Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry
Abstract
:1. Introduction
2. Science Goals of X-ray Polarimetry
3. Polarimetry Basics
4. Polarimeters and Systematics
5. Polarimeter Techniques and Instrumentation
5.1. Bragg Diffraction Polarimeters
5.1.1. SOLPEX: SOLar Spectroscopy and Polarimetry EXperiments for Solar Flares
5.1.2. LAMP: Lightweight Asymmetry and Magnetism Probe
5.1.3. REDSoX: Rocket Experiment Demonstration of a Soft X-Ray Polarimeter
5.2. Photoelectric Polarimeters
5.2.1. IXPE: Imaging X-ray Photoelectric Polarimeter
5.2.2. eXTP: Enhanced X-ray Timing and Polarimetry Mission
5.2.3. Photoelectric Polarimetry with the GPD towards Hard X-rays
5.3. Scattering Polarimetry
- background rejection, if large sensitive volumes are involved. The mitigation of background is possible by means of the scatterer/absorber coincidence (it is intrinsic of the Compton scattering technique), anticoincidence, passive shielding and a careful estimation of sensitive volumes needed. For Thomson polarimeters background is a very critical issue.
- Scintillation light cross-talk. The mitigation of this effect is possible by means of a careful choice and application of the wrapping around the scintillating elements.
- Scintillating element light loss (for example from the edges). The mitigation of this effect is possible by means of a careful choice of the wrapping and of the optical contact between the interfaces towards the light sensor.
5.3.1. POLIX
5.3.2. SPR-N, PENGUIN-M and PING-P
5.3.3. POLAR
5.3.4. PoGOLite and PoGO+: Polarised Gamma-Ray Observer
5.3.5. X-Calibur
5.3.6. PolariS
5.3.7. PHENEX (Polarimetry for High ENErgy X-ray)
5.3.8. GAP: Gamma-Ray Burst Polarimeter
5.3.9. GRAPE (Gamma Ray Polarimeter Experiment)
5.3.10. SPHiNX: Segmented Polarimeter for High eNergy X-rays
5.3.11. Scattering Polarimetry CdTe/CZT
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Westfold, K.C. The Polarization of Synchrotron Radiation. Astrophys. J. 1959, 130, 241. [Google Scholar] [CrossRef]
- Kennel, C.F.; Coroniti, F.V. Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 1984, 283, 694–709. [Google Scholar] [CrossRef]
- Kennel, C.F.; Coroniti, F.V. Magnetohydrodynamic model of Crab nebula radiation. Astrophys. J. 1984, 283, 710–730. [Google Scholar] [CrossRef]
- Nakamura, Y.; Shibata, S. Polarization of the Crab Nebula with disordered magnetic components. Mon. Not. R. Astron. Soc. 2007, 381, 1489–1498. [Google Scholar] [CrossRef]
- Volpi, D.; Del Zanna, L.; Amato, E.; Bucciantini, N. Polarization in Pulsar Wind Nebulae. Astrophys. J. 2009, 773, 173–181. [Google Scholar]
- Weisskopf, M.C.; Silver, E.H.; Kestenbaum, H.L.; Long, K.S.; Novick, R. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. 1978, 220, L117–L121. [Google Scholar] [CrossRef]
- Helder, E.A.; Vink, J.; Bykov, A.M.; Ohira, Y.; Raymond, J.C.; Terrier, R. Observational Signatures of Particle Acceleration in Supernova Remnants. Space Sci. Rev. 2012, 173, 369–431. [Google Scholar] [CrossRef]
- Bykov, A.M.; Uvarov, Y.A.; Bloemen, J.B.G.M.; den Herder, J.W.; Kaastra, J.S. A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 2009, 399, 1119–1125. [Google Scholar] [CrossRef]
- Reynolds, S.P.; Chevalier, R.A. Nonthermal Radiation from Supernova Remnants in the Adiabatic Stage of Evolution. Astrophys. J. 1981, 245, 912. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Fender, R.P. Powerful jets from black hole X-ray binaries in low/hard X-ray states. Mon. Not. R. Astron. Soc. 2001, 322, 31–42. [Google Scholar] [CrossRef]
- Mirabel, I.F.; Rodríguez, L.F. Sources of Relativistic Jets in the Galaxy. Annu. Rev. Astron. Astrophys. 1999, 37, 409–443. [Google Scholar] [CrossRef]
- Gluckstern, R.L.; Hull, M.H. Polarization Dependence of the Integrated Bremsstrahlung Cross Section. Phys. Rev. 1953, 90, 1030–1035. [Google Scholar] [CrossRef]
- Zharkova, V.V.; Arzner, K.; Benz, A.O.; Browning, P.; Dauphin, C.; Emslie, A.G.; Fletcher, L.; Kontar, E.P.; Mann, G.; Onofri, M.; et al. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares. Space Sci. Rev. 2011, 159, 357–420. [Google Scholar] [CrossRef]
- Rosen, S.R.; Mason, K.O.; Cordova, F.A. EXOSAT X-ray observations of the eclipsing magnetic cataclysmic variable EX Hya. Mon. Not. R. Astron. Soc. 1988, 231, 549–573. [Google Scholar] [CrossRef]
