# A No-Go Theorem for Rotating Stars of a Perfect Fluid without Radial Motion in Projectable Hořava–Lifshitz Gravity

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Properties of Hořava–Lifshitz Gravity

## 3. No Stationary and Axisymmetric Star Solutions

#### 3.1. Stationary and Axisymmetric Configuration

#### 3.2. Triad Components of Shift Vector

#### 3.3. Regularity Conditions at the Origin

#### 3.4. Matter Sector and Momentum Conservation

#### 3.5. Contradiction of Momentum Conservation

## 4. Discussion and Conclusions

## Acknowledgments

## Conflicts of Interest

## Appendix

## A. Explicit Expression for Equation of Motion

## B. Triad Components of Extrinsic Curvature Tensor

## References

- Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D
**2009**, 79, 084008:1–084008:15. [Google Scholar] [CrossRef] - Hořava, P. Membranes at quantum criticality. J. High Energy Phys.
**2009**, 2009, 020:1–020:33. [Google Scholar] [CrossRef] - Weinfurtner, S.; Sotiriou, T.P.; Visser, M. Projectable Horava-Lifshitz gravity in a nutshell. J. Phys. Conf. Ser.
**2010**, 222, 012054:1–012054:8. [Google Scholar] [CrossRef] - Gumrukcuoglu, A.E.; Mukohyama, S. Hořava–Lifshitz gravity with λ→∞. Phys. Rev. D
**2011**, 83, 124033:1–124033:10. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Visser, M.; Weinfurtner, S. Phenomenologically viable Lorentz-violating quantum gravity. Phys. Rev. Lett.
**2009**, 102, 251601:1–251601:4. [Google Scholar] [CrossRef] - Sotiriou, T.P. Horava-Lifshitz gravity: A status report. J. Phys. Conf. Ser.
**2011**, 283, 012034:1–012034:17. [Google Scholar] [CrossRef] - Harada, T.; Miyamoto, U.; Tsukamoto, N. Uniqueness of static spherically symmetric vacuum solutions in the IR limit of Hořava–Lifshitz gravity. Int. J. Mod. Phys. D
**2011**, 20, 111–118. [Google Scholar] [CrossRef] - Park, M.I. The black hole and cosmological solutions in IR modified Hořava gravity. J. High Energy Phys.
**2009**, 2009, 123:1–123:14. [Google Scholar] [CrossRef] - Lü, H.; Mei, J.; Pope, C.N. Solutions to Horava gravity. Phys. Rev. Lett.
**2009**, 103, 091301:1–091301:4. [Google Scholar] [CrossRef] - Tang, J.Z.; Chen, B. Static spherically symmetric solutions to modified Horava-Lifshitz gravity with projectability condition. Phys. Rev. D
**2010**, 81, 043515:1–043515:7. [Google Scholar] [CrossRef] - Cai, R.G.; Cao, L.M.; Ohta, N. Topological black holes in Horava-Lifshitz gravity. Phys. Rev. D
**2009**, 80, 024003:1–024003:7. [Google Scholar] [CrossRef] - Cai, R.G.; Cao, L.M.; Ohta, N. Thermodynamics of black holes in Horava-Lifshitz gravity. Phys. Lett. B
**2009**, 679, 504–509. [Google Scholar] [CrossRef] - Barausse, E.; Sotiriou, T.P. No-go theorem for slowly rotating black holes in Hořava–Lifshitz gravity. Phys. Rev. Lett.
**2012**, 109, 181101:1–181101:5. [Google Scholar] [CrossRef] - Wang, A. On “No-go theorem for slowly rotating black holes in Hořava–Lifshitz gravity”. ArXiv E-Prints
**2012**. arXiv:1212.1040. [Google Scholar] - Barausse, E.; Sotiriou, T.P. Slowly rotating black holes in Hořava–Lifshitz gravity. Phys. Rev. D
**2013**, 87, 087504:1–087504:4. [Google Scholar] [CrossRef] - Wang, A. Stationary axisymmetric and slowly rotating spacetimes in Hořava–Lifshitz gravity. Phys. Rev. Lett.
**2013**, 110, 091101:1–091101:5. [Google Scholar] [CrossRef] - Mukohyama, S. Dark matter as integration constant in Horava-Lifshitz gravity. Phys. Rev. D
**2009**, 80, 064005:1–064005:6. [Google Scholar] [CrossRef] - Mukohyama, S. Horava-Lifshitz cosmology: A review. Class. Quantum Gravity
**2010**, 27, 223101:1–223101:25. [Google Scholar] [CrossRef] - Saridakis, E.N. Horava-Lifshitz dark energy. Eur. Phys. J. C
**2010**, 67, 229–235. [Google Scholar] [CrossRef] - Harko, T.; Kovacs, Z.; Lobo, F.S.N. Solar system tests of Horava-Lifshitz gravity. