Previous Article in Journal
Evolution of Size, Mass, and Density of Galaxies Since Cosmic Dawn
Previous Article in Special Issue
Light Variability from UV to Near-Infrared in the Ap Star CU Vir Induced by Chemical Spots
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Stark Broadening of O I Spectral Lines

by
Milan S. Dimitrijević
1,2,* and
Sylvie Sahal-Bréchot
2
1
Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
2
LUX, (Laboratoire d’étude de l’Univers et des Phénomènes Extrèmes) Observatoire de Paris, PSL (Paris Sciences & Lettres), CNRS (Centre National de la Recherche Scientifique), Sorbonne Université, F-92190 Meudon, France
*
Author to whom correspondence should be addressed.
Galaxies 2025, 13(5), 116; https://doi.org/10.3390/galaxies13050116
Submission received: 12 August 2025 / Revised: 23 September 2025 / Accepted: 13 October 2025 / Published: 15 October 2025
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)

Abstract

We do not know a priori chemical composition of a star. However, with more high resolution spectra becoming more abundant thanks to the development of space-born observations, atomic data including Stark broadening parameters for various spectral lines for elements in various ionisation stages are becoming more feasible. Particularly are important spectral lines of C-N-O peak in the distribution of abundances of chemical elements. For the calculation of Stark broadening parameters, spectral line full widths at half intensity maximum (FWHM) and shifts, we used semiclassical perturbation method. As the result, Stark widths and shifts for 36 spectral lines of neutral oxygen, broadened by the collisions with electrons, protons and helium ions, have been obtained and compared with other theoretical calculations. These data are of interest for a number of problems in astrophysics, plasma physics, as well as for inertial fusion and various plasmas in technology.

1. Introduction

With the development of space born telescopes and astronomical instrumentation, the need for atomic data, including Stark broadening parameters, for spectra of elements in different ionization stages, is permanently increasing, since a great number of high resolution spectra is produced. The analysis of profiles of spectral lines, broadened by fluctuating electric microfields of surrounding charged particles (Stark broadening), gives possibility to determine many useful quantities for investigation of cosmic plasma. For example Stark broadening parameters - line widths and shifts, are useful for investigations of Cepheides and stellar pairs producing supernovae of the first type (SN I), as well as for determination of abundances of oxygen and its variation during the chemical evolution of the Universe. Such data are also of interest for radiative transfer calculations, stellar spectra interpretation, synthesis and modelling. They may find applications in other topics such as fusion [1], laser produced plasma research [2], and in general, plasma science [3] and technology [4,5,6].
Oxygen belongs to the C-N-O peak in the distribution of abundances of chemical elements, so that data for its spectral lines are particularly important. For example neutral oxygen spectral lines are used in a study of chemical abundance variations in the globular cluster M4 (NGC 6121) [7], for oxygen abundance analysis in A-type stars γ Gem (HD 41705), o Peg (HD 214994), θ Vir (HD 114330), and ν Cap (HD 193432) [8], in 17 spectroscopic binary stars in 15 young open clusters [9], for seven very and extremely metal-poor stars in the Large Magellanic Cloud [10], for 311 metal poor stars [11], Cepheid variables [12], for investigation of oxygen rich supernova remnants [13], supernovas [14,15], SN2023ufx and its progenitor [16], and O I (7773 Å) line is observed in the spectrum of V1405 Cas [17].
Due to the importance of data on oxygen lines, a lot of experimental results have been published, as for example by Jung [18], Wiese and Murphy [19], Morris and Garrison [20], Miller and Bengtson [21], Assous [22], Goly et al. [23], Goly and Weniger [24], Sohns and Kock [25], Mijatović et al. [26], Gerhard et al. [27] and Burger and Hermann [28]. Numerous calculations, using different theoretical methods, exist as well. Stark line widths and shifts for O I have been calculated using different variants of semiclassical theory [29,30,31] by Griem [29], Ben Nessib et al. [32], Riviere [33] and by Alonizan et al. [34]. The Model Microfield (MMM) Method [35] has been used by Brissaud et al. [36], the computer simulation modeling [37], has been applied by Stambulchik et al. [38] for Stark broadening of O I 777 nm triplet, while in Johns et al. [39] a modified semiempirical method based on the works of Dimitrijevic and Konjevic [40,41] has been employed.
Recently, we calculated, using the semiclassical perturbation method [30,31,42], Stark widths and shifts of neutral oxygen spectral lines, for plasma conditions corresponding to experimental data in Jung [18], Wiese and Murphy [19], Morris and Garrison [20], Miller and Bengtson [21], Assous [22], Goly et al. [23], Goly and Weniger [24], Sohns and Kock [25], Mijatović et al. [26], Gerhard et al. [27], Burger and Hermann [28] and compared experiment and theory concluding that the accordance is within the error bars. Here, our objective is to calculate Stark broadening data for temperatures ranging from 2500 K to 80,000 K, for 36 O I spectral lines, in order to cover the needs for stellar spectra analysis and synthesis, oxygen abundance determination, stellar atmosphere modeling and other uses, as e.g., for laboratory, laser produced and technological plasma, where such data are useful for example for plama diagnostics, modelling, calculation of the corresponding absorption coefficient etc. We also compared our results with other theoretical calculations, when possible.