- Lamb, D.Q.; Masters, A.R. X and UV radiation from accreting magnetic degenerate dwarfs. Astrophys. J. 1979, 234, L117–L122. [Google Scholar] [CrossRef]
- Meszaros, P.; Novick, R.; Szentgyorgyi, A.; Chanan, G.A.; Weisskopf, M.C. Astrophysical implications and observational prospects of X-ray polarimetry. Astrophys. J. 1988, 324, 1056–1067. [Google Scholar] [CrossRef]
- Gnedin, I.N.; Sunyaev, R.A. Polarization of optical and X-radiation from compact thermal sources with magnetic field. Astron. Astrophys. 1974, 36, 379–394. [Google Scholar]
- Ventura, J. Scattering of light in a strongly magnetized plasma. Phys. Rev. D 1979, 19, 1684–1695. [Google Scholar] [CrossRef]
- Gnedin, I.N.; Pavlov, G.G.; Shibanov, I.A. The effect of vacuum birefringence in a magnetic field on the polarization and beaming of X-ray pulsars. Sov. Astron. Lett. 1978, 4, 117–119. [Google Scholar]
- Ventura, J.; Nagel, W.; Meszaros, P. Possible vacuum signature in the spectra of X-ray pulsars. Astrophys. J. 1979, 233, L125–L128. [Google Scholar] [CrossRef]
- Meszaros, P.; Ventura, J. Vacuum polarization effects on radiative opacities in a strong magnetic field. Phys. Rev. D 1979, 19, 3565–3575. [Google Scholar] [CrossRef]
- Wijnands, R.; Homan, J.; Heinke, C.O.; Miller, J.M.; Lewin, W.H.G. Chandra Observations of the Accretion-driven Millisecond X-Ray Pulsars XTE J0929-314 and XTE J1751-305 in Quiescence. Astrophys. J. 2005, 619, 492–502. [Google Scholar] [CrossRef]
- Patruno, A.; Watts, A.L. Accreting Millisecond X-Ray Pulsars. arXiv, 2012; arXiv:1206.2727. [Google Scholar]
- Poutanen, J. Modeling pulse profiles of accreting millisecond pulsars. In American Institute of Physics Conference Series; Wijnands, R., Altamirano, D., Soleri, P., Degenaar, N., Rea, N., Casella, P., Patruno, A., Linares, M., Eds.; American Institute of Physics: College Park, MD, USA, 2008; Volume 1068, pp. 77–86. [Google Scholar]
- Viironen, K.; Poutanen, J. Light curves and polarization of accretion- and nuclear-powered millisecond pulsars. Astron. Astrophys. 2004, 426, 265–274. [Google Scholar] [CrossRef]
- Słowikowska, A.; Kanbach, G.; Kramer, M.; Stefanescu, A. Optical polarization of the Crab pulsar: Precision measurements and comparison to the radio emission. Mon. Not. R. Astron. Soc. 2009, 397, 103–123. [Google Scholar] [CrossRef]
- Taverna, R.; Muleri, F.; Turolla, R.; Soffitta, P.; Fabiani, S.; Nobili, L. Probing magnetar magnetosphere through X-ray polarization measurements. Mon. Not. R. Astron. Soc. 2014, 438, 1686–1697. [Google Scholar] [CrossRef]
- Thompson, C.; Lyutikov, M.; Kulkarni, S.R. Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars. Astrophys. J. 2002, 574, 332–355. [Google Scholar] [CrossRef]
- Turolla, R.; Zane, S.; Watts, A.L. Magnetars: The physics behind observations—A review. Rep. Prog. Phys. 2015, 78, 116901. [Google Scholar] [CrossRef] [PubMed]
- Sunyaev, R.A.; Titarchuk, L.G. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard radiation. Adv. Space Res. 1984, 3, 245–248. [Google Scholar] [CrossRef]
- Sazonov, S.Y.; Sunyaev, R.A. Scattering in the inner accretion disk and the waveforms and polarization of millisecond flux oscillations in LMXBs. Astron. Astrophys. 2001, 373, 241–250. [Google Scholar] [CrossRef]
- Rees, M.J. Expected polarization properties of binary X-ray sources. Mon. Not. R. Astron. Soc. 1975, 171, 457–465. [Google Scholar] [CrossRef]
- Haardt, F.; Matt, G. X-ray polarization in the two-phase model for AGN and X-ray binaries. Mon. Not. R. Astron. Soc. 1993, 261, 346–352. [Google Scholar] [CrossRef]
- Poutanen, J.; Vilhu, O. Compton scattering of polarized light in two-phase accretion discs. Astron. Astrophys. 1993, 275, 337–344. [Google Scholar]
- Schnittman, J.D.; Krolik, J.H. X-ray Polarization from Accreting Black Holes: Coronal Emission. Astrophys. J. 2010, 712, 908–924. [Google Scholar] [CrossRef]
- Matt, G.; Costa, E.; Perola, G.C.; Piro, L. X-ray polarization of the reprocessed emission from accretion disk in Seyfert galaxies. In Two Topics in X-ray Astronomy, Volume 1: X ray Binaries. Volume 2: AGN and the X ray Background; Hunt, J., Battrick, B., Eds.; ESA Special Publication: Amsterdam, The Nederland, 1989; Volume 296, pp. 991–993. [Google Scholar]
