EZ Lyn: A Confirmed Period-Bouncer Cataclysmic Variable Below the Period Minimum
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Evolutionary Modeling Framework
3.2. Numerical Input
- Angular–momentum loss.
- Gravitational radiation—quadrupole formula of Landau and Lifshitz [29]; it dominates once the donor becomes fully convective and magnetic braking is quenched.
- Magnetic braking—Rappaport –Verbunt–Joss (RVJ) magnetic-braking torque [30] with , strongly reduced once the donor becomes fully convective, following the “reduced–magnetic–braking” prescription implemented in the period–bouncer models of Schreiber et al. [28]. This treatment is consistent with the standard understanding of CV evolution, in which magnetic braking weakens but does not vanish below the period gap [20,28].
- Consequential AML associated with nova–driven mass loss, calibrated as in Schreiber et al. [4]; this term accounts for the angular momentum carried by ejecta, and we do not add a separate isotropic–re–emission AML term to avoid double counting).
- Mass transfer and retention.
- Internal options.
3.3. Parameter Grid and Objective Function
- Coarse scan.
- Refined scan and ranking.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CV | Cataclysmic variable |
| AM | Angular momentum |
| MESA | Modules for Experiments in Stellar Astrophysics |
| MCMC | Bayesian Markov Chain Monte Carlo |
| CDF | Cumulative Distribution Function |
| ZAMS | Zero-Age Main Sequence |
References
- Warner, B. Cataclysmic Variable Stars; Cambridge University Press: Cambridge, UK, 1995; Volume 28. [Google Scholar]
- Kolb, U. A model for the intrinsic population of cataclysmic variables. Astron. Astrophys. 1993, 271, 149. [Google Scholar]
- Goliasch, J.; Nelson, L. Population Synthesis of Cataclysmic Variables. I. Inclusion of Detailed Nuclear Evolution. Astrophys. J. 2015, 809, 80. [Google Scholar] [CrossRef]
- Schreiber, M.R.; Belloni, D.; van Roestel, J. Period bouncers as detached magnetic cataclysmic variables. Astron. Astrophys. 2023, 679, L8. [Google Scholar] [CrossRef]
- Inight, K.; Gänsicke, B.T.; Schwope, A.; Anderson, S.F.; Badenes, C.; Breedt, E.; Chandra, V.; Davies, B.D.R.; Gentile Fusillo, N.P.; Green, M.J.; et al. Cataclysmic Variables from Sloan Digital Sky Survey—V. The search for period bouncers continues. Mon. Not. R. Astron. Soc. 2023, 525, 3597–3625. [Google Scholar] [CrossRef]
- Pala, A.F.; Gänsicke, B.T.; Breedt, E.; Knigge, C.; Hermes, J.J.; Gentile Fusillo, N.P.; Hollands, M.A.; Naylor, T.; Pelisoli, I.; Schreiber, M.R.; et al. A Volume-limited Sample of Cataclysmic Variables from Gaia DR2: Space Density and Population Properties. Mon. Not. R. Astron. Soc. 2020, 494, 3799–3827. [Google Scholar] [CrossRef]
- Muñoz-Giraldo, D.; Stelzer, B.; Schwope, A. Cataclysmic variables around the period-bounce: An eROSITA-enhanced multiwavelength catalog. Astron. Astrophys. 2024, 687, A305. [Google Scholar] [CrossRef]
- Kára, J.; Zharikov, S.; Wolf, M.; Amantayeva, A.; Subebekova, G.; Khokhlov, S.; Agishev, A.; Merc, J. The Z Camelopardalis-type Star AY Piscium: Stellar and Accretion Disk Parameters. Astrophys. J. 2023, 950, 47. [Google Scholar] [CrossRef]