2. Theory

For the calculation of Stark full widths at half intensity maximum (FWHM) and shifts of spectral lines of neutral oxygen, the semiclassical perturbation theory [30,31,42] has been employed. It means that the radiating neutral atom is treated quantum mechanically, while perturbing particles, electrons and ions, are treated as classical particles. The connexion between these two systems is obtained using a time dependent potential. Besides the detailed description in above mentioned references, this theoretical approach has been presented many times, so that only basic expressions needed to understand how calculations have been performed, will be shown. The Stark FWHM (W) and shift (d) of an isolated, spectral line of a nonhydrogenic neutral atom, is:
W = N v f ( v ) d v i i σ i i ( v ) + f f σ f f ( v ) + σ e l
d = N v f ( v ) d v R 3 R D 2 π ρ d ρ sin ( 2 φ p ) ,
where i and f are for the initial and final level of the corresponding transition; with i and f are denoted perturbing levels; N is perturber density; v perturber velocity, and f ( v ) the Maxwellian distribution of electron velocities. The inelastic cross sections σ k k ( υ ) , k = i , f are calculated as an integral of the transition probability P k k ( ρ , υ ) , over the impact parameter ρ :
k k σ k k ( υ ) = 1 2 π R 1 2 + R 1 R D 2 π ρ d ρ k k P k k ( ρ , υ ) .
The cross section for elastic collisions is given as:
σ e l = 2 π R 2 2 + R 2 R D 2 π ρ d ρ sin 2 δ ,
δ = ( φ p 2 + φ q 2 ) 1 2 .
Here, δ is the phase shift while φ p ( r 4 ) and φ q ( r 3 ), where r is the distance between the emitter and the perturber, are contributions due to polarization and quadrupole potentials. The calculation of cut-off parameters R 1 , R 2 , R 3 , and the Debye cut-off R D is presented in detail in Sahal-Bréchot [31].
We can see from Equation (1), that the line width W is an integral over the summ of cross sections for processes depopulating the initial and final levels of the transition forming the considered spectral line. Namely such processes decrease the lifetime of the optical electron and, it is easy to show that according to the Heisenberg’s uncertainty principle, atomic energy levels and the corresponding spectral line become broader.
The Stark widths (W) and shifts (d) can be used to obtain the line profile F ( ω ) (where ω is the angular frequency), using the expression:
F ( ω ) = W / ( 2 π ) ( ω ω i f d ) 2 + ( W / 2 ) 2 .
Here
ω i f = E i E f ,
where E i and E f are the energies of the initial and final atomic energy levels, respectively.

