# Revisiting Vaidya Horizons

## Abstract

**:**

## 1. Introduction

## 2. Horizons in Vaidya

#### 2.1. Radial Null Vectors

#### 2.2. Conformal Killing Field

#### 2.3. Hamilton-Jacobi Equation

## 3. Vaidya in Conformally Static Coordinates

## 4. Static Conformal Vaidya

## 5. Discussion and Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett.
**1965**, 14, 57–59. [Google Scholar] [CrossRef] - Nielsen, A.B. The Spatial relation between the event horizon and trapping horizon. Class. Quant. Gravity
**2010**, 27, 245016. [Google Scholar] [CrossRef] - Vanzo, L.; Acquaviva, G.; Di Criscienzo, R. Tunnelling Methods and Hawking’s radiation: Achievements and prospects. Class. Quant. Gravity
**2011**, 28, 183001. [Google Scholar] [CrossRef] - Nielsen, A.B.; Firouzjaee, J.T. Conformally rescaled spacetimes and Hawking radiation. Gen. Relativ. Gravit.
**2013**, 45, 1815–1838. [Google Scholar] [CrossRef] - Vaidya, P. The Gravitational Field of a Radiating Star. Proc. Indian Acad. Sci. Sect. A
**1951**, 33, 264–276. [Google Scholar] - Kuroda, Y. Vaidya space-time as an evaporating black hole. Prog. Theor. Phys.
**1984**, 71, 1422–1425. [Google Scholar] [CrossRef] - Ashtekar, A.; Krishnan, B. Isolated and dynamical horizons and their applications. Living Rev. Rel.
**2004**, 7, 10. [Google Scholar] [CrossRef] - Nielsen, A.B.; Jasiulek, M.; Krishnan, B.; Schnetter, E. The Slicing dependence of non-spherically symmetric quasi-local horizons in Vaidya Spacetimes. Phys. Rev. D
**2011**, 83, 124022. [Google Scholar] [CrossRef] - Hayward, S.A. General laws of black hole dynamics. Phys. Rev. D
**1994**, 49, 6467–6474. [Google Scholar] [CrossRef] - Di Criscienzo, R.; Hayward, S.A.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate gauges. Class. Quant. Gravity
**2010**, 27, 015006. [Google Scholar] [CrossRef] - Nielsen, A.B.; Yoon, J.H. Dynamical surface gravity. Class. Quant. Gravity
**2008**, 25, 085010. [Google Scholar] [CrossRef] - Jacobson, T.; Kang, G. Conformal invariance of black hole temperature. Class. Quant. Grav.
**1993**, 10, L201. [Google Scholar] [CrossRef] - Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev.
**1962**, 125, 2163–2167. [Google Scholar] [CrossRef] - Bengtsson, I.; Senovilla, J.M.M. Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D
**2011**, 83, 044012. [Google Scholar] [CrossRef] - Wall, A.C. Testing the generalized second law in 1+1 dimensional conformal vacua: An argument for the causal horizon. Phys. Rev. D
**2012**, 85, 024015. [Google Scholar] [CrossRef] - Nielsen, A.B.; Faraoni, V. The horizon-entropy increase law for causal and quasi-local horizons and conformal field redefinitions. Class. Quant. Gravity
**2011**, 28, 175008. [Google Scholar] [CrossRef] - Codello, A.; D’Odorico, G.; Pagani, C.; Percacci, R. The renormalization group and Weyl invariance. Class. Quant. Gravity
**2013**, 30, 115015. [Google Scholar] [CrossRef] - Cropp, B.; Liberati, S.; Visser, M. Surface gravities for non-Killing horizons. Class. Quant. Gravity
**2013**, 30, 125001. [Google Scholar] [CrossRef]

© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Nielsen, A.B.
Revisiting Vaidya Horizons. *Galaxies* **2014**, *2*, 62-71.
https://doi.org/10.3390/galaxies2010062

**AMA Style**

Nielsen AB.
Revisiting Vaidya Horizons. *Galaxies*. 2014; 2(1):62-71.
https://doi.org/10.3390/galaxies2010062

**Chicago/Turabian Style**

Nielsen, Alex B.
2014. "Revisiting Vaidya Horizons" *Galaxies* 2, no. 1: 62-71.
https://doi.org/10.3390/galaxies2010062