- Medina Rodriguez, A.L.; Zharikov, S.; Kára, J.; Wolf, M.; Agishev, A.; Khokhlov, S. VY Scl-type cataclysmic variable SDSS J154453.60+255348.8: Stellar and disc parameters. Mon. Not. R. Astron. Soc. 2023, 521, 5846–5859. [Google Scholar] [CrossRef]
- Southworth, J.; Gänsicke, B.T.; Marsh, T.R.; de Martino, D.; Hakala, P.; Littlefair, S.; Rodríguez-Gil, P.; Szkody, P. VLT/FORS spectroscopy of faint cataclysmic variables discovered by the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2006, 373, 687–699. [Google Scholar] [CrossRef]
- Pavlenko, E.; Shugarov, S.Y.; Katysheva, N.A.; Nogami, D.; Nakajima, K.; Maehara, H.; Andreev, M.; Shimansky, V.; Zubareva, A.; Babina, J.; et al. Discovery of the New WZ Sge Star SDSS J080434.20+510349.2. In Proceedings of the 15th European Workshop on White Dwarfs, Leicester, UK, 7–11 August 2006; Napiwotzki, R., Burleigh, M.R., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 372, p. 511. [Google Scholar] [CrossRef]
- Shears, J.; Klingenberg, G.; de Ponthiere, P. Observations of the first confirmed superoutburst of SDSS J080434.20+510349.2 in 2006 March. J. Br. Astron. Assoc. 2007, 117, 331–334. [Google Scholar] [CrossRef]
- Kato, T.; Imada, A.; Uemura, M.; Nogami, D.; Maehara, H.; Ishioka, R.; Baba, H.; Matsumoto, K.; Iwamatsu, H.; Kubota, K.; et al. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. Publ. Astron. Soc. Jpn. 2009, 61, S395–S616. [Google Scholar] [CrossRef]
- Zharikov, S.V.; Tovmassian, G.H.; Neustroev, V.V.; Michel, R.; Zurita, C.; Echevarría, J.; Bikmaev, I.F.; Pavlenko, E.P.; Jeon, Y.B.; Valyavin, G.G.; et al. Cyclic brightening in the short-period WZ Sge-type cataclysmic variable SDSS J080434.20+510349.2. Astron. Astrophys. 2008, 486, 505–509. [Google Scholar] [CrossRef]
- Pavlenko, E.P. Wz SGE Stars. Odessa Astron. Publ. 2007, 20, 168. [Google Scholar]
- Pavlenko, E.P.; Kato, T.; Antonyuk, O.I.; Imada, A.; Ishioka, R.; Maehara, H. Features of the orbital variability in the brightness of the WZ Sge type dwarf nova V1108 Her. Astrophysics 2011, 54, 483–495. [Google Scholar] [CrossRef]
- Isogai, M.; Arai, A.; Yonehara, A.; Kawakita, H.; Uemura, M.; Nogami, D. Optical dual-band photometry and spectroscopy of the WZ Sge-type dwarf nova EZ Lyn during the 2010 superoutburst. Publ. Astron. Soc. Jpn. 2015, 67, 7. [Google Scholar] [CrossRef]
- Zharikov, S.; Tovmassian, G.; Aviles, A.; Michel, R.; Gonzalez-Buitrago, D.; García-Díaz, M.T. The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20 + 510349.2. Astron. Astrophys. 2013, 549, A77. [Google Scholar] [CrossRef]
- Amantayeva, A.; Zharikov, S.; Page, K.L.; Pavlenko, E.; Sosnovskij, A.; Khokhlov, S.; Ibraimov, M. Period Bouncer Cataclysmic Variable EZ Lyn in Quiescence. Astrophys. J. 2021, 918, 58. [Google Scholar] [CrossRef]
- Knigge, C.; Baraffe, I.; Patterson, J. The Evolution of Cataclysmic Variables as Revealed by Their Donor Stars. Astrophys. J. Suppl. Ser. 2011, 194, 28. [Google Scholar] [CrossRef]
- Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 2011, 192, 3. [Google Scholar] [CrossRef]
- Paxton, B.; Cantiello, M.; Arras, P.; Bildsten, L.; Brown, E.F.; Dotter, A.; Mankovich, C.; Montgomery, M.H.; Stello, D.; Timmes, F.X.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. Astrophys. J. Suppl. Ser. 2013, 208, 4. [Google Scholar] [CrossRef]
- Paxton, B.; Marchant, P.; Schwab, J.; Bauer, E.B.; Bildsten, L.; Cantiello, M.; Dessart, L.; Farmer, R.; Hu, H.; Langer, N.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions. Astrophys. J. Suppl. Ser. 2015, 220, 15. [Google Scholar] [CrossRef]
- Paxton, B.; Schwab, J.; Bauer, E.B.; Bildsten, L.; Blinnikov, S.; Duffell, P.; Farmer, R.; Goldberg, J.A.; Marchant, P.; Sorokina, E.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions. Astrophys. J. Suppl. Ser. 2018, 234, 34. [Google Scholar] [CrossRef]
- Paxton, B.; Smolec, R.; Schwab, J.; Gautschy, A.; Bildsten, L.; Cantiello, M.; Dotter, A.; Farmer, R.; Goldberg, J.A.; Jermyn, A.S.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. Astrophys. J. Suppl. Ser. 2019, 243, 10. [Google Scholar] [CrossRef]
- Jermyn, A.S.; Bauer, E.B.; Schwab, J.; Farmer, R.; Ball, W.H.; Bellinger, E.P.; Dotter, A.; Joyce, M.; Marchant, P.; Mombarg, J.S.G.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure. Astrophys. J. Suppl. Ser. 2023, 265, 15. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A.L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3. Astron. J. 2021, 161, 147. [Google Scholar] [CrossRef]
- Schreiber, M.R.; Belloni, D.; Gänsicke, B.T.; Parsons, S.G.; Zorotovic, M. The origin and evolution of magnetic white dwarfs in close binary stars. Nat. Astron. 2021, 5, 648–654. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1975. [Google Scholar]
- Rappaport, S.; Verbunt, F.; Joss, P.C. A new technique for calculations of binary stellar evolution application to magnetic braking. Astrophys. J. 1983, 275, 713–731. [Google Scholar] [CrossRef]
- Ritter, H. Turning on and off mass transfer in cataclysmic binaries. Astron. Astrophys. 1988, 202, 93–100. [Google Scholar]
- Webbink, R.F.; Wickramasinghe, D.T. Cataclysmic variable evolution: AM Her binaries and the period gap. Mon. Not. R. Astron. Soc. 2002, 335, 1–9. [Google Scholar] [CrossRef]
- Belloni, D.; Schreiber, M.R.; Pala, A.F.; Gänsicke, B.T.; Zorotovic, M.; Rodrigues, C.V. Evidence for reduced magnetic braking in polars from binary population models. Mon. Not. R. Astron. Soc. 2020, 491, 5717–5731. [Google Scholar] [CrossRef]
- Bédard, A.; Bergeron, P.; Brassard, P.; Fontaine, G. On the Spectral Evolution of Hot White Dwarf Stars. I. A Detailed Model Atmosphere Analysis of Hot White Dwarfs from SDSS DR12. Astrophys. J. 2020, 901, 93. [Google Scholar] [CrossRef]
- Lampton, M.; Margon, B.; Bowyer, S. Parameter estimation in X-ray astronomy. Astrophys. J. 1976, 208, 177–190. [Google Scholar] [CrossRef]
- Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 1976, 210, 642–646. [Google Scholar] [CrossRef]