3. Results and Discussion

Employing the semiclassical perturbation theory [30,31,42], Stark broadening parameters of 36 spectral lines of neutral oxygen, W and d, have been calculated for broadening caused by the collisions with electrons, protons and helium ions (He II), which are usually the main constituents of stellar atmospheres. Atomic energy levels of neutral oxygen, which are needed for the determination of Stark widths and shifts, have been taken from Moore [43], and the oscillator strengths have been calculated within the Coulomb approximation [44,45].
The obtained results are presented in Table 1 and Table 2. In Table 1 are FWHM and shifts for 36 O I transitions for broadening by the collisions with electrons and protons. Results are given for a perturber density of 10 16 cm 3 and temperatures ranging from 2500 K to 80,000 K. In Table 2, analogous results are given for spectral lines broadened by the collisions with ionized helium (He II). In [46] the results for Stark widths of helium lines, obtained by the semiclassical perturbation theory [30,31] have been compared with critically selected experimental data for spectral lines within 13 He I multiplets and it has been found that the disagreement is within the limits of 20 percent. Since O I is more complicated we assume that the error bars in the present case are within the limits of 30 percent. In the case of the shift, due to mutual cancellations of different contributions, which decreases the accuracy, one can adopt the error bars as 30 percent of the corresponding width.
Concerning the behavior of the electron-impact widths with temperature (see e.g., [48,49], one can see from Equation (1) that the width is a sum of cross sections for collisions which depopulate the initial and final levels of the transition from which the considered spectral line originates. The behavior of cross sections for electron – neutral atom collisions with temperature is the following: They start from zero and increase with temperature until a maximum depending on the Maxwellian distribution of electron velocities and then slowly decrease. The behavior of electron-impact line width with temperature depends on the temperature behavior of the sum of the corresponding cross sections. If the temperature is in the increasing part, the width increases with temperature, if it is in the decreasing part, the width decreases. If the temperature range includes the maximum, the width will first increase and after the maximum decrease.
In Table 3, our results for Stark widths are compared for temperatures ranging from 5000 K to 40,000 K and a density of 10 17 cm 3 , with Stark widths for 11 multiplets calculated by Griem [29] and 4 by Alonizan et al. [34]. Namely, their calculations cover temperatures only up to 40,000 K, which is not enough for the modelling of stellar atmospheres and other purposes like laser produced and fusion plasma diagnostics and investigation. In Table 4, the same comparison is presented for the shifts. For these three calculations, the semiclassical perturbation theory has been used. The main differences between the version used here [30,31,42] and the version of Griem, presented in his book on spectral line broadening by plasmas [29], are the calculation of elastic collisions, cut-offs in integration and symmetrization of perturber velocities before and after collision. Alonizan et al. [34] used in their study on Stark broadening of neutral oxygen spectral lines the version applied in our work, but their oscillator strengths have been taken from TOP database [50]. Moreover they calculated data for nine O I transitions for temperatures ranging from 5000 K to 40,000 K while here are presented data for 36 transitions for temperatures ranging from 2500 K to 80,000 K covering especially needs for investigations of stellar atmospheres. We note that for the comparison we did not used linear interpolation from our results for the density of 10 16 cm 3 , but we made calculations for the density of 10 17 cm 3 , used in Griem [29] and Alonizan et al. [34]. Namely the linear interpolation is less accurate due to the influence of Debye shielding. This influence can be taken into account using the correction given in Griem [29].
In order to better see the similarities and differences of three calculations, in Table 5 and Table 6 are given the ratios of Stark widths (Table 5) and shifts (Table 6) of Griem [29] and Alonizan et al. [34] with Stark widths and shifts from this work, for the lowest temperature of 5000 K and the highest from Table 3 and Table 4, of 40,000 K. We took into account only transitions where all three calculations exist. We can see that for the widths (Table 3), in the case of Griem [29], the agreement is very good for lower temperatures except for the 1303.5 Å line where it is on the limit of theoretical error bars. For higher temperatures, the agreement is not so good but within the theoretical error bars. These differences arise due to different method for calculating elastic collisions, different integration cut-offs and the symmetrization of perturber velocities before and after collision. In the case of Alonizan et al. [34], practically there is no difference between the lowest and highest temperature. The ratios are very close both for collisions with electron and protons, or in the case of 7775.5 Å transition, they are within the theoretical error bars. Here, the differences arise only due to different methods for the calculation of oscillator strengths. In this paper, the Coulomb approximation [44,45] has been used, while Alonizan et al. [34] use oscillator strengths from the TOP database [50], calculated employing close coupling non relativistic R-matrix method [51,52]. One can see that in spite of differences in oscillator strengths the final results are very close.
The ratios for the shift are given in Table 6. One can see that the Griem’s values are slightly smaller than ours, but the differences are within the theoretical error bars. The unique case with an extreme disagreement is for the lowest temperatue (5000 K) for 3948.5 Å transition. Namely, Griem’s result is −0.00683 and ours is −0.000188 which is very small and in both cases much smaller than the corresponding width value. We draw attention that in the case of the width all cross sections entering in Equation (1) are positive, while in the case of the line shift, contributions to the phase shift ϕ p in Equation (1) are positive for virtual transitions to the perturbing levels above the considered atomic energy level and negative for perturbing levels below it. If these contributions are comparable, the shift will be much smaller than the width and the resulting accuracy will be poor.

