Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet
Abstract
1. Introduction
2. GRMHD Models of Jets
3. Electron Treatment and Modeling Polarized Emission from GRMHD Jets
4. Simulated Emission from M87 Core Jet
5. Discussion
Acknowledgments
Conflicts of Interest
References
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Hawley, J.F.; Balbus, S.A.; Stone, J.M. A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions. Astrophys. J. Lett. 2001, 554, L49–L52. [Google Scholar] [CrossRef]
- De Villiers, J.P.; Hawley, J.F. A Numerical Method for General Relativistic Magnetohydrodynamics. Astrophys. J. 2003, 589, 458–480. [Google Scholar] [CrossRef]
- Gammie, C.F.; McKinney, J.C.; Tóth, G. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. Astrophys. J. 2003, 589, 444–457. [Google Scholar] [CrossRef]
- Anninos, P.; Fragile, P.C.; Salmonson, J.D. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement. Astrophys. J. 2005, 635, 723–740. [Google Scholar] [CrossRef]
- Noble, S.C.; Gammie, C.F.; McKinney, J.C.; Del Zanna, L. Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics. Astrophys. J. 2006, 641, 626–637. [Google Scholar] [CrossRef]
- McKinney, J.C. General relativistic force-free electrodynamics: A new code and applications to black hole magnetospheres. Mon. Not. R. Astron. Soc. 2006, 367, 1797–1807. [Google Scholar] [CrossRef]
- White, C.J.; Stone, J.M.; Gammie, C.F. An Extension of the Athena++ Code Framework for GRMHD Based on Advanced Riemann Solvers and Staggered-mesh Constrained Transport. Astrophys. J. Suppl. Ser. 2016, 225, 22. [Google Scholar] [CrossRef]
- Porth, O.; Olivares, H.; Mizuno, Y.; Younsi, Z.; Rezzolla, L.; Mościbrodzka, M.; Falcke, H.; Kramer, M. The Black Hole Accretion Code. ArXiv, 2016; arXiv:gr-qc/1611.09720. [Google Scholar]
- Mościbrodzka, M.; Gammie, C.F.; Dolence, J.C.; Shiokawa, H.; Leung, P.K. Radiative Models of SGR A* from GRMHD Simulations. Astrophys. J. 2009, 706, 497–507. [Google Scholar] [CrossRef]
- Dexter, J.; Agol, E.; Fragile, P.C.; McKinney, J.C. The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations. Astrophys. J. 2010, 717, 1092–1104. [Google Scholar] [CrossRef]
- Shcherbakov, R.V.; Penna, R.F.; McKinney, J.C. Sagittarius A* Accretion Flow and Black Hole Parameters from Gene ral Relativistic Dynamical and Polarized Radiative Modeling. Astrophys. J. 2012, 755, 133. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Falcke, H. Coupled jet-disk model for Sagittarius A*: Explaining the flat-spectrum radio core with GRMHD simulations of jets. Astron. Astrophys. 2013, 559, L3–L7. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Falcke, H.; Shiokawa, H.; Gammie, C.F. Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A*. Astron. Astrophys. 2014, 570, A7–A16. [Google Scholar] [CrossRef]
- Chan, C.K.; Psaltis, D.; Özel, F.; Narayan, R.; Saḑowski, A. The Power of Imaging: Constraining the Plasma Properties of GRMHD Simulations using EHT Observations of Sgr A*. Astrophys. J. 2015, 799. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Falcke, H.; Shiokawa, H. General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys. 2016, 586, A38. [Google Scholar] [CrossRef]
- Gold, R.; McKinney, J.C.; Johnson, M.D.; Doelema n, S.S. Probing the magnetic field structure in Sgr A* on Black Hole Hori zon Scales with Polarized Radiative Transfer Simulations. ArXiv, 2016; arXiv:1601.05550. [Google Scholar]
- Mościbrodzka, M.; Dexter, J.; Davelaar, J.; Falcke, H. Faraday rotation in GRMHD simulations of the jet launching zone of M87. Mon. Not. R. Astron. Soc. 2017, 468, 2214–2221. [Google Scholar] [CrossRef]
- Ressler, S.M.; Tchekhovskoy, A.; Quataert, E.; Gammie, C.F. The disc-jet symbiosis emerges: Modelling the emission of Sagittarius A* with electron thermodynamics. Mon. Not. R. Astron. Soc. 2017, 467, 3604–3619. [Google Scholar] [CrossRef]
- Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Deane, R.; De Laurentis, M.; Desvignes, G.; Davelaar, J.R.J.; et al. BlackHoleCam: Fundamental physics of the Galactic center. ArXiv, 2016; arXiv:1606.08879. [Google Scholar]
- Shiokawa, H. General-Relativistic Magnetohydrodynamics Simulations of Black ho le Accretion Disks: Dynamics and Radiative Properties. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2013. [Google Scholar]
- Ryan, B.R.; Dolence, J.C.; Gammie, C.F. bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport. Astrophys. J. 2015, 807, 31. [Google Scholar] [CrossRef]
- Ryan, B.R.; Ressler, S.M.; Dolence, J.C.; Tchekhovskoy, A.; Gammie, C.F.; Quataert, E. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-Temperature GRRMHD Simulations. ArXiv, 2017; arXiv:1707.04238. [Google Scholar]
