Constraints on the Distribution of Gas and Young Stars in the Galactic Centre in the Context of Interpreting Gamma Ray Emission Features
Abstract
:1. Introduction
2. 2D Distribution of Dense (Molecular) Gas and Young Stars
3. 3D Distribution of Dense (Molecular) Gas and Young Stars
3.1. 3D Distribution of Dense Gas
3.2. 3D Distribution of Young Stars
4. Implications for Future Modelling of the Gamma Ray Emission
- 2/3 of the dense gas is at positive Galactic longitudes (left of Sgr A* in Figure 1 ).
- 2/3 of the young stars are at negative Galactic longitudes (right of Sgr A* in Figure 1).
- All of the current star formations are contained within a projected radius of 100 pc from the Galactic Centre.
- The star formation rate in this region has been constant at ∼0.1 Myr to within a factor of 2 over the last ∼5 Myr. Numerical modelling suggests that the star formation rate may have been at last an order of magnitude larger in the past, but this is currently unconstrained by observations.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Morris, M.; Serabyn, E. The Galactic Center Environment. Annu. Rev. Astron. Astrophys. 1996, 34, 645–702. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O. Discovery of very-high-energy γ-Rays from the Galactic Centre ridge. Nature 2006, 439, 695–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodenough, L.; Hooper, D. Possible Evidence for Dark Matter Annihilation in the Inner Milky Way from the Fermi Gamma Ray Space Telescope. arXiv, 2009; arXiv:hep-ph/0910.2998. [Google Scholar]
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef]
- Hooper, D.; Goodenough, L. Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope. Phys. Lett. B 2011, 697, 412–428. [Google Scholar] [CrossRef]
- Hooper, D.; Linden, T. Origin of the gamma rays from the Galactic Center. Phys. Rev. D 2011, 84, 123005. [Google Scholar] [CrossRef]
- Crocker, R.M.; Aharonian, F. Fermi Bubbles: Giant, Multibillion-Year-Old Reservoirs of Galactic Center Cosmic Rays. Phys. Rev. Lett. 2011, 106, 101102. [Google Scholar] [CrossRef] [PubMed]
- Malyshev, D. Galactic center gamma-ray excess and the Fermi bubbles. Nuovo Cimento C Geophys. Space Phys. C 2018, 40, 159. [Google Scholar]
- Crocker, R.M.; Jones, D.I.; Aharonian, F.; Law, C.J.; Melia, F.; Oka, T.; Ott, J. Wild at Heart: The particle astrophysics of the Galactic Centre. Mon. Not. R. Astron. Soc. 2011, 413, 763–788. [Google Scholar] [CrossRef]
- Crocker, R.M. Non-thermal insights on mass and energy flows through the Galactic Centre and into the Fermi bubbles. Mon. Not. R. Astron. Soc. 2012, 423, 3512–3539. [Google Scholar] [CrossRef]
- Bally, J.; Aguirre, J.; Battersby, C.; Bradley, E.T.; Cyganowski, C.; Dowell, D.; Drosback, M.; Dunham, M.K.; Evans, N.J., II; Ginsburg, A.; et al. The Bolocam Galactic Plane Survey: λ = 1.1 and 0.35 mm Dust Continuum Emission in the Galactic Center Region. Astrophys. J. 2010, 721, 137–163. [Google Scholar] [CrossRef]
- Molinari, S.; Bally, J.; Glover, S.; Moore, T.; Noreiga-Crespo, A.; Plume, R.; Testi, L.; Vázquez-Semadeni, E.; Zavagno, A.; Bernard, J.P.; et al. The Milky Way as a Star Formation Engine. In Protostars Planets VI; University of Arizona Press: Tucson, Arizona, USA, 2014; pp. 125–148. [Google Scholar]