4. Conclusions

Electron-, proton-, and ionized helium-impact broadening parameters, FWHM, and shifts, for 36 O I transitions have been calculated with the help of the impact semiclassical perturbation theory [30,31,42]. We note that in previous calculations number of considered transitions is smaller, 23 in Griem [29], 4 in Ben Nessib et al. [32] and 9 in Alonizan et al. [34], while here, it is 36. Moreover, in the mentioned articles, the temperature range is from 5000 K to 40,000 K while here, it is from 2500 K to 80,000 K, so that the obtained data cover the needs of modern space-based spectroscopy. The results are compared with the theoretical calculations of Griem [29] and Alonizan et al. [34] and in general, a good agreement between the values obtained from the different calculations is observed.
The presented Stark broadening data are of interest for stellar spectra interpretation, analysis and synthesis, stellar abundance of oxygen determination and its variation during the evolution of the Universe, for modelling of stellar atmospheres, for laboratory plasma diagnostics and investigation and modelling of various plasmas in technology anf fusion experiments.

Author Contributions

M.S.D. and S.S.-B. were involved in the preparation of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

All obtained data are in the paper.

Acknowledgments

This article is based upon work from COST Action CA21136 Addressing observational tensions in cosmology with systematics and fundamental physics (CosmoVerse) supported by COST (European Cooperation in Science and Technology).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Iglesias, E.; Griem, H.; Welch, B.; Weaver, J. UV Line Profiles of B IV from a 10-Ps KrF-Laser-Produced Plasma. Astrophys. Space Sci. 1997, 256, 327–331. [Google Scholar] [CrossRef]
  2. Sorge, S.; Wierling, A.; Röpke, G.; Theobald, W.; Sauerbrey, R.; Wilhein, T. Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra. J. Phys. B At. Mol. Phys. 2000, 33, 2983–3000. [Google Scholar] [CrossRef]
  3. Konjević, N. Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep. 1999, 316, 339–401. [Google Scholar] [CrossRef]
  4. Hoffman, J.; Szymański, Z.; Azharonok, V. Plasma Plume Induced During Laser Welding of Magnesium Alloys. In Proceedings of the PLASMA-2005 Conference on Research and Application of Plasmas, Opole-Turawa, Poland, 6–9 September 2005; Sadowski, M.J., Dudek, M., Hartfuss, H.J., Pawelec, E., Eds.; American Institute of Physics Conference Series. American Institute of Physics: College Park, MD, USA, 2006; Volume 812, pp. 469–472. [Google Scholar] [CrossRef]
  5. Dimitrijević, M.; Sahal-Bréchot, S. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach. Atoms 2014, 2, 357–377. [Google Scholar] [CrossRef]
  6. Yilbas, B.S.; Patel, F.; Karatas, C. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. Opt. Laser Technol. 2015, 74, 36–42. [Google Scholar] [CrossRef]
  7. Nordlander, T.; Gruyters, P.; Richard, O.; Korn, A.J. Atomic diffusion and mixing in old stars - VIII. Chemical abundance variations in the globular cluster M4 (NGC 6121). Mon. Not. R. Astron. Soc. 2024, 527, 12120–12139. [Google Scholar] [CrossRef]