- Ponti, G.; Morris, M.R.; Terrier, R.; Goldwurm, A. Traces of Past Activity in the Galactic Centre. In Cosmic Rays in Star-Forming Environments; Torres, D.F., Reimer, O., Eds.; Springer: New York, NY, USA, 2013; Volume 34, p. 331. [Google Scholar]
- Churazov, E.; Sunyaev, R.; Sazonov, S. Polarization of X-ray emission from the Sgr B2 cloud. Mon. Not. R. Astron. Soc. 2002, 330, 817–820. [Google Scholar] [CrossRef]
- Koyama, K.; Maeda, Y.; Sonobe, T.; Takeshima, T.; Tanaka, Y.; Yamauchi, S. ASCA View of Our Galactic Center: Remains of Past Activities in X-Rays? Publ. Astron. Soc. Jpn. 1996, 48, 249–255. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Markevitch, M.; Pavlinsky, M. The center of the Galaxy in the recent past—A view from GRANAT. Astrophys. J. 1993, 407, 606–610. [Google Scholar] [CrossRef]
- Stark, R.F.; Connors, P.A. Observational test for the existence of a rotating black hole in CYG X-1. Nature 1977, 266, 429–430. [Google Scholar] [CrossRef]
- Connors, P.A.; Stark, R.F.; Piran, T. Polarization features of X-ray radiation emitted near black holes. Astrophys. J. 1980, 235, 224–244. [Google Scholar] [CrossRef]
- Dovčiak, M.; Muleri, F.; Goosmann, R.W.; Karas, V.; Matt, G. Thermal disc emission from a rotating black hole: X-ray polarization signatures. Mon. Not. R. Astron. Soc. 2008, 391, 32–38. [Google Scholar] [CrossRef]
- Li, L.; Narayan, R.; McClintock, J.E. Inferring the Inclination of a Black Hole Accretion Disk from Observations of its Polarized Continuum Radiation. Astrophys. J. 2009, 691, 847–865. [Google Scholar] [CrossRef]
- Schnittman, J.D.; Krolik, J.H. X-ray Polarization from Accreting Black Holes: II. The Thermal State. Astrophys. J. 2009, 712, 908–924. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 1999, 59, 2431–2473. [Google Scholar] [CrossRef]
- Bassan, N.; Mirizzi, A.; Roncadelli, M. Axion-like particle effects on the polarization of cosmic high-energy gamma sources. J. Cosmol. Astropart. Phys. 2010, 2010, 1323–1333. [Google Scholar] [CrossRef]
- Weisskopf, M.; Elsner, R.; O’Dell, S. On understanding the figures of merit for detection and measurementof X-ray polarization. Proc. SPIE 2010, 7732, 77320E. [Google Scholar]
- Strohmayer, T.E.; Kallman, T.R. On the Statistical Analysis of X-Ray Polarization Measurements. Astrophys. J. 2013, 773, 173–181. [Google Scholar] [CrossRef]
- Kislat, F.; Clark, B.; Beilicke, M.; Krawczynski, H. Analyzing the data from X-ray polarimeters with Stokes parameters. Astropart. Phys. 2015, 68, 45–51. [Google Scholar] [CrossRef]
- Jourdain, E.; Roques, J.P.; Chauvin, M.; Clark, D.J. Separation of Two Contributions to the High Energy Emission of Cygnus X-1: Polarization Measurements with INTEGRAL SPI. Astrophys. J. 2012, 30, 27. [Google Scholar] [CrossRef]
- Muleri, F. On the Operation of X-Ray Polarimeters with a Large Field of View. Astrophys. J. 2014, 782, 28. [Google Scholar] [CrossRef]
- Silver, E.H.; Simonovich, A.; Labov, S.E.; Novick, R.; Kaaret, P.E.; Martin, C.; Hamilton, T.; Weisskopf, M.C.; Elsner, R.F.; Beeman, J.W.; et al. Bragg crystal polarimeters. In Proceedings of the SPIE Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering, San Diego, CA, USA, 6–11 August 1989; Volume 1160, p. 598. [Google Scholar]
- Emslie, A.G.; Brown, J.C. The polarization and directivity of solar-flare hard X-ray bremsstrahlung from a thermal source. Astrophys. J. 1980, 237, 1015–1023. [Google Scholar] [CrossRef]
- Doschek, G.A. X-ray and EUV Observations of Solar Flares. In Stellar Coronae in the Chandra and XMM-NEWTON Era; Favata, F., Drake, J.J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2002; Volume 277, p. 89. [Google Scholar]
- Steslicki, M.; Sylwester, J.; Plocieniak, S.; Bakala, J.; Szaforz, Z.A.; Scislowski, D.; Kowalinski, M.; Hernandez, J.; Vadimovich Kuzin, S.; Shestov, S. Soft X-ray polarimeter-spectrometer SOLPEX. In Proceedings of the IAU General Assembly, Honolulu, HI, USA, 3–14 August 2015; Volume 22. [Google Scholar]
- Vishnyakov, E.A.; Bogachev, S.A.; Kirichenko, A.S.; Reva, A.A.; Loboda, I.P.; Malyshev, I.V.; Ulyanov, A.S.; Dyatkov, S.Y.; Erkhova, N.F.; Pertsov, A.A.; et al. Joint observations of solar corona in space projects ARKA and KORTES. Proc. SPIE 2017, 10235, 102350B. [Google Scholar]
- Marshall, H.L.; Murray, S.S.; Chappell, J.H.; Schnopper, H.W.; Silver, E.H.; Weisskopf, M.C. Realistic, inexpensive, soft X-ray polarimeter and the potential scientific return. Proc. SPIE 2003, 4843, 360–371. [Google Scholar]