- Molinari, S.; Swinyard, B.; Bally, J.; Barlow, M.; Bernard, J.P.; Martin, P.; Moore, T.; Noriega-Crespo, A.; Plume, R.; Testi, L. Clouds, filaments, and protostars: The Herschel Hi-GAL Milky Way. Astron. Astrophys. 2010, 518, L100. [Google Scholar] [CrossRef]
- Carey, S.J.; Noriega-Crespo, A.; Mizuno, D.R.; Shenoy, S.; Paladini, R.; Kraemer, K.E.; Price, S.D.; Flagey, N.; Ryan, E.; Ingalls, J.G.; et al. MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm. Publ. Astron. Soc. Pac. 2009, 121, 76. [Google Scholar] [CrossRef]
- Reid, M.J.; Menten, K.M.; Brunthaler, A.; Zheng, X.W.; Dame, T.M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; et al. Trigonometric Parallaxes of High Mass Star Forming Regions: The Structure and Kinematics of the Milky Way. Astrophys. J. 2014, 783, 130. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D.; Longmore, S.N. Comparing molecular gas across cosmic time-scales: The Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue. Mon. Not. R. Astron. Soc. 2013, 435, 2598–2603. [Google Scholar] [CrossRef]
- Mills, E.A.C. The Milky Way’s Central Molecular Zone. arXiv, 2017; arXiv:1705.05332. [Google Scholar]
- Bally, J.; Stark, A.A.; Wilson, R.W.; Henkel, C. Galactic center molecular clouds. I—Spatial and spatial-velocity maps. Astrophys. J. Suppl. Ser. 1987, 65, 13–82. [Google Scholar] [CrossRef]
- Bally, J.; Stark, A.A.; Wilson, R.W.; Henkel, C. Galactic center molecular clouds. II—Distribution and kinematics. Astrophys. J. 1988, 324, 223–247. [Google Scholar] [CrossRef]
- Shetty, R.; Beaumont, C.N.; Burton, M.G.; Kelly, B.C.; Klessen, R.S. The linewidth-size relationship in the dense interstellar medium of the Central Molecular Zone. Mon. Not. R. Astron. Soc. 2012, 425, 720–729. [Google Scholar] [CrossRef]
- Henshaw, J.D.; Longmore, S.N.; Kruijssen, J.M.D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C. Molecular gas kinematics within the central 250 pc of the Milky Way. Mon. Not. R. Astron. Soc. 2016, 457, 2675–2702. [Google Scholar] [CrossRef]
- Ginsburg, A.; Henkel, C.; Ao, Y.; Riquelme, D.; Kauffmann, J.; Pillai, T.; Mills, E.A.C.; Requena-Torres, M.A.; Immer, K.; Testi, L. Dense gas in the Galactic central molecular zone is warm and heated by turbulence. Astron. Astrophys. 2016, 586, A50. [Google Scholar] [CrossRef]
- Longmore, S.N.; Walsh, A.J.; Purcell, C.R.; Burke, D.J.; Henshaw, J.; Walker, D.; Urquhart, J.; Barnes, A.T.; Whiting, M.; Burton, M.G.; et al. H2O Southern Galactic Plane Survey (HOPS): Paper III—Properties of dense molecular gas across the inner Milky Way. Mon. Not. R. Astron. Soc. 2017, 470, 1462–1490. [Google Scholar] [CrossRef]
- Güsten, R.; Walmsley, C.M.; Pauls, T. Ammonia in the neighbourhood of the galactic center. Astron. Astrophys. 1981, 103, 197–206. [Google Scholar]
- Mills, E.A.C.; Morris, M.R. Detection of Widespread Hot Ammonia in the Galactic Center. Astrophys. J. 2013, 772, 105. [Google Scholar] [CrossRef]
- Scoville, N.Z.; Solomon, P.M.; Penzias, A.A. The molecular cloud Sagittarius B2. Astrophys. J. 1975, 201, 352–365. [Google Scholar] [CrossRef]
- Gaume, R.A.; Claussen, M.J.; de Pree, C.G.; Goss, W.M.; Mehringer, D.M. The Sagittarius B2 Star-forming Region. I. Sensitive 1.3 Centimeter Continuum Observations. Astrophys. J. 1995, 449, 663. [Google Scholar] [CrossRef]
