Cosmological Constant and Renormalization of Gravity
Abstract
:Acknowledgments
Conflicts of Interest
References
- Burgess, C.P. The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics. In Post-Planck Cosmology: Lecture Notes of the Les Houches Summer School; Oxford University Press: Oxford, UK, 2013; Chapter 4; Volume 100. [Google Scholar]
- Anderson, J.L.; Finkelstein, D. Cosmological constant and fundamental length. Am. J. Phys. 1971, 39, 901. [Google Scholar] [CrossRef]
- Buchmuller, W.; Dragon, N. Einstein Gravity From Restricted Coordinate Invariance. Phys. Lett. B 1988, 207, 292–294. [Google Scholar] [CrossRef]
- Buchmuller, W.; Dragon, N. Gauge Fixing and the Cosmological Constant. Phys. Lett. B 1989, 223, 313–317. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. The Cosmological Constant and General Covariance. Phys. Lett. B 1989, 222, 195–199. [Google Scholar] [CrossRef]
- Unruh, W.G. A Unimodular Theory of Canonical Quantum Gravity. Phys. Rev. D 1989, 40, 1048. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Unimodular Theory of Gravity and the Cosmological Constant. J. Math. Phys. 1991, 32, 1337. [Google Scholar] [CrossRef]
- Finkelstein, D.R.; Galiautdinov, A.A.; Baugh, J.E. Unimodular relativity and cosmological constant. J. Math. Phys. 2001, 42, 340. [Google Scholar] [CrossRef]
- Alvarez, E. Can one tell Einstein’s unimodular theory from Einstein’s general relativity? J. High Energy Phys. 2005, 2005, 002. [Google Scholar] [CrossRef]
- Alvarez, E.; Blas, D.; Garriga, J.; Verdaguer, E. Transverse Fierz-Pauli symmetry. Nucl. Phys. B 2006, 756, 148–170. [Google Scholar] [CrossRef]
- Abbassi, A.H.; Abbassi, A.M. Density-metric unimodular gravity: Vacuum spherical symmetry. Class. Quantum Gravity 2008, 25, 175018. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; van Elst, H.; Murugan, J.; Uzan, J.P. On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity. Class. Quantum Gravity 2011, 28, 225007. [Google Scholar] [CrossRef]
- Jain, P. A flat space-time model of the Universe. Mod. Phys. Lett. A 2012, 27, 1250201. [Google Scholar] [CrossRef]
- Singh, N.K. Unimodular Constraint on global scale Invariance. Mod. Phys. Lett. A 2013, 28, 1350130. [Google Scholar] [CrossRef]
- Kluson, J. Canonical Analysis of Unimodular Gravity. Phys. Rev. D 2015, 91, 064058. [Google Scholar] [CrossRef]
- Padilla, A.; Saltas, I.D. A note on classical and quantum unimodular gravity. Eur. Phys. J. C 2015, 75, 561. [Google Scholar] [CrossRef]
- Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Unimodular gravity and general relativity from graviton self-interactions. Phys. Rev. D 2014, 89, 124019. [Google Scholar] [CrossRef]
- Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Absence of cosmological constant problem in special relativistic field theory of gravity. J. Phys. 2015, 600, 012032. [Google Scholar]
- Burger, D.J.; Ellis, G.F.R.; Murugan, J.; Weltman, A. The KLT relations in unimodular gravity. arXiv, 2015; arXiv:1511.08517. [Google Scholar]
- Álvarez, E.; González-Martín, S.; Herrero-Valea, M.; Martín, C.P. Quantum Corrections to Unimodular Gravity. J. High Energy Phys. 2015, 2015, 078. [Google Scholar] [CrossRef]
- Jain, P.; Jaiswal, A.; Karmakar, P.; Kashyap, G.; Singh, N.K. Cosmological implications of unimodular gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 003. [Google Scholar] [CrossRef]
- Jain, P.; Karmakar, P.; Mitra, S.; Panda, S.; Singh, N.K. Testing Unimodular Gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 020. [Google Scholar] [CrossRef]
- Cho, I.; Singh, N.K. Unimodular Theory of Gravity and Inflation. Class. Quantum Gravity 2015, 32, 135020. [Google Scholar] [CrossRef]
- Basak, A.; Fabre, O.; Shankaranarayanan, S. Cosmological perturbation of Unimodular Gravity and General Relativity are identical. Gen. Relativ. Gravit. 2016, 48, 123. [Google Scholar] [CrossRef]
- Gao, C.; Brandenberger, R.H.; Cai, Y.; Chen, P. Cosmological Perturbations in Unimodular Gravity. J. Cosmol. Astropart. Phys. 2014, 2014, 021. [Google Scholar] [CrossRef]