- She, R.; Feng, H.; Muleri, F.; Soffitta, P.; Xu, R.; Li, H.; Bellazzini, R.; Wang, Z.; Spiga, D.; Minuti, M.; et al. LAMP: A micro-satellite based soft X-ray polarimeter for astrophysics. In Proceedings of the UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XIX, San Diego, CA, USA, 9–10 August 2015; Volume 9601. [Google Scholar]
- Costa, E.; Soffitta, P.; Bellazzini, R.; Brez, A.; Lumb, N.; Spandre, G. An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 2001, 411, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Latronico, L.; Omodei, N.; Razzano, M.; Massai, M.M.; Pesce-Rollins, M.; et al. A sealed Gas Pixel Detector for X-ray astronomy. Nucl. Instrum. Methods Phys. Res. A 2007, 579, 853–858. [Google Scholar] [CrossRef]
- Marshall, H.L.; Schulz, N.S.; Trowbridge Heine, S.N.; Heilmann, R.K.; Gunter, M.; Egan, M.; Hellickson, T.; Schattenburg, M.; Chakrabarty, D.; Windt, D.L.; et al. The rocket experiment demonstration of a soft x-ray polarimeter (REDSoX Polarimeter). In Proceedings of the UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XX, San Diego, CA, USA, 6–10 August 2017; Volume 10397. [Google Scholar]
- Marshall, H.L. A Soft X-ray Polarimete. Galaxies 2018. in preparation. [Google Scholar]
- Panini, S.S. Development of multilayer mirror based soft X-ray polarimeter. Galaxies 2018. in preparation. [Google Scholar]
- Ghosh, P.K. Introduction to Photoelectron Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Black, J.K.; Baker, R.G.; Deines-Jones, P.; Hill, J.E.; Jahoda, K. X-ray polarimetry with a micropattern TPC. Nucl. Instrum. Methods Phys. Res. A 2007, 581, 755–760. [Google Scholar] [CrossRef]
- Swank, J.; Kallman, T.; Jahoda, K.; Black, K.; Deines-Jones, P.; Kareet, P. Gravity and Extreme Magnetism SMEX (GEMS). X-ray Polarimetry: A New Window in Astrophysics; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Jahoda, K. The Gravity and Extreme Magnetism Small Explorer. Proc. SPIE 2010, 7732, 285–302. [Google Scholar]
- Hill, J.E.; Baker, R.G.; Black, J.K.; Browne, M.J.; Baumgartner, W.H.; Caldwell, E.M.; Cantwell, J.D.; Davies, A.; Desai, A.B.; Dickens, P.L.; et al. The design and qualification of the GEMS x-ray polarimeters. In Proceedings of the Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Amsterdam, Netherlands, 1–6 July 2012; Volume 8443. [Google Scholar]
- Enoto, T.; Black, J.K.; Kitaguchi, T.; Hayato, A.; Hill, J.E.; Jahoda, K.; Tamagawa, T.; Kaneko, K.; Takeuchi, Y.; Yoshikawa, A.; et al. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) X-ray polarimeter. In Proceedings of the Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Montreal, QC, Canada, 22–26 June 2014; Volume 9144. [Google Scholar]
- Kitaguchi, T.; Tamagawa, T.; Hayato, A.; Enoto, T.; Yoshikawa, A.; Kaneko, K.; Takeuchi, Y.; Black, K.; Hill, J.; Jahoda, K.; et al. Monte-Carlo estimation of the inflight performance of the GEMS satellite X-ray polarimeter. In Proceedings of the Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Montreal, QC, Canada, 22–26 June 2014; Volume 9144. [Google Scholar]
- Hill, J.E.; Black, J.K.; Jahoda, K.; Tamagawa, T.; Iwakiri, W.; Kitaguchi, T.; Kubota, M.; Kaaret, P.; McCurdy, R.; Miles, D.M.; et al. The X-ray polarimeter instrument on board the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) mission. In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 July 2016; Volume 9905. [Google Scholar]
- Iwakiri, W.B.; Black, J.K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J.E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; et al. Performance of the PRAXyS X-ray polarimeter. Nucl. Instrum. Methods Phys. Res. A 2016, 838, 89–95. [Google Scholar] [CrossRef]
- Tamagawa, T.; PRAXyS Team. X-ray Polarimetry Mission PRAXyS. 7 Years of MAXI: Monitoring X-ray Transients, Held 5–7 December 2016 at RIKEN. Available online: https://indico2.riken.jp/indico/conferenceDisplay.py?confId=2357 (accessed on 10 May 2018).
- Nakano, T.; Tamagawa, T.; Iwakiri, W.; Hayato, A.; Kubota, M.; Nishida, K.; Kitaguchi, T.; Toda, K.; Tanaka, N.; Mizuno, T.; et al. End-to-End Test of the Mirror and Polarimeter of PRAXyS. 7 Years of MAXI: Monitoring X-ray Transients, Held 5–7 December 2016 at RIKEN. Available online: https://indico2.riken.jp/indico/conferenceDisplay.py?confId=2357 (accessed on 10 May 2018).