  8. Romanovskaya, A.M.; Ryabchikova, T.A.; Pakhomov, Y.V.; Korotin, S.A.; Sitnova, T.M. Non-LTE abundance analysis of A-B stars with low rotational velocities - II. Do A-B stars with normal abundances exist? Mon. Not. R. Astron. Soc. 2023, 526, 3386–3399. [Google Scholar] [CrossRef]
  9. Ramos, A.A.; Holanda, N.; Drake, N.A.; Rain, M.J.; Maia, F.F.S.; Daflon, S.; Pereira, C.B. A study of chemical abundances, rotational velocities, and orbital elements in single-lined spectroscopic binary stars in open clusters. Mon. Not. R. Astron. Soc. 2024, 527, 6211–6226. [Google Scholar] [CrossRef]
  10. Oh, W.S.; Nordlander, T.; Da Costa, G.S.; Bessell, M.S.; Mackey, A.D. High-resolution spectroscopic study of extremely metal-poor stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2024, 528, 1065–1080. [Google Scholar] [CrossRef]
  11. Mittal, S.; Roederer, I.U. New Stellar Parameters, Metallicities, and Elemental Abundance Ratios for 311 Metal-poor Stars. Astron. J. 2025, 169, 172. [Google Scholar] [CrossRef]
  12. Takeda, Y.; Kang, D.I.; Han, I.; Lee, B.C.; Kim, K.M. C, N, O and Na abundances of Cepheid variables: Implications on the mixing process in the envelope. Mon. Not. R. Astron. Soc. 2013, 432, 769–792. [Google Scholar] [CrossRef]
  13. Kravtsov, T.; Anderson, J.P.; Kuncarayakti, H.; Maeda, K.; Mattila, S. Discovery of young, oxygen-rich supernova remnants in PHANGS-MUSE galaxies. Astron. Astrophys. 2025, 700, A223. [Google Scholar] [CrossRef]
  14. Dastidar, R.; Misra, K.; Valenti, S.; Sand, D.J.; Pastorello, A.; Reguitti, A.; Pignata, G.; Benetti, S.; Bose, S.; Gangopadhyay, A.; et al. SN 2018is: A low-luminosity Type IIP supernova with narrow hydrogen emission lines at early phases. Astron. Astrophys. 2025, 694, A260. [Google Scholar] [CrossRef]
  15. Andrews, J.E.; Shrestha, M.; Bostroem, K.A.; Dong, Y.; Pearson, J.; Fausnaugh, M.M.; Sand, D.J.; Valenti, S.; Ravi, A.P.; Hoang, E.; et al. Asymmetries and Circumstellar Interaction in the Type II SN 2024bch. Astrophys. J. 2025, 980, 37. [Google Scholar] [CrossRef]
  16. Ravi, A.P.; Valenti, S.; Dong, Y.; Hiramatsu, D.; Barmentloo, S.; Jerkstrand, A.; Bostroem, K.A.; Pearson, J.; Shrestha, M.; Andrews, J.E.; et al. Luminous Type II Short-plateau SN 2023ufx: Asymmetric Explosion of a Partially Stripped Massive Progenitor. Astrophys. J. 2025, 982, 12. [Google Scholar] [CrossRef]
  17. Taguchi, K.; Maeda, K.; Maehara, H.; Tajitsu, A.; Yamanaka, M.; Arai, A.; Isogai, K.; Shibata, M.; Tampo, Y.; Kojiguchi, N.; et al. Spectra of V1405 Cas at the Very Beginning Indicate a Low-mass ONeMg White Dwarf Progenitor. Astrophys. J. 2023, 958, 156. [Google Scholar] [CrossRef]
  18. Jung, M. Verbreiterung von Spektrallinien des neutralen Sauerstoffs durch Mikrofelder. Mit 5 Textabbildungen. Z. Astrophys. 1963, 58, 93. [Google Scholar]
  19. Wiese, W.L.; Murphy, P.W. Shifts and Widths of Some Stark-Broadened Oxygen Lines in an Arc Plasma. Phys. Rev. 1963, 131, 2108–2115. [Google Scholar] [CrossRef]