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2011**, 467, 1390–1407. [Google Scholar] [CrossRef] [Green Version] - Wang, A.; Maartens, R. Linear perturbations of cosmological models in the Horava-Lifshitz theory of gravity without detailed balance. Phys. Rev. D
**2010**, 81, 024009:1–024009:9. [Google Scholar] [CrossRef] - Koyama, K.; Arroja, F. Pathological behaviour of the scalar graviton in Horava-Lifshitz gravity. J. High Energy Phys.
**2010**, 2010, 061:1–061:11. [Google Scholar] [CrossRef] - Wang, A.; Wu, Q. Stability of spin-0 graviton and strong coupling in Horava-Lifshitz theory of gravity. Phys. Rev. D
**2011**, 83, 044025:1–044025:13. [Google Scholar] [CrossRef] - Horava, P. Spectral dimension of the universe in quantum gravity at a lifshitz point. Phys. Rev. Lett.
**2009**, 102, 161301:1–161301:4. [Google Scholar] [CrossRef] - Charmousis, C.; Niz, G.; Padilla, A.; Saffin, P.M. Strong coupling in Horava gravity. J. High Energy Phys.
**2009**, 2009, 070:1–070:17. [Google Scholar] [CrossRef] - Blas, D.; Pujolas, O.; Sibiryakov, S. On the Extra Mode and Inconsistency of Horava Gravity. J. High Energy Phys.
**2009**, 2009, 029:1–029:29. [Google Scholar] [CrossRef] - Horava, P.; Melby-Thompson, C.M. General covariance in quantum gravity at a Lifshitz point. Phys. Rev. D
**2010**, 82, 064027:1–064027:21. [Google Scholar] - Blas, D.; Pujolas, O.; Sibiryakov, S. Consistent extension of Horava gravity. Phys. Rev. Lett.
**2010**, 104, 181302:1–181302:4. [Google Scholar] [CrossRef] - Izumi, K.; Mukohyama, S. Stellar center is dynamical in Horava-Lifshitz gravity. Phys. Rev. D
**2010**, 81, 044008:1–044008:9. [Google Scholar] [CrossRef] - Greenwald, J.; Papazoglou, A.; Wang, A. Black holes and stars in Horava-Lifshitz theory with projectability condition. Phys. Rev. D
**2010**, 81, 084046:1–084046:20. [Google Scholar] [CrossRef] - Greenwald, J.; Lenells, J.; Satheeshkumar, V.H.; Wang, A. Gravitational collapse in Hořava-Lifshitz theory. Phys. Rev. D
**2013**, 88, 024044:1–024044:21. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Visser, M.; Weinfurtner, S. Quantum gravity without Lorentz invariance. J. High Energy Phys.
**2009**, 2009, 033:1–033:33. [Google Scholar] [CrossRef] - Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman: New York, NY, USA, 1973. [Google Scholar]
- Bardeen, J.M.; Piran, T. General relativistic axisymmetric rotating sytems: Coordinate and equations. Phys. Rep.
**1983**, 96, 205–250. [Google Scholar] [CrossRef] - Hayward, S.A. Gravitational waves, black holes and cosmic strings in cylindrical symmetry. Class. Quantum Gravity
**2000**, 17, 1749–1764. [Google Scholar] [CrossRef] - Kimpton, I.; Padilla, A. Matter in Horava-Lifshitz gravity. J. High Energy Phys.
**2013**, 2013, 133:1–133:30. [Google Scholar] [CrossRef]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Tsukamoto, N.; Harada, T.
A No-Go Theorem for Rotating Stars of a Perfect Fluid without Radial Motion in Projectable Hořava–Lifshitz Gravity. *Galaxies* **2013**, *1*, 261-274.
https://doi.org/10.3390/galaxies1030261

**AMA Style**

Tsukamoto N, Harada T.
A No-Go Theorem for Rotating Stars of a Perfect Fluid without Radial Motion in Projectable Hořava–Lifshitz Gravity. *Galaxies*. 2013; 1(3):261-274.
https://doi.org/10.3390/galaxies1030261

**Chicago/Turabian Style**

Tsukamoto, Naoki, and Tomohiro Harada.
2013. "A No-Go Theorem for Rotating Stars of a Perfect Fluid without Radial Motion in Projectable Hořava–Lifshitz Gravity" *Galaxies* 1, no. 3: 261-274.
https://doi.org/10.3390/galaxies1030261