- Bellazzini, R.; Brez, A.; Minuti, M.; Pinchera, M.; Spandre, G.; Muleri, F.; Costa, E.; Di Cosimo, S.; Fabiani, S.; Lazzarotto, F.; et al. A polarimeter for IXO. In X-ray Polarimetry: A New Window in Astrophysics; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Tagliaferri, G.; Argan, A.; Bellazzini, R.; Bookbinder, J.; Catalano, O.; Cavazzuti, E.; Costa, E.; Cusumano, G.; Fiore, F.; Fiorini, C.; et al. NHXM: A New Hard X-ray imaging and polarimetric Mission. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, San Diego, CA, USA, 27 June–2 July 2010. [Google Scholar]
- Costa, E.; Bellazzini, R.; Tagliaferri, G.; Matt, G.; Argan, A.; Attinà, P.; Baldini, L.; Basso, S.; Brez, A.; Citterio, O.; et al. POLARIX: A pathfinder mission of X-ray polarimetry. Experimental Astron. 2010, 28, 137–183. [Google Scholar] [CrossRef]
- Soffitta, P.; Bellazzini, R.; Bozzo, E.; Burwitz, V.; Castro-Tirado, A.; Costa, E.; Courvoisier, T.; Feng, H.; Gburek, S.; Goosmann, R.; et al. XIPE: The x-ray imaging polarimetry explorer. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Edinburgh, United Kingdom, 26 June–1 July 2016; Volume 9905, p. 990515. [Google Scholar]
- Weisskopf, M.C.; Ramsey, B.; O’Dell, S.; Tennant, A.; Elsner, R.; Soffitta, P.; Bellazzini, R.; Costa, E.; Kolodziejczak, J.; Kaspi, V.; et al. The Imaging X-ray Polarimetry Explorer (IXPE). In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 July 2016; Volume 9905, p. 990517. [Google Scholar]
- Soffitta, P.; IXPE Team. IXPE: The Imaging X-ray Polarimetry Explorer. In Proceedings of the Optics + Photonics 2017: UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy, San Diego, CA, USA, 6–10 August 2017; Volume 1039719. [Google Scholar]
- Zhang, S.N.; Feroci, M.; Santangelo, A.; Dong, Y.W.; Feng, H.; Lu, F.J.; Nandra, K.; Wang, Z.S.; Zhang, S.; Bozzo, E.; et al. eXTP: Enhanced X-ray Timing and Polarization mission. In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 July 2016; Volume 9905, p. 99051Q. [Google Scholar]
- Sgrò, C.; IXPE Team. The gas pixel detector on board the IXPE mission. In Proceedings of the Optics + Photonics 2017: UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy, San Diego, CA, USA, 6–10 August 2017; Volume 1039716. [Google Scholar]
- Muleri, F.; Baldini, L.; Baumgartner, W.; Lefevre, C.; Kolodziejczak, J.; Fabiani, S.; Odell, S.L.; Ramsey, B.; Sgrò, C.; Soffitta, P.; et al. The gas pixel detector on board the IXPE mission. In Proceedings of the Optics + Photonics 2017: UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy, San Diego, CA, USA, 6–10 August 2017; Volume 1039717. [Google Scholar]
- Fabiani, S.; IXPE Team. Imaging as a tool for the characterization of the gas pixel detector photoelectric polarimeter. In Proceedings of the Optics + Photonics 2017: UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy, San Diego, CA, USA, 6–10 August 2017; Volume 1039718. [Google Scholar]
- Fabiani, S.; Bellazzini, R.; Berrilli, F.; Brez, A.; Costa, E.; Minuti, M.; Muleri, F.; Pinchera, M.; Rubini, A.; Soffitta, P.; et al. Performance of an Ar-DME imaging photoelectric polarimeter. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Amsterdam, Netherland, 1–6 July 2012; Volume 8443. [Google Scholar]
- Tagliaferri, G.; Hornstrup, A.; Huovelin, J.; Reglero, V.; Romaine, S.; Rozanska, A.; Santangelo, A.; Stewart, G. The NHXM observatory. Exp. Astron. 2011, 34, 463–488. [Google Scholar] [CrossRef] [Green Version]
- Berrilli, F.; Soffitta, P.; Velli, M.; Sabatini, P.; Bigazzi, A.; Bellazzini, R.; Bellot Rubio, L.R.; Brez, A.; Carbone, V.; Cauzzi, G.; et al. ADAHELI: Exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared. J. Astron. Telesc. Instrum. Syst. 2015, 1, 044006. [Google Scholar] [CrossRef]
- Fabiani, S.; Bellazzini, R.; Berrilli, F.; Brez, A.; Costa, E.; Muleri, F.; Pinchera, M.; Rubini, A.; Soffitta, P.; Spandre, G. A solar flares X-ray polarimeter. Mem. Soc. Astron. Ital. 2013, 84, 422. [Google Scholar]
- Heitler, W. Quantum Theory of Radiation, 3rd ed.; International Series of Monographs on Physics; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Hubbell, J.H.; Veigele, W.J.; Briggs, E.A.; Brown, R.T.; Cromer, D.T.; Howerton, R.J. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 1975, 4, 471–538. [Google Scholar] [CrossRef]
- Paul, B.; Rishin, P.V.; Maitra, C.; Gopalakrishna, M.R.; Duraichelvan, R.; Ateequlla, C.M.; Cowsik, R.; Devasia, J.; Marykutty, J. Thomson X-ray Polarimeter for a Small Satellite Mission. In Proceedings of the 29th Meeting of the Astronomical Society of India, Raipur, India, 23–25 February 2011. [Google Scholar]
- Paul, B.; Gopala Krishna, M.R.; Puthiya Veetil, R. POLIX: A Thomson X-ray polarimeter for a small satellite mission. In Proceedings of the 41st COSPAR Scientific Assembly, Istanbul, Turkey, 30 July–7 August 2016; Volume 41. [Google Scholar]