  20. Morris, J.C.; Garrison, R.L. Measurement of the Radiation Emitted f Values and Stark Half-Widths for the Strong Vacuum Ultraviolet Lines of O I and N I. Phys. Rev. 1969, 188, 112–118. [Google Scholar] [CrossRef]
  21. Miller, M.H.; Bengtson, R.D. Measured Stark Widths and Shifts for Neutral Atomic Lines. Phys. Rev. A 1970, 1, 983–990. [Google Scholar] [CrossRef]
  22. Assous, R. Elargissement et déplacement par effet Stark de raies de l’atome neutre d’oxygène. J. Quant. Spectrosc. Radiat. Transf. 1970, 10, 975–990. [Google Scholar] [CrossRef]
  23. Goly, A.; Rakotoarijimy, D.; Weniger, S. Experimental Stark parameters for some lines of neutral carbon, oxygen, and sulfur. J. Quant. Spectrosc. Radiat. Transf. 1983, 30, 417–431. [Google Scholar] [CrossRef]
  24. Goly, A.; Weniger, S. Widths and shifts of some plasma-broadened oxygen and carbon multiplets. J. Quant. Spectrosc. Radiat. Transf. 1987, 38, 225–230. [Google Scholar] [CrossRef]
  25. Sohns, E.; Kock, M. Plasma diagnostics based on self-reversed lines. II. Application to nitrogen, carbon and oxygen arc measurements in the vacuum ultraviolet. J. Quant. Spectrosc. Radiat. Transf. 1992, 47, 335–343. [Google Scholar] [CrossRef]
  26. Mijatović, Z.; Konjević, N.; Kobilarov, R.; Djurović, S. Search for ion dynamics effects on the shift and width of plasma-broadened C i and O i spectral lines. Phys. Rev. E 1995, 51, 613–618. [Google Scholar] [CrossRef]
  27. Gerhard, C.; Hermann, J.; Mercadier, L.; Loewenthal, L.; Axente, E.; Luculescu, C.R.; Sarnet, T.; Sentis, M.; Viöl, W. Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon. Spectrochim. Acta-Part B At. Spectrosc. 2014, 101, 32–45. [Google Scholar] [CrossRef]
  28. Burger, M.; Hermann, J. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds. Spectrochim. Acta-Part B At. Spectrosc. 2016, 122, 118–126. [Google Scholar] [CrossRef]
  29. Griem, H.R. Spectral Line Broadening by Plasmas; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
  30. Sahal-Bréchot, S. Impact Theory of the Broadening and Shift of Spectral Lines due to Electrons and Ions in a Plasma. Astron. Astrophys. 1969, 1, 91. [Google Scholar]
  31. Sahal-Bréchot, S. Impact Theory of the Broadening and Shift of Spectral Lines due to Electrons and Ions in a Plasma (Continued). Astron. Astrophys. 1969, 2, 322. [Google Scholar]
  32. Ben Nessib, N.; Ben Lakhdar, Z.; Sahal-Bréchot, S. Stark broadening of neutral oxygen lines in the impact and quasistatic approximations. Phys. Scr. 1996, 54, 608–613. [Google Scholar] [CrossRef]
  33. Riviere, P. Systematic semi-classical calculations of Stark broadening parameters of NI, OI, NII, OII multiplets for modelling the radiative transfer in atmospheric air mixture plasmas. J. Quant. Spectrosc. Radiat. Transf. 2002, 73, 91–110. [Google Scholar] [CrossRef]
  34. Alonizan, N.; Qindeel, R.; Nessib, N.B.; Sahal-Bréchot, S.; Dimitrijević, M.S. Stark Broadening Parameters for Neutral Oxygen Spectral Lines. J. Astrophys. Astron. 2015, 36, 661–669. [Google Scholar] [CrossRef]