- Schmiedeke, A.; Schilke, P.; Möller, T.; Sánchez-Monge, Á.; Bergin, E.; Comito, C.; Csengeri, T.; Lis, D.C.; Molinari, S.; Qin, S.L.; et al. The physical and chemical structure of Sagittarius B2. I. Three-dimensional thermal dust and free-free continuum modeling on 100 au to 45 pc scales. Astron. Astrophys. 2016, 588, A143. [Google Scholar] [CrossRef]
- Sánchez-Monge, Á.; Schilke, P.; Schmiedeke, A.; Ginsburg, A.; Cesaroni, R.; Lis, D.C.; Qin, S.L.; Müller, H.S.P.; Bergin, E.; Comito, C.; et al. The physical and chemical structure of Sagittarius B2. II. Continuum millimeter emission of Sgr B2(M) and Sgr B2(N) with ALMA. Astron. Astrophys. 2017, 604, A6. [Google Scholar] [CrossRef]
- Ginsburg, A.; Bally, J.; Barnes, A.; Bastian, N.; Battersby, C.; Beuther, H.; Brogan, C.; Contreras, Y.; Corby, J.; Darling, J.; et al. Distributed Star Formation throughout the Galactic Center Cloud Sgr B2. Astrophys. J. 2018, 853, 171. [Google Scholar] [CrossRef]
- Figer, D.F.; Kim, S.S.; Morris, M.; Serabyn, E.; Rich, R.M.; McLean, I.S. Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center. Astrophys. J. 1999, 525, 750–758. [Google Scholar] [CrossRef]
- Figer, D.F.; McLean, I.S.; Morris, M. Massive Stars in the Quintuplet Cluster. Astrophys. J. 1999, 514, 202–220. [Google Scholar] [CrossRef]
- Figer, D.F.; Najarro, F.; Gilmore, D.; Morris, M.; Kim, S.S.; Serabyn, E.; McLean, I.S.; Gilbert, A.M.; Graham, J.R.; Larkin, J.E.; et al. Massive Stars in the Arches Cluster. Astrophys. J. 2002, 581, 258–275. [Google Scholar] [CrossRef]
- Genzel, R.; Eisenhauer, F.; Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 2010, 82, 3121–3195. [Google Scholar] [CrossRef]
- Yusef-Zadeh, F.; Hewitt, J.W.; Arendt, R.G.; Whitney, B.; Rieke, G.; Wardle, M.; Hinz, J.L.; Stolovy, S.; Lang, C.C.; Burton, M.G.; et al. Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive Young Stellar Objects. Astrophys. J. 2009, 702, 178–225. [Google Scholar] [CrossRef]
- Immer, K.; Schuller, F.; Omont, A.; Menten, K.M. Recent star formation in the inner Galactic bulge seen by ISOGAL. II. The central molecular zone. Astron. Astrophys. 2012, 537, A121. [Google Scholar] [CrossRef]
- Koepferl, C.M.; Robitaille, T.P.; Morales, E.F.E.; Johnston, K.G. Main-sequence Stars Masquerading as Young Stellar Objects in the Central Molecular Zone. Astrophys. J. 2015, 799, 53. [Google Scholar] [CrossRef]
- Renaud, F.; Bournaud, F.; Emsellem, E.; Agertz, O.; Athanassoula, E.; Combes, F.; Elmegreen, B.; Kraljic, K.; Motte, F.; Teyssier, R. Environmental regulation of cloud and star formation in galactic bars. Mon. Not. R. Astron. Soc. 2015, 454, 3299–3310. [Google Scholar] [CrossRef]
- Emsellem, E.; Renaud, F.; Bournaud, F.; Elmegreen, B.; Combes, F.; Gabor, J.M. The interplay between a galactic bar and a supermassive black hole: Nuclear fuelling in a subparsec resolution galaxy simulation. Mon. Not. R. Astron. Soc. 2015, 446, 2468–2482. [Google Scholar] [CrossRef]
- Ridley, M.G.L.; Sormani, M.C.; Treß, R.G.; Magorrian, J.; Klessen, R.S. Nuclear spirals in the inner Milky Way. Mon. Not. R. Astron. Soc. 2017, 469, 2251–2262. [Google Scholar] [CrossRef]
- Sormani, M.C.; Treß, R.G.; Ridley, M.; Glover, S.C.O.; Klessen, R.S.; Binney, J.; Magorrian, J.; Smith, R. A theoretical explanation for the Central Molecular Zone asymmetry. Mon. Not. R. Astron. Soc. 2018, 475, 2383–2402. [Google Scholar] [CrossRef]