- Zhitnik, I.A.; Logachev, Y.I.; Bogomolov, A.V.; Denisov, Y.I.; Kavanosyan, S.S.; Kuznetsov, S.N.; Morozov, O.V.; Myagkova, I.N.; Svertilov, S.I.; Ignat’ev, A.P.; et al. Polarization, temporal, and spectral parameters of solar flare hard X-rays as measured by the SPR-N instrument onboard the CORONAS-F satellite. Sol. Syst. Res. 2006, 40, 93–103. [Google Scholar] [CrossRef]
- Zhitnik, I.A.; Logachev, Y.I.; Bogomolov, A.V.; Bogomolov, V.V.; Denisov, Y.I.; Kavanosyan, S.S.; Kuznetsov, S.N.; Morozov, O.V.; Myagkova, I.N.; Svertilov, S.I.; et al. Experiment with the SPR-N Instrument Onboard the CORONAS-F Satellite: Polarization, Temporal, and Spectral Characteristics of the Hard X-ray of the Solar Flares. In Astrophysics and Space Science Library; Kuznetsov, V., Ed.; Astrophysics and Space Science Library, Springer-Verlag: Berlin/Heidelberg, Germany, 2014; Volume 400, p. 129. [Google Scholar]
- Xiao, H.; Hajdas, W.; Marcinkowski, R.; POLAR collaboration. Optimization of the final settings for the Space-borne Hard X-ray Compton Polarimeter POLAR. arXiv, 2017; arXiv:1707.02291. [Google Scholar]
- Xiao, H.; Hajdas, W.; Wu, B.; Produit, N.; Sun, J.; Kole, M.; Bao, T.; Bernasconi, T.; Batsch, T.; Cadoux, F.; et al. In-flight energy calibration of the space-borne Compton polarimeter POLAR. arXiv, 2017; arXiv:1710.08918. [Google Scholar]
- Kole, M. GRB polarisation measurements of POLAR. Galaxies 2018. in preparation. [Google Scholar]
- Chauvin, M.; Jackson, M.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Takahashi, H.; Pearce, M. Optimising a balloon-borne polarimeter in the hard X-ray domain: From the PoGOLite Pathfinder to PoGO+. Astropart. Phys. 2016, 82, 99–107. [Google Scholar] [CrossRef]
- Chauvin, M.; Florén, H.G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; et al. Shedding new light on the Crab with polarized X-rays. Sci. Rep. 2017, 7, 7816. [Google Scholar] [CrossRef] [PubMed]
- Friis, M.; Kiss, M.; Mikhalev, V.; Pearce, M.; Takahashi, H. The PoGO+ Balloon-Borne Hard X-ray Polarimetry Mission. Galaxies 2018, 6, 30. [Google Scholar] [CrossRef]
- Mikhalev, V. PoGO+ measurement of Crab emissions in the hard X-ray band. In Proceedings of the Alsatian Worckshop of X-ray Polarimetry, Strasburg, France, 13–15 November 2017. [Google Scholar]
- Vadawale, S.V.; Chattopadhyay, T.; Mithun, N.P.S.; Rao, A.R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V.B.; Dewangan, G.C.; Misra, R.; Paul, B.; et al. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nat. Astron. 2018, 2, 50–55. [Google Scholar] [CrossRef]
- Vadawale, S.V.; Chattopadhyay, T.; Rao, A.R.; Bhattacharya, D.; Bhalerao, V.B.; Vagshette, N.; Pawar, P.; Sreekumar, S. Hard X-ray polarimetry with Astrosat-CZTI. Astron. Astrophys. 2015, 578, A73. [Google Scholar] [CrossRef]
- Kislat, F.; Beheshtipour, B.; Dowkontt, P.; Guarino, V.; Lanzi, R.J.; Okajima, T.; Braun, D.; Cannon, S.; de Geronimo, G.; Heatwole, S.; et al. Design of the Telescope Truss and Gondola for the Balloon-Borne X-ray Polarimeter X-Calibur. J. Astron. Instrum. 2017, 6, 1740003. [Google Scholar] [CrossRef]
- Endsley, R.; Beilicke, M.; Kislat, F.; Krawczynski, H.; X-Calibur/InFOCuS. Systematic and Performance Tests of the Hard X-ray Polarimeter X-Calibur. In Proceedings of the American Astronomical Society Meeting Abstracts, Seattle, Washington, DC, USA, 4–8 Jannuary 2015; Volume 225. [Google Scholar]
- Beilicke, M.; Kislat, F.; Zajczyk, A.; Guo, Q.; Endsley, R.; Stork, M.; Cowsik, R.; Dowkontt, P.; Barthelmy, S.; Hams, T.; et al. Design and Performance of the X-ray Polarimeter X-Calibur. J. Astron. Instrum. 2014, 3, 1440008. [Google Scholar] [CrossRef]
- Beilicke, M.; Kislat, F.; Zajczyk, Q.; Guo, Q.; Endsley, R.; Cowsik, R.; Dowkontt, P.; Krawczynski, H. First flight of the X-ray Polarimeter X-Calibur. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar]
- Guo, Q.; Beilicke, M.; Garson, A.; Kislat, F.; Fleming, D.; Krawczynski, H. Optimization of the design of the hard X-ray polarimeter X-Calibur. Astropart. Phys. 2013, 41, 63–72. [Google Scholar] [CrossRef]
- Hayashida, K.; Kim, J.; Sadamoto, M.; Yoshinaga, K.; Gunji, S.; Mihara, T.; Kishimoto, Y.; Kubo, H.; Mizuno, T.; Takahashi, H.; et al. Hard x-ray imaging polarimeter for PolariS. In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 June 2016; Volume 9905, p. 99051. [Google Scholar]
- McConnell, M.L.; Bloser, P.F.; Ertley, C.; Legere, J.; Ryan, J.M.; Wasti, S.K. Current status of the GRAPE balloon program. In Proceedings of the Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Montreal, QC, Canada, 22–26 June 2014; Volume 9144, p. 91443P. [Google Scholar]
- McConnell, M.L.; Bloser, P.F.; Connor, T.P.; Ertley, C.; Legere, J.; Ryan, J.M.; Wasti, S.K. Plans for the next GRAPE balloon flight. In UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII; SPIE: Bellingham, WA, USA, 2013; Volume 8859, p. 885909. [Google Scholar]