- Eichhorn, A. The Renormalization Group flow of unimodular f(R) gravity. J. High Energy Phys. 2015, 2015, 096. [Google Scholar] [CrossRef]
- Saltas, I.D. UV structure of quantum unimodular gravity. Phys. Rev. D 2014, 90, 124052. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Unimodular f (R) Gravity. J. Cosmol. Astropart. Phys. 2016, 2016, 046. [Google Scholar] [CrossRef]
- Kaloper, N.; Padilla, A. Sequestering the Standard Model Vacuum Energy. Phys. Rev. Lett. 2014, 112, 091304. [Google Scholar] [CrossRef] [PubMed]
- Kaloper, N.; Padilla, A. Vacuum Energy Sequestering: The Framework and Its Cosmological Consequences. Phys. Rev. D 2014, 90, 084023. [Google Scholar] [CrossRef]
- Kaloper, N.; Padilla, A.; Stefanyszyn, D.; Zahariade, G. A Manifestly Local Theory of Vacuum Energy Sequestering. Phys. Rev. Lett. 2016, 116, 051302. [Google Scholar] [CrossRef] [PubMed]
- Batra, P.; Hinterbichler, K.; Hui, L.; Kabat, D.N. Pseudo-redundant vacuum energy. Phys. Rev. D 2008, 78, 043507. [Google Scholar] [CrossRef]
- Shaw, D.J.; Barrow, J.D. A Testable Solution of the Cosmological Constant and Coincidence Problems. Phys. Rev. D 2011, 83, 043518. [Google Scholar] [CrossRef]
- Barrow, J.D.; Shaw, D.J. A New Solution of The Cosmological Constant Problems. Phys. Rev. Lett. 2011, 106, 101302. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Rubio, R. Longitudinal diffeomorphisms obstruct the protection of vacuum energy. Phys. Rev. D 2015, 91, 124071. [Google Scholar] [CrossRef]
- Nojiri, S. Some solutions for one of the cosmological constant problems. Mod. Phys. Lett. A 2016, 31, 1650213. [Google Scholar] [CrossRef]
- Mori, T.; Nitta, D.; Nojiri, S. BRS structure of Simple Model of Cosmological Constant and Cosmology. Phys. Rev. D 2017, 96, 024009. [Google Scholar] [CrossRef]
- Shlaer, B. Solution to the problem of time. arXiv, 2015; arXiv:1411.8006. [Google Scholar]
- Saitou, R.; Gong, Y. De Sitter spacetime with a Becchi-Rouet-Stora quartet. Int. J. Mod. Phys. D 2017, 26, 1750132. [Google Scholar] [CrossRef]
- Becchi, C.; Rouet, A.; Stora, R. Renormalization of Gauge Theories. Ann. Phys. 1976, 98, 287–321. [Google Scholar] [CrossRef]
- Kugo, T.; Ojima, I. Manifestly Covariant Canonical Formulation of Yang-Mills Field Theories: Physical State Subsidiary Conditions and Physical S Matrix Unitarity. Phys. Lett. B 1978, 73, 459–462. [Google Scholar] [CrossRef]
- Kugo, T.; Ojima, I. Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem. Prog. Theor. Phys. Suppl. 1979, 66, 1–130. [Google Scholar] [CrossRef]
- Witten, E. Topological Quantum Field Theory. Commun. Math. Phys. 1988, 117, 353–386. [Google Scholar] [CrossRef]
- Kugo, T.; Uehara, S. General Procedure of Gauge Fixing Based on BRS Invariance Principle. Nucl. Phys. B 1982, 197, 378–384. [Google Scholar] [CrossRef]
- Nakanishi, N. Covariant Quantization of the Electromagnetic Field in the Landau Gauge. Prog. Theor. Phys. 1966, 35, 1111–1116. [Google Scholar] [CrossRef]
- Nakanishi, N. Indefinite-metric quantum theory of genuine and higgs-type massive vector fields. Prog. Theor. Phys. 1973, 49, 640–651. [Google Scholar] [CrossRef]
- Lautrup, B. Canonical Quantum Electrodynamics in Covariant Gauges; Kongelige Danske Videnskabernes Selskab; Munksgaard: Copenhagen, Denmark, 1967; Volume 35. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
1. | |
2. | |
3. | The existence of the BRS transformation where satisfies Equation (5) was pointed out by R. Saitou. |
4. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nojiri, S. Cosmological Constant and Renormalization of Gravity. Galaxies 2018, 6, 24. https://doi.org/10.3390/galaxies6010024
Nojiri S. Cosmological Constant and Renormalization of Gravity. Galaxies. 2018; 6(1):24. https://doi.org/10.3390/galaxies6010024
Chicago/Turabian StyleNojiri, Shin’ichi. 2018. "Cosmological Constant and Renormalization of Gravity" Galaxies 6, no. 1: 24. https://doi.org/10.3390/galaxies6010024
APA StyleNojiri, S. (2018). Cosmological Constant and Renormalization of Gravity. Galaxies, 6(1), 24. https://doi.org/10.3390/galaxies6010024