- Tsuboi, M.; Handa, T.; Ukita, N. Dense Molecular Clouds in the Galactic Center Region. I. Observations and Data. Astrophys. J. Suppl. Ser. 1999, 120, 1–39. [Google Scholar] [CrossRef]
- Ferrière, K.; Gillard, W.; Jean, P. Spatial distribution of interstellar gas in the innermost 3 kpc of our galaxy. Astron. Astrophys. 2007, 467, 611–627. [Google Scholar] [CrossRef]
- Rodriguez-Fernandez, N.J.; Combes, F. Gas flow models in the Milky Way embedded bars. Astron. Astrophys. 2008, 489, 115–133. [Google Scholar] [CrossRef]
- Jones, P.A.; Burton, M.G.; Cunningham, M.R.; Requena-Torres, M.A.; Menten, K.M.; Schilke, P.; Belloche, A.; Leurini, S.; Martín-Pintado, J.; Ott, J.; et al. Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines. Mon. Not. R. Astron. Soc. 2012, 419, 2961–2986. [Google Scholar] [CrossRef]
- Henshaw, J.D.; Longmore, S.N.; Kruijssen, J.M.D. Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds. Mon. Not. R. Astron. Soc. 2016, 463, L122–L126. [Google Scholar] [CrossRef]
- Krieger, N.; Ott, J.; Beuther, H.; Walter, F.; Kruijssen, J.M.D.; Meier, D.S.; Mills, E.A.C.; Contreras, Y.; Edwards, P.; Ginsburg, A.; et al. The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone. Astrophys. J. 2017, 850, 77. [Google Scholar] [CrossRef]
- Molinari, S.; Bally, J.; Noriega-Crespo, A.; Compiègne, M.; Bernard, J.P.; Paradis, D.; Martin, P.; Testi, L. A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center. Astrophys. J. Lett. 2011, 735, L33. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D.; Dale, J.E.; Longmore, S.N. The dynamical evolution of molecular clouds near the Galactic Centre—I. Orbital structure and evolutionary timeline. Mon. Not. R. Astron. Soc. 2015, 447, 1059–1079. [Google Scholar] [CrossRef]
- Clavel, M.; Terrier, R.; Goldwurm, A.; Morris, M.R.; Ponti, G.; Soldi, S.; Trap, G. Echoes of multiple outbursts of Sagittarius A* revealed by Chandra. Astron. Astrophys. 2013, 558, A32. [Google Scholar] [CrossRef] [Green Version]
- Churazov, E.; Khabibullin, I.; Sunyaev, R.; Ponti, G. Not that long time ago in the nearest galaxy: 3D slice of molecular gas revealed by a 110 yr old flare of Sgr A*. Mon. Not. R. Astron. Soc. 2017, 465, 45–53. [Google Scholar] [CrossRef]
- Stolte, A.; Ghez, A.M.; Morris, M.; Lu, J.R.; Brandner, W.; Matthews, K. The Proper Motion of the Arches Cluster with Keck Laser-Guide Star Adaptive Optics. Astrophys. J. 2008, 675, 1278–1292. [Google Scholar] [CrossRef]
- Clarkson, W.I.; Ghez, A.M.; Morris, M.R.; Lu, J.R.; Stolte, A.; McCrady, N.; Do, T.; Yelda, S. Proper Motions of the Arches Cluster with Keck Laser Guide Star Adaptive Optics: The First Kinematic Mass Measurement of the Arches. Astrophys. J. 2012, 751, 132. [Google Scholar] [CrossRef]
- Stolte, A.; Hußmann, B.; Morris, M.R.; Ghez, A.M.; Brandner, W.; Lu, J.R.; Clarkson, W.I.; Habibi, M.; Matthews, K. The Orbital Motion of the Quintuplet Cluster—A Common Origin for the Arches and Quintuplet Clusters? Astrophys. J. 2014, 789, 115. [Google Scholar] [CrossRef]
- Portegies Zwart, S.F.; Makino, J.; McMillan, S.L.W.; Hut, P. The Lives and Deaths of Star Clusters near the Galactic Center. Astrophys. J. 2002, 565, 265–279. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D. On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 2012, 426, 3008–3040. [Google Scholar] [CrossRef]