- Connor, T.P.; Bancroft, C.M.; Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Ryan, J.M. Plans for the first balloon flight of the gamma-ray polarimeter experiment (GRAPE). In Proceedings of the Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, San Diego, CA, USA, 27 June–2 July 2010; Volume 7732, p. 77324E. [Google Scholar]
- Bloser, P.F.; McConnell, M.L.; Legere, J.S.; Connor, T.P.; Ryan, J.M. The Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. In X-ray Polarimetry: A New Window in Astrophysics by Ronaldo Bellazzini, Enrico Costa, Giorgio Matt and Gianpiero Tagliaferri; Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G., Eds.; Cambridge University Press: Cambridge, MA, USA, 2010; p. 314. [Google Scholar]
- Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M. Calibration of the Gamma-Ray Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam. Nucl. Instrum. Methods Phys. Res. A 2009, 600, 424–433. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Gunji, S.; Ishigaki, Y.; Kanno, M.; Murayama, H.; Ito, C.; Tokanai, F.; Suzuki, K.; Sakurai, H.; Mihara, T.; et al. Basic Performance of PHENEX: A Polarimeter for High ENErgy X rays. IEEE Trans. Nucl. Sci. 2007, 54, 561–566. [Google Scholar] [CrossRef]
- Gunji, S.; Kishimoto, Y.; Sakurai, H.; Tokanai, F.; Kanno, M.; Ishikawa, Y.; Hayashida, K.; Anabuke, N.; Tsunemi, H.; Mihara, T.; et al. The PHENEX experiment result. In Proceedings of the Polarimetry Days in Rome: Crab Status, Theory and Prospects, Rome, Italy, 16–17 October 2008. [Google Scholar]
- Gunji, S.; Sakurai, H.; Tokanai, F.; Kishimoto, Y.; Kanno, M.; Ishikawa, Y.; Hayashida, K.; Anabuki, N.; Tsunemi, H.; Mihara, T.; et al. Observation of Crab Nebula with hard x-ray polarimeter: PHENEX. In Proceedings of the UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, San Diego, CA, USA, 26–27 August 2007; Volume 6686, p. 668618. [Google Scholar]
- Kishimoto, Y.; Gunji, S.; Ishikawa, Y.; Takada, M.; Toukairin, N.; Tanaka, Y.; Tokanai, F.; Sakurai, H.; Mihara, T.; Sato, T.; et al. Observation of Polarization in Hard X-ray Region with PHENEX Polarimeter. In Proceedings of the RIKEN Symposium, RIKEN, and JAXA Suzuki Umetaro Hall, RIKEN Wako, Saitama, Japan, 10–12 June 2008. [Google Scholar]
- Yonetoku, D.; Murakami, T.; Gunji, S.; Mihara, T.; Sakashita, T.; Morihara, Y.; Kikuchi, Y.; Takahashi, T.; Fujimoto, H.; Toukairin, N.; et al. Gamma-Ray Burst Polarimeter (GAP) aboard the Small Solar Power Sail Demonstrator IKAROS. Publ. Astron. Soc. Jpn. 2011, 63, 625–638. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Gunji, S.; Mihara, T.; Toma, K.; Sakashita, T.; Morihara, Y.; Takahashi, T.; Toukairin, N.; Fujimoto, H.; et al. Detection of Gamma-Ray Polarization in Prompt Emission of GRB 100826A. Astrophys. J. Lett. 2011, 743, 217–234. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Gunji, S.; Mihara, T.; Toma, K.; Morihara, Y.; Takahashi, T.; Wakashima, Y.; Yonemochi, H.; Sakashita, T.; et al. Magnetic Structures in Gamma-Ray Burst Jets Probed by Gamma-ray Polarization. Astrophys. J. 2012, 758, L1. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Fujimoto, H.; Sakashita, T.; Gunji, S.; Toukairin, N.; Tanaka, Y.; Mihara, T.; Kubo, S.; GAP Team. GAP aboard the solar-powered sail mission. In X-ray Polarimetry: A New Window in Astrophysics by Ronaldo Bellazzini, Enrico Costa, Giorgio Matt and Gianpiero Tagliaferri; Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G., Eds.; Cambridge University Press: Cambridge, MA, USA, 2010; p. 339. [Google Scholar]
- Xie, F.; Pearce, M. A Study of Background Conditions for Sphinx–The Satellite-Borne Gamma-Ray Burst Polarimeter. Galaxies 2018, 6, 50. [Google Scholar] [CrossRef]
- Dergachev, V.A.; Matveev, G.A.; Kruglov, E.M.; Lazutkov, V.P.; Savchenko, M.I.; Skorodumov, D.V.; Pyatigorsky, G.A.; Chichikaluk, Y.A.; Shishov, I.I.; Khmylko, V.V.; et al. Hard X-ray compton polarimetry with the PENGUIN-M instrument in the spaceborne experiment CORONAS-PHOTON. Bull. Russ. Acad. Sci. Phys. 2009, 73, 419–421. [Google Scholar] [CrossRef]
- Kotov, Y.D.; Yurov, V.N.; Glyanenko, A.S.; Lupar, E.E.; Kochemasov, A.V.; Trofimov, Y.A.; Zakharov, M.S.; Faradzhaev, R.M.; Tyshkevich, V.G.; Rubtsov, I.V.; et al. Solar X-ray polarimetry and spectrometry instrument PING-M for the Interhelioprobe mission. Adv. Space Res. 2016, 58, 635–643. [Google Scholar] [CrossRef]
- Suarez-Garcia, E.; Hajdas, W.; Wigger, C.; Arzner, K.; Güdel, M.; Zehnder, A.; Grigis, P. X-ray Polarization of Solar Flares Measured with Rhessi. Sol. Phys. 2006, 239, 149–172. [Google Scholar] [CrossRef]
- Chauvin, M.; Florén, H.G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; et al. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter. Exp. Astron. 2016, 41, 17–41. [Google Scholar] [CrossRef]
- Chauvin, M.; Florén, H.G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; et al. The PoGO+ view on Crab off-pulse hard X-ray polarisation. Mon. Not. R. Astron. Soc. 2018, 477, L45–L49. [Google Scholar] [CrossRef]