- Fishbone, L.G.; Moncrief, V. Relativistic fluid disks in orbit around Kerr black holes. Astrophys. J. 1976, 207, 962–976. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Sa̧dowski, A.; Narayan, R.; Penna, R.; Zhu, Y. Energy, momentum and mass outflows and feedback from thick accret ion discs around rotating black holes. Mon. Not. R. Astron. Soc. 2013, 436, 3856–3874. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Howes, G.G. A prescription for the turbulent heating of astrophysical plasmas. Mon. Not. R. Astron. Soc. 2010, 409, L104–L108. [Google Scholar] [CrossRef]
- Ressler, S.M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C.F. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion. Mon. Not. R. Astron. Soc. 2015, 454, 1848–1870. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Falcke, H.; Noble, S. Scale-invariant radio jets and varying black hole spin. Astron. Astrophys. 2016, 596, A13–A22. [Google Scholar] [CrossRef]
- Broderick, A.; Blandford, R. Covariant magnetoionic theory - II. Radiative transfer. Mon. Not. R. Astron. Soc. 2004, 349, 994–1008. [Google Scholar] [CrossRef]
- Dexter, J. A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc. 2016, 462, 115–136. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Gammie, C. ipole–Semianalytic scheme for relativistic polarized radiative transfer. Mon. Not. R. Astron. Soc. 2017. in prepartion. [Google Scholar]
- Doeleman, S.S.; Fish, V.L.; Schenck, D.E.; Beaudoin, C.; Blundell, R.; Bower, G.C.; Broderick, A.E.; Chamberlin, R.; Freund, R.; Friberg, P.; et al. Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 2012, 338, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J.C.; Liu, H.B.; Inoue, M.; Koch, P.M.; Ho, P.T.P.; Matsushita, S.; et al. Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys. J. Lett. 2014, 783, L33. [Google Scholar]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Akiyama, K.; Tazaki, F.; Lico, R.; Giroletti, M.; Giovannini, G.; et al. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 1 0 Schwarzschild Radii. Astrophys. J. 2016, 817, 131. [Google Scholar] [CrossRef]
- Pandya, A.; Zhang, Z.; Chandra, M.; Gammie, C.F. Polarized Synchrotron Emissivities and Absorptivities for Relativistic Thermal, Power-law, and Kappa Distrib ution Functions. Astrophys. J. 2016, 822, 34. [Google Scholar]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Hagiwara, Y.; Giroletti, M.; Giovannini, G.; Kawaguchi, N. The Innermost Collimation Structure of the M87 Jet Down to ~10 Schwarzschild Radii. Astrophys. J. 2013, 775, 70. [Google Scholar] [CrossRef]
- Bower, G.C.; Wright, M.C.H.; Falcke, H.; Backer, D.C. Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz. Astrophys. J. 2003, 588, 331–337. [Google Scholar] [CrossRef]
- Marrone, D.P.; Moran, J.M.; Zhao, J.H.; Rao, R. An Unambiguous Detection of Faraday Rotation in Sagittarius A*. Astrophys. J. Lett. 2007, 654, L57–L60. [Google Scholar] [CrossRef]
- Plambeck, R.L.; Bower, G.C.; Rao, R.; Marrone, D.P.; Jorstad, S.G.; Marscher, A.P.; Doeleman, S.S.; Fish, V.L.; Johnson, M.D. Probing the Parsec-scale Accretion Flow of 3C 84 with Millimeter Wavelength Polarimetry. Astrophys. J. 2014, 797, 66. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Muller, S.; Vlemmings, W.; Horellou, C.; Aalto, S. A strong magnetic field in the jet base of a supermassive black hole. Science 2015, 348, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.B.; Wright, M.C.H.; Zhao, J.H.; Brinkerink, C.D.; Ho, P.T.P.; Mills, E.A.C.; Martín, S.; Falcke, H.; Matsushita, S.; Martí-Vidal, I. Linearly polarized millimeter and submillimeter continuum emission of Sgr A* constrained by ALMA. Astron. Astrophys. 2016, 593, A107–A117. [Google Scholar] [CrossRef]
- Narayan, R.; Mahadevan, R.; Grindlay, J.E.; Popham, R.G.; Gammie, C. Advection-dominated accretion model of Sagittarius A*: Evidence for a black hole at the Galactic center. Astrophys. J. 1998, 492, 554–568. [Google Scholar] [CrossRef]
- Marrone, D.P. Submillimeter Properties of Sagittarius A*: The Polarization and Spectrum from 230 to 690 GHz and the Submil Limeter Array Polarimeter. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2006. [Google Scholar]
- Li, Y.P.; Yuan, F.; Xie, F.G. Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations. ArXiv, 2016; arXiv:1606.06029. [Google Scholar]
- Doeleman, S.S.; Weintroub, J.; Rogers, A.E.E.; Plambeck, R.; Freund, R.; Tilanus, R.P.J.; Friberg, P.; Ziurys, L.M.; Moran, J.M.; Corey, B.; et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 2008, 455, 78–80. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mościbrodzka, M. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet. Galaxies 2017, 5, 54. https://doi.org/10.3390/galaxies5030054
Mościbrodzka M. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet. Galaxies. 2017; 5(3):54. https://doi.org/10.3390/galaxies5030054
Chicago/Turabian StyleMościbrodzka, Monika. 2017. "Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet" Galaxies 5, no. 3: 54. https://doi.org/10.3390/galaxies5030054
APA StyleMościbrodzka, M. (2017). Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet. Galaxies, 5(3), 54. https://doi.org/10.3390/galaxies5030054