- Longmore, S.N.; Rathborne, J.; Bastian, N.; Alves, J.; Ascenso, J.; Bally, J.; Testi, L.; Longmore, A.; Battersby, C.; Bressert, E.; et al. G0.253+0.016: A Molecular Cloud Progenitor of an Arches-like Cluster. Astrophys. J. 2012, 746, 117. [Google Scholar] [CrossRef]
- Longmore, S.N.; Bally, J.; Testi, L.; Purcell, C.R.; Walsh, A.J.; Bressert, E.; Pestalozzi, M.; Molinari, S.; Ott, J.; Cortese, L.; et al. Variations in the Galactic star formation rate and density thresholds for star formation. Mon. Not. R. Astron. Soc. 2013, 429, 987–1000. [Google Scholar] [CrossRef]
- Longmore, S.N.; Kruijssen, J.M.D.; Bally, J.; Ott, J.; Testi, L.; Rathborne, J.; Bastian, N.; Bressert, E.; Molinari, S.; Battersby, C.; et al. Candidate super star cluster progenitor gas clouds possibly triggered by close passage to Sgr A*. Mon. Not. R. Astron. Soc. 2013, 433, L15–L19. [Google Scholar] [CrossRef]
- Longmore, S.N.; Kruijssen, J.M.D.; Bastian, N.; Bally, J.; Rathborne, J.; Testi, L.; Stolte, A.; Dale, J.; Bressert, E.; Alves, J. The Formation and Early Evolution of Young Massive Clusters. In Protostars Planets VI; University of Arizona Press: Tucson, Arizona, USA, 2014; pp. 291–314. [Google Scholar]
- Kauffmann, J.; Pillai, T.; Zhang, Q. The Galactic Center Cloud G0.253+0.016: A Massive Dense Cloud with low Star Formation Potential. Astrophys. J. Lett. 2013, 765, L35. [Google Scholar] [CrossRef]
- Johnston, K.G.; Beuther, H.; Linz, H.; Schmiedeke, A.; Ragan, S.E.; Henning, T. The dynamics and star-forming potential of the massive Galactic centre cloud G0.253+0.016. Astron. Astrophys. 2014, 568, A56. [Google Scholar] [CrossRef]
- Rathborne, J.M.; Longmore, S.N.; Jackson, J.M.; Foster, J.B.; Contreras, Y.; Garay, G.; Testi, L.; Alves, J.F.; Bally, J.; Bastian, N.; et al. G0.253+0.016: A Centrally Condensed, High-mass Protocluster. Astrophys. J. 2014, 786, 140. [Google Scholar] [CrossRef]
- Rathborne, J.M.; Longmore, S.N.; Jackson, J.M.; Alves, J.F.; Bally, J.; Bastian, N.; Contreras, Y.; Foster, J.B.; Garay, G.; Kruijssen, J.M.D.; et al. A Cluster in the Making: ALMA Reveals the Initial Conditions for High-mass Cluster Formation. Astrophys. J. 2015, 802, 125. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Q.; Kauffmann, J.; Pillai, T.; Longmore, S.N.; Kruijssen, J.M.D.; Battersby, C.; Gu, Q. Deeply Embedded Protostellar Population in the 20 km s−1 Cloud of the Central Molecular Zone. Astrophys. J. Lett. 2015, 814, L18. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Q.; Kauffmann, J.; Pillai, T.; Longmore, S.N.; Kruijssen, J.M.D.; Battersby, C.; Liu, H.B.; Ginsburg, A.; Mills, E.A.C.; et al. The Molecular Gas Environment in the 20 km s−1 Cloud in the Central Molecular Zone. Astrophys. J. 2017, 839, 1. [Google Scholar] [CrossRef]
- Walker, D.L.; Longmore, S.N.; Bastian, N.; Kruijssen, J.M.D.; Rathborne, J.M.; Jackson, J.M.; Foster, J.B.; Contreras, Y. Tracing the conversion of gas into stars in Young Massive Cluster Progenitors. Mon. Not. R. Astron. Soc. 2015, 449, 715–725. [Google Scholar] [CrossRef]
- Walker, D.L.; Longmore, S.N.; Bastian, N.; Kruijssen, J.M.D.; Rathborne, J.M.; Galván-Madrid, R.; Liu, H.B. Comparing young massive clusters and their progenitor clouds in the Milky Way. Mon. Not. R. Astron. Soc. 2016, 457, 4536–4545. [Google Scholar] [CrossRef]