- McConnell, M.L.; Bloser, P.F.; Legere, J.S.; Ryan, J.M. The development of a low energy Compton imager for GRB polarization studies. In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 June 2016; Volume 9905, p. 99052O. [Google Scholar]
- Moita, M. Hard X-ray and soft gamma ray polarimetry with CdTe/CZT spectroimager. Galaxies 2018. in preparation. [Google Scholar]
1 | A background mission in the “Strategic Priority Space Science Program” of the Chinese Academy of Sciences is a project selected to be launched that undergoes an assessment phase. The launch time schedule is adjusted depending on the level of technology readiness reached by the project during the assessment. |
2 | |
3 |
<1 keV | 1–10 keV | >10 keV | ||
---|---|---|---|---|
Polarimetry techniques | •Diffraction | •Photoelectric effect, •Thomson scattering (from few keV) | •Photoelectric effect (up to tens of keV), •Thomson scattering (up to tens of keV), •Compton scattering (from few tens of keV) | |
Scientific goal | Sources | |||
Acceleration phenomena | PWN | yes (but absorption) | yes | yes |
SNR | no | yes | yes | |
Jet (microquasars) | yes (but absorption) | yes | yes | |
Jet (blazars) | yes | yes | yes | |
Solar flares | difficult (but thermal & lines) | difficult (but thermal & lines) | yes | |
Emission in strong magnetic field | WD | yes (but absorption) | yes | difficult |
AMs | no | yes | yes | |
X-ray pulsator | difficult | yes (no cyclotron?) | yes | |
Magnetar | yes (better) | yes | no | |
Scattering in aspherical geometries | Corona in XRB and AGN | difficult | yes | yes (difficult) |
X-ray reflection nebulae | no | yes (long exposure) | yes | |
Fundamental physics | QED (magnetar) | yes (better) | yes | no |
GR (BH) | no | yes | no | |
QG (blazars) | difficult | yes | yes | |
Axions (blazars, clusters) | yes? | yes | difficult |
Name | Time Schedule | Focal Plane | F.O.V | En. Range | Science Obj. | References |
---|---|---|---|---|---|---|
SOLPEX | launch 2022–2023 | no | arcmin | 3.940–4.505 Å | solar flares | [57,58] |
LAMP | assesment | yes | few arcmin | 250 eV | pulsars thermal emission, jet blazars | [60] |
REDSoX | development | yes | pointing jitter ≲ 15 arcsec | 0.2–0.8 keV | AGNs and binaries jets and discs, Isolated NSs and pulsars | [63,64,65] |
Name | Time Schedule | Focal Plane | F.O.V | En. Range | Science Obj. | References |
---|---|---|---|---|---|---|
IXPE | launch 2021 | yes | arcmin | 2–10 keV | BH, NSs isolated and accreting, AGNs, PWNs, SNRs, Sgr B2 | [81,82,84,85,86] |
eXTP | launch before 2025 | yes | arcmin | 2–10 keV | BH, NSs isolated and accreting, AGNs, PWNs, SNRs, Sgr B2 | [83] |
Name | Time Schedule | Focal Plane | F.O.V | En. Range | Science Obj. | References | |
---|---|---|---|---|---|---|---|
Thomson | |||||||
POLIX | launch 2019 | no | 5–30 keV | accr. powered pulsars, BH | [93,94] | ||
SPR-N | launched 2001 | no | - | 20–100 keV | solar flares | [95,96] | |
Compton 1 phase | |||||||
POLAR | launched 2016 | no | ∼1/3 of full sky | 50–500 keV | GRB | [97,98,99] | |
PoGOLite | launched 2013 | no | ∼ | 20–240 keV | Crab emission | [100,101,102,103] | |
PoGO+ | launched 2016 | no | ∼ | 20–150 keV | Crab pulsar and nebula, Cygnus X-1 | [100,101,102,103] | |
AstroSat CZTI (imager) | launched 2015 | no | - | 100–380 keV | Crab pulsar and nebula, bright X-ray sources | [104,105] | |
Compton 2 phases | |||||||
X-Calibur | launched 2014, 2016 | yes | 8 arcmin at 20 keV | 20–60 keV | BHs, NSs, magnetars, AGN jets | [106,107,108,109,110] | |
PolariS | assesment | yes/no (also a wide field polarimeter) | 10 × 10 arcmin | 10–80 keV | SNRs, BHs, accretion in X-ray pulsars, GRBs | [111] | |
GRAPE | launched 2014 and 2016; new design assesment | no | wide | 50–500 keV | transient sources, GRBs, solar flares | [112,113,114,115,116,117] | |
PHENEX | launched 2006 | no | 4.8 | 40–200 keV | Crab Nebula | [118,119,120] | |
GAP | launched 2010 | no | sr | 50–300 keV | GRBs, Crab pulsar and nebula | [121,122,123,124] | |
SPHiNX | Phase-A/B1 assessment | no | 50–500 keV | GRBs | [125] | ||
PENGUIN-M | launched 2009, lost | no | - | 20–150 keV | solar flares | [126] | |
PING-P | launch after 2025 | no | - | 20–150 keV | solar flares | [127] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiani, S. Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry. Galaxies 2018, 6, 54. https://doi.org/10.3390/galaxies6020054
Fabiani S. Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry. Galaxies. 2018; 6(2):54. https://doi.org/10.3390/galaxies6020054
Chicago/Turabian StyleFabiani, Sergio. 2018. "Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry" Galaxies 6, no. 2: 54. https://doi.org/10.3390/galaxies6020054
APA StyleFabiani, S. (2018). Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry. Galaxies, 6(2), 54. https://doi.org/10.3390/galaxies6020054