −58.9  −46.4  −9.4 
10  3d${}^{7}$4s ${}^{5}$F${}_{1}$  0.07431  411.4  439.8  −66.2  −57.7  −45.5  −9.2 
11  3d${}^{7}$4s ${}^{3}$F${}_{4}$  0.10914  294.9  313.5  −27.9  −27.0  −17.8  6.3 
12  3d${}^{7}$4s ${}^{3}$F${}_{3}$  0.11446  279.8  297.7  −28.1  −25.9  −17.3  5.9 
13  3d${}^{7}$4s ${}^{3}$F${}_{2}$  0.11818  270.6  287.6  −30.3  −25.2  −16.7  5.7 
14  3d${}^{7}$4s ${}^{5}$P${}_{3}$  0.15993  225.6  231.0  −31.6  −27.7  −21.8  −5.6 
15  3d${}^{7}$4s ${}^{5}$P${}_{2}$  0.16154  223.1  228.5  −31.2  −27.3  −21.4  −5.4 
16  3d${}^{7}$4s ${}^{5}$P${}_{1}$  0.16337  220.2  225.5  −30.9  −27.0  −21.3  −5.4 
17  3d${}^{6}$4s${}^{2}$ ${}^{3}$P${}_{2}$  0.16747  29.7  11.8  29.6  31.5  30.8  9.0 
18  3d${}^{6}$4s4p ${}^{7}$D${}_{5}^{\mathrm{o}}$  0.17634  −23.6  −8.0  −6.4  −6.5  −4.2  −3.3 
19  3d${}^{6}$4s${}^{2}$ ${}^{3}$H${}_{6}$  0.17670  10.9  18.3  63.3  30.0  24.9  24.3 
20  3d${}^{6}$4s${}^{2}$ ${}^{3}$P${}_{1}$  0.17818  26.6  11.8  26.3  27.3  29.3  7.4 
21  3d${}^{6}$4s4p ${}^{7}$D${}_{4}^{\mathrm{o}}$  0.17827  −23.1  −7.9  −6.5  −6.5  −4.3  −3.4 
22  3d${}^{6}$4s${}^{2}$ ${}^{3}$H${}_{5}$  0.17880  10.7  17.9  29.0  29.5  24.2  23.8 
23  3d${}^{6}$4s4p ${}^{7}$D${}_{3}^{\mathrm{o}}$  0.18004  −22.9  −7.8  −6.5  −6.5  −4.3  −3.4 
24  3d${}^{6}$4s${}^{2}$ ${}^{3}$H${}_{4}$  0.18031  10.5  17.1  28.8  28.4  24.4  23.1 
25  3d${}^{6}$4s4p ${}^{7}$D${}_{2}^{\mathrm{o}}$  0.18146  −22.6  −7.7  −6.5  −6.5  −4.3  −3.4 
26  3d${}^{6}$4s4p ${}^{7}$D${}_{1}^{\mathrm{o}}$  0.18243  −22.5  −7.6  −6.5  −7.5  −4.3  −3.4 
27  3d${}^{6}$4s${}^{2}$ ${}^{3}$P${}_{0}$  0.18260  26.3  11.8  25.6  26.3  27.8  6.9 
28  3d${}^{6}$4s${}^{2}$ ${}^{3}$F${}_{4}$  0.18810  19.2  13.5  21.8  21.6  20.6  19.0 
29  3d${}^{6}$4s${}^{2}$ ${}^{3}$F${}_{3}$  0.19022  19.0  12.9  21.5  21.3  20.3  18.3 
30  3d${}^{6}$4s${}^{2}$ ${}^{3}$F${}_{2}$  0.19172  18.9  12.8  21.2  21.0  20.0  18.3 
44  3d${}^{6}$4s4p ${}^{7}$P${}_{4}^{\mathrm{o}}$  0.21607  −20.4  −7.9  −6.8  −6.7  −6.3  −5.3 
47  3d${}^{6}$4s4p ${}^{7}$P${}_{3}^{\mathrm{o}}$  0.22035  −19.8  −7.6  −6.7  −6.6  −6.2  −5.2 
50  3d${}^{6}$4s4p ${}^{7}$P${}_{2}^{\mathrm{o}}$  0.22332  −19.4  −7.3  −6.6  −6.5  −6.1  −5.1 
73  3d${}^{6}$4s4p ${}^{5}$P${}_{3}^{\mathrm{o}}$  0.26478  −10.8  −0.6  −7.4  −6.8  −6.5  −4.9 
78  3d${}^{6}$4s4p ${}^{5}$P${}_{2}^{\mathrm{o}}$  0.26854  −10.5  −0.5  −7.4  −6.8  −6.5  −4.9 
79  3d${}^{6}$4s4p ${}^{5}$P${}_{1}^{\mathrm{o}}$  0.27094  −10.3  −0.4  −7.4  −6.9  −6.5  −4.9 
Wavelength /nm  Transition ($\mathit{j}\mathit{i}$)  Oscillator Strength  

NIST  Model 1  Model 2  Model 3  Model 4  Model 5  Model 6  
525.50  25 — 4  5.74−6  6.80−7  8.62−7  4.14−6  5.03−6  6.56−6  6.38−6 
525.02  26 — 5  1.15−5  1.21−6  1.62−6  6.49−6  7.09−6  1.02−5  1.03−5 
524.71  23 — 3  2.26−6  2.71−7  6.43−8  2.42−6  3.19−6  3.68−6  3.37−6 
522.55  26 — 4  5.42−6  5.17−7  7.14−7  2.50−6  2.45−6  3.88−6  4.02−6 
520.46  25 — 3  9.31−6  1.13−6  1.49−6  5.06−6  5.63−6  8.37−6  8.55−6 
516.89  23 — 2  1.53−5  2.15−6  2.76−6  9.45−6  1.13−5  1.62−5  1.63−5 
512.77  25 — 2  1.07−7  9.21−8  9.27−8  3.05−7  7.01−7  7.53−7  7.04−7 
511.04  21 — 1  1.93−5  2.90−6  3.64−6  1.30−5  1.61−5  2.24−5  2.23−5 
425.83  47 — 3  9.66−6  4.10−7  5.30−7  1.87−5  1.42−5  1.03−5  7.30−6 
423.27  50 — 4  3.93−6  1.60−7  2.10−7  7.17−6  5.13−6  3.59−6  2.61−6 
421.62  44 — 1  4.90−5  2.28−6  2.88−6  8.90−5  7.33−5  5.75−5  4.16−5 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conroy, A.; Ramsbottom, C.; Ballance, C.; Keenan, F. Towards the Provision of Accurate Atomic Data for Neutral Iron. Galaxies 2018, 6, 91. https://doi.org/10.3390/galaxies6030091
Conroy A, Ramsbottom C, Ballance C, Keenan F. Towards the Provision of Accurate Atomic Data for Neutral Iron. Galaxies. 2018; 6(3):91. https://doi.org/10.3390/galaxies6030091
Chicago/Turabian StyleConroy, Andrew, Catherine Ramsbottom, Connor Ballance, and Francis Keenan. 2018. "Towards the Provision of Accurate Atomic Data for Neutral Iron" Galaxies 6, no. 3: 91. https://doi.org/10.3390/galaxies6030091