- Federrath, C.; Rathborne, J.M.; Longmore, S.N.; Kruijssen, J.M.D.; Bally, J.; Contreras, Y.; Crocker, R.M.; Garay, G.; Jackson, J.M.; Testi, L.; et al. The Link between Turbulence, Magnetic Fields, Filaments, and Star Formation in the Central Molecular Zone Cloud G0.253+0.016. Astrophys. J. 2016, 832, 143. [Google Scholar] [CrossRef]
- Walker, D.L.; Longmore, S.N.; Zhang, Q.; Battersby, C.; Keto, E.; Kruijssen, J.M.D.; Ginsburg, A.; Lu, X.; Henshaw, J.D.; Kauffmann, J.; et al. Star formation in a high-pressure environment: An SMA view of the Galactic Centre dust ridge. Mon. Not. R. Astron. Soc. 2018, 474, 2373–2388. [Google Scholar] [CrossRef]
- Jeffreson, S.M.R.; Kruijssen, J.M.D.; Krumholz, M.R.; Longmore, S.N. On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way. arXiv, 2018; arXiv:1805.02655. [Google Scholar]
- Barnes, A.T.; Longmore, S.N.; Battersby, C.; Bally, J.; Kruijssen, J.M.D.; Henshaw, J.D.; Walker, D.L. Star formation rates and efficiencies in the Galactic Centre. Mon. Not. R. Astron. Soc. 2017, 469, 2263–2285. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Kruijssen, J.M.D. A dynamical model for the formation of gas rings and episodic starbursts near galactic centres. Mon. Not. R. Astron. Soc. 2015, 453, 739–757. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Kruijssen, J.M.D.; Crocker, R.M. A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Mon. Not. R. Astron. Soc. 2017, 466, 1213–1233. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D.; Longmore, S.N.; Elmegreen, B.G.; Murray, N.; Bally, J.; Testi, L.; Kennicutt, R.C. What controls star formation in the central 500 pc of the Galaxy? Mon. Not. R. Astron. Soc. 2014, 440, 3370–3391. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D.; Longmore, S.N. An uncertainty principle for star formation—I. Why galactic star formation relations break down below a certain spatial scale. Mon. Not. R. Astron. Soc. 2014, 439, 3239–3252. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D. Towards a multi-scale understanding of the gas-star formation cycle in the Central Molecular Zone. In The Multi-Messenger Astrophysics of the Galactic Centre; IAU Symposium; Crocker, R.M., Longmore, S.N., Bicknell, G.V., Eds.; Cambridge University Press: Cambridge, UK, 2017; Volume 322, pp. 64–74. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longmore, S.N.; Kruijssen, J.M.D. Constraints on the Distribution of Gas and Young Stars in the Galactic Centre in the Context of Interpreting Gamma Ray Emission Features. Galaxies 2018, 6, 55. https://doi.org/10.3390/galaxies6020055
Longmore SN, Kruijssen JMD. Constraints on the Distribution of Gas and Young Stars in the Galactic Centre in the Context of Interpreting Gamma Ray Emission Features. Galaxies. 2018; 6(2):55. https://doi.org/10.3390/galaxies6020055
Chicago/Turabian StyleLongmore, Steven N., and J. M. Diederik Kruijssen. 2018. "Constraints on the Distribution of Gas and Young Stars in the Galactic Centre in the Context of Interpreting Gamma Ray Emission Features" Galaxies 6, no. 2: 55. https://doi.org/10.3390/galaxies6020055
APA StyleLongmore, S. N., & Kruijssen, J. M. D. (2018). Constraints on the Distribution of Gas and Young Stars in the Galactic Centre in the Context of Interpreting Gamma Ray Emission Features. Galaxies, 6(2), 55. https://doi.org/10.3390/galaxies6020055