- Faulkner, J.; Flannery, B.P.; Warner, B. Ultrashort-Period Binaries. II. HZ 29 (=AM CVn): A Double-White-Dwarf Semidetached Postcataclysmic Nova? Astrophys. J. 1972, 175, L79–L83. [Google Scholar] [CrossRef]
- Littlefair, S.P.; Dhillon, V.S.; Marsh, T.R.; Gänsicke, B.T.; Southworth, J.; Baraffe, I.; Watson, C.A.; Copperwheat, C. On the evolutionary status of short-period cataclysmic variables. Mon. Not. R. Astron. Soc. 2008, 388, 1582–1594. [Google Scholar] [CrossRef]
- Townsley, D.M.; Bildsten, L. Measuring White Dwarf Accretion Rates via Their Effective Temperatures. Astrophys. J. 2003, 596, L227–L230. [Google Scholar] [CrossRef]
- Gänsicke, B.T.; Dillon, M.; Southworth, J.; Thorstensen, J.R.; Rodríguez-Gil, P.; Aungwerojwit, A.; Marsh, T.R.; Szkody, P.; Barros, S.C.C.; Casares, J.; et al. SDSS unveils a population of intrinsically faint cataclysmic variables at the minimum orbital period. Mon. Not. R. Astron. Soc. 2009, 397, 2170–2188. [Google Scholar] [CrossRef]
- Pala, A.F.; Gänsicke, B.T.; Townsley, D.; Boyd, D.; Cook, M.J.; De Martino, D.; Godon, P.; Haislip, J.B.; Henden, A.A.; Hubeny, I.; et al. Effective temperatures of cataclysmic-variable white dwarfs as a probe of their evolution. Mon. Not. R. Astron. Soc. 2017, 466, 2855–2878. [Google Scholar] [CrossRef]


| Parameter | Symbol (Unit) | Value |
|---|---|---|
| Global and orbital | ||
| Distance (Gaia DR3) | D (pc) | |
| Orbital period | (s) | |
| Binary separation | a () | |
| Inclination | i (∘) | |
| Reddening | (mag) | |
| Mass ratio | ||
| White dwarf | ||
| Mass | () | |
| Radius | () | |
| Effective temperature | (K) | 11,250 ± 50 |
| Donor star | ||
| Mass | () | |
| Radius | () | |
| Effective temperature | (K) | |
| Accretion | ||
| Mass-transfer rate | ( yr−1) | |
| Parameter | Symbol (Unit) | Value |
|---|---|---|
| Initial conditions (start of CV evolution) | ||
| Donor mass at onset | () | |
| WD mass at onset (fixed) | () | (fixed) |
| Initial orbital period | (d) | |
| Present-day (model snapshot) | ||
| Orbital period | (s) | |
| Binary separation | a () | |
| Mass ratio † | q | |
| WD radius | () | |
| Donor radius | () | |
| WD effective temperature | (K) | |
| Donor effective temperature | (K) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaidman, N.L.; Agishev, A.T.; Khokhlov, S.A.; Agishev, A.T. EZ Lyn: A Confirmed Period-Bouncer Cataclysmic Variable Below the Period Minimum. Galaxies 2025, 13, 121. https://doi.org/10.3390/galaxies13060121
Vaidman NL, Agishev AT, Khokhlov SA, Agishev AT. EZ Lyn: A Confirmed Period-Bouncer Cataclysmic Variable Below the Period Minimum. Galaxies. 2025; 13(6):121. https://doi.org/10.3390/galaxies13060121
Chicago/Turabian StyleVaidman, Nadezhda L., Almansur T. Agishev, Serik A. Khokhlov, and Aldiyar T. Agishev. 2025. "EZ Lyn: A Confirmed Period-Bouncer Cataclysmic Variable Below the Period Minimum" Galaxies 13, no. 6: 121. https://doi.org/10.3390/galaxies13060121
APA StyleVaidman, N. L., Agishev, A. T., Khokhlov, S. A., & Agishev, A. T. (2025). EZ Lyn: A Confirmed Period-Bouncer Cataclysmic Variable Below the Period Minimum. Galaxies, 13(6), 121. https://doi.org/10.3390/galaxies13060121