  35. Brissaud, A.; Goldbach, C.; Leorat, J.; Mazure, A.; Nollez, G. On the validity of the model microfield method as applied to Stark broadening of neutral lines. J. Phys. B At. Mol. Phys. 1976, 9, 1129–1146. [Google Scholar] [CrossRef]
  36. Brissaud, A.; Goldbach, C.; Leorat, J.; Mazure, A.; Nollez, G. Application of the model microfield method to Stark profiles of overlapping and isolated neutral lines. J. Phys. B At. Mol. Phys. 1976, 9, 1147–1162. [Google Scholar] [CrossRef]
  37. Stambulchik, E.; Maron, Y. Plasma line broadening and computer simulations: A mini-review. High Energy Density Phys. 2010, 6, 9–14. [Google Scholar] [CrossRef]
  38. Stambulchik, E.; Kroupp, E.; Maron, Y.; Malka, V. On the Stark Effect of the O I 777-nm Triplet in Plasma and Laser Fields. Atoms 2020, 8, 84. [Google Scholar] [CrossRef]
  39. Johns, H.M.; Kilcrease, D.P.; Colgan, J.; Judge, E.J.; Barefield II, J.E.; Wiens, R.C.; Clegg, S.M. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 224009. [Google Scholar] [CrossRef]
  40. Dimitrijevic, M.S.; Konjevic, N. Simple formulae for estimating Stark widths and shifts of neutral atom lines. Astron. Astrophys. 1986, 163, 297–300. [Google Scholar]
  41. Dimitrijevic, M.S.; Konjevic, N. Simple estimates for Stark broadening of ion lines in stellar plasmas. Astron. Astrophys. 1987, 172, 345–349. [Google Scholar]
  42. Sahal-Bréchot, S.; Dimitrijević, M.; Ben Nessib, N. Widths and Shifts of Isolated Lines of Neutral and Ionized Atoms Perturbed by Collisions With Electrons and Ions: An Outline of the Semiclassical Perturbation (SCP) Method and of the Approximations Used for the Calculations. Atoms 2014, 2, 225–252. [Google Scholar] [CrossRef]
  43. Moore, C.E. Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
  44. Bates, D.R.; Damgaard, A. The Calculation of the Absolute Strengths of Spectral Lines. Philos. Trans. R. Soc. Lond. Ser. A 1949, 242, 101–122. [Google Scholar] [CrossRef]
  45. Oertel, G.K.; Shomo, L.P. Tables for the Calculation of Radial Multipole Matrix Elements by the Coulomb Approximation. Astrophys. J. Suppl. Ser. 1968, 16, 175. [Google Scholar] [CrossRef]
  46. Dimitrijevic, M.S.; Sahal-Bréchot, S. Comparison of measured and calculated Stark broadening parameters for neutral-helium lines. Phys. Rev. A 1985, 31, 316–320. [Google Scholar] [CrossRef]
  47. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral helium lines. J. Quant. Spectrosc. Radiat. Transf. 1984, 31, 301–313. [Google Scholar] [CrossRef]
  48. Dimitrijevic, M.S.; Christova, M.; Sahal-Bréchot, S. Stark broadening of visible Ar I spectral lines. Phys. Scr. 2007, 75, 809–819. [Google Scholar] [CrossRef]
  49. Dimitrijević, M.S.; Christova, M.D.; Sahal-Bréchot, S. Stark broadening of B I spectral lines. Mon. Not. R. Astron. Soc. 2022, 509, 3203–3208. [Google Scholar] [CrossRef]
  50. Cunto, W.; Mendoza, C. The Opacity Project—The Topbase Atomic Database. Rev. Mex. Astron. AstrofíSica 1992, 23, 107–118. [Google Scholar]
