# A Toy Cosmology Using a Hubble-Scale Casimir Effect

## Abstract

**:**

## 1. Introduction

## 2. Inertia from a HsCe

^{2}) the modification of inertia is negligible, but for the tiny accelerations seen in deep space the second term in Equation (5) can become important. Although MiHsC makes some bold assumptions (e.g., that Wien’s law holds at these huge scales) these are somewhat justified by the fact that the minimum acceleration predicted by MiHsC agrees well with the cosmic acceleration attributed to dark energy [12,13], and MiHsC also predicts the anomalous Tajmar effect seen for supercooled spinning rings [14] and galaxy and galaxy cluster rotation without the need for dark matter [15]. MiHsC violates the equivalence principle, but not in a way that could have been detected in the usual torsion balance experiments [14]. Further, standard inertia has been shown to be explained to within 26% by this model [16,17].

## 3. Gravity from the HsCe

## 4. Discussion

## 5. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Funkhouser, S. The large number coincidence, the cosmic coincidence and the critical acceleration. Proc. R. Soc. A
**2006**, 462, 3657–3661. [Google Scholar] [CrossRef] - Van Dokkum, P.G.; Conroy, C. A substantial population of low-mass stars in luminous elliptical galaxies. Nature
**2010**, 468, 940–942. [Google Scholar] [CrossRef] [PubMed] - Dicke, R.H.; Peebles, P.J.E. The Big Bang Cosmology—Enigmas and Nostrums. In General Relativity: An Einstein Centenary Survey; Hawking, S.W., Isreal, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Starobinsky, A.A. A new kind of isotropic cosmological model without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D
**1981**, 23, 347–356. [Google Scholar] [CrossRef] - Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B
**1982**, 108, 389–393. [Google Scholar] [CrossRef] - Hawking, S. Black hole explosions. Nature
**1974**, 248, 30–31. [Google Scholar] [CrossRef] - Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D
**1976**, 14, 870–892. [Google Scholar] [CrossRef] - Milgrom, M. Dynamics with a nonstandard inertia-acceleration relation: An alternative to dark matter in galactic systems. Ann. Phys.
**1994**, 229, 384–415. [Google Scholar] [CrossRef] - Milgrom, M. The modified dynamics as a vacuum effect. Phys. Lett. A
**1999**, 253, 273–179. [Google Scholar] [CrossRef] - Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J.
**1983**, 270, 365–370. [Google Scholar] [CrossRef] - McCulloch, M.E. Modelling the Pioneer anomaly as modified inertia. Mon. Not. R. Astron. Soc.
**2007**, 376, 338–342. [Google Scholar] [CrossRef] - McCulloch, M.E. Minimum accelerations from quantised inertia. Europhys. Lett.
**2010**, 90, 29001. [Google Scholar] [CrossRef] - McCulloch, M.E. The Tajmar effect from quantised inertia. Europhys. Lett.
**2011**, 95, 39002. [Google Scholar] [CrossRef] - McCulloch, M.E. Testing quantised inertia on galactic scales. Astrophysi. Space Sci.
**2012**, 342, 575–578. [Google Scholar] [CrossRef] - McCulloch, M.E. Inertia from an asymmetric Casimir effect. Europhys. Lett.
**2013**, 101, 59001. [Google Scholar] [CrossRef] - Giné, J.; McCulloch, M.E. On the origin of inertial mass. Europhys. Lett.
**2014**. submitted for publication. [Google Scholar] - Lee, J.-W.; Kim, H.-C.; Lee, J.J. Is dark energy from cosmic Hawking radiation? Mod. Phys. Lett. A
**2008**, 25, 257–267. [Google Scholar] [CrossRef] - Freedman, W.L. Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J.
**2001**, 553, 47–72. [Google Scholar] [CrossRef] - Hoyle, F. A new model for the expanding universe. Mon. Not. R. Astron. Soc.
**1948**, 108, 372–383. [Google Scholar] [CrossRef] - Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; et al. Planck 2013 results. XV: CMB power spectra and likelihood. ArXiv E-Prints
**2013**. arXiv:1303.5075. [Google Scholar]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

McCulloch, M.E.
A Toy Cosmology Using a Hubble-Scale Casimir Effect. *Galaxies* **2014**, *2*, 81-88.
https://doi.org/10.3390/galaxies2010081

**AMA Style**

McCulloch ME.
A Toy Cosmology Using a Hubble-Scale Casimir Effect. *Galaxies*. 2014; 2(1):81-88.
https://doi.org/10.3390/galaxies2010081

**Chicago/Turabian Style**

McCulloch, Michael E.
2014. "A Toy Cosmology Using a Hubble-Scale Casimir Effect" *Galaxies* 2, no. 1: 81-88.
https://doi.org/10.3390/galaxies2010081