  51. Seaton, M.J.; Zeippen, C.J.; Tully, J.A.; Pradhan, A.K.; Mendoza, C.; Hibbert, A.; Berrington, K.A. The Opacity Project—Computation of Atomic Data. Rev. Mex. Astron. AstrofíSica 1992, 23, 19. [Google Scholar]
  52. Berrington, K.A.; Burke, P.G.; Butler, K.; Seaton, M.J.; Storey, P.J.; Taylor, K.T.; Yan, Y. Atomic data for opacity calculations. II. Computational methods. J. Phys. At. Mol. Phys. 1987, 20, 6379–6397. [Google Scholar] [CrossRef]
Table 1. Stark broadening parameters, W and d, for spectral lines of neutral oxygen (O I), broadened by the collisions with electrons and protons, are presented. Wavelengths, calculated from the used atomic energy levels, and parameter C [47] are also given. Dividing C with the FWHM, one obtains the maximal pertuber density for which the line may be considered isolated. Results are presented for a perturber density of 10 16 cm 3 and temperatures ranging from 2500 K to 80,000 K. A positive shift is towards the red part of the spectrum. An asterisk before a value indicates that this value is on the limit of validity of impact approximation.
Table 1. Stark broadening parameters, W and d, for spectral lines of neutral oxygen (O I), broadened by the collisions with electrons and protons, are presented. Wavelengths, calculated from the used atomic energy levels, and parameter C [47] are also given. Dividing C with the FWHM, one obtains the maximal pertuber density for which the line may be considered isolated. Results are presented for a perturber density of 10 16 cm 3 and temperatures ranging from 2500 K to 80,000 K. A positive shift is towards the red part of the spectrum. An asterisk before a value indicates that this value is on the limit of validity of impact approximation.
Electrons Protons
TransitionT [K]Width [Å]Shift [Å]Width [Å]Shift [Å]
Triplets
O I 3S-3P25000.686 × 10 2 0.321 × 10 2 0.357 × 10 2 0.854 × 10 3
50000.721 × 10 2 0.376 × 10 2 0.358 × 10 2 0.965 × 10 3
8448.8 Å10,0000.822 × 10 2 0.351 × 10 2 0.361 × 10 2 0.109 × 10 2
C = 0.54 × 10 19 20,0000.107 × 10 1 0.306 × 10 2 0.364 × 10 2 0.122 × 10 2
40,0000.145 × 10 1 0.224 × 10 2 0.368 × 10 2 0.138 × 10 2
80,0000.187 × 10 1 0.180 × 10 2 0.373 × 10 2 0.155 × 10 2
O I 3S-4P25000.926 × 10 2 0.355 × 10 2 0.465 × 10 2 0.967 × 10 3
50000.107 × 10 1 0.425 × 10 2 0.468 × 10 2 0.110 × 10 2
4369.5 Å10,0000.130 × 10 1 0.478 × 10 2 0.470 × 10 2 0.125 × 10 2
C = 0.42 × 10 18 20,0000.161 × 10 1 0.479 × 10 2 0.473 × 10 2 0.141 × 10 2
40,0000.200 × 10 1 0.372 × 10 2 0.478 × 10 2 0.159 × 10 2
80,0000.236 × 10 1 0.298 × 10 2 0.485 × 10 2 0.178 × 10 2
O I 3S-5P25000.202 × 10 1 −0.684 × 10 2 0.999 × 10 2 −0.211 × 10 2
50000.238 × 10 1 −0.581 × 10 2 0.101 × 10 1 −0.244 × 10 2
3693.6 Å10,0000.297 × 10 1 −0.392 × 10 2 0.101 × 10 1 −0.278 × 10 2
C = 0.13 × 10 18 20,0000.378 × 10 1 −0.285 × 10 2 0.102 × 10 1 −0.315 × 10 2
40,0000.459 × 10 1 −0.200 × 10 2 0.103 × 10 1 −0.356 × 10 2
80,0000.523 × 10 1 −0.110 × 10 2 0.104 × 10 1 −0.401 × 10 2
O I 3S-6P25000.202 × 10 1 −0.685 × 10 2 0.999 × 10 2 −0.210 × 10 2
50000.238 × 10 1 −0.573 × 10 2 0.101 × 10 1 −0.243 × 10 2
3693.6 Å10,0000.297 × 10 1 −0.382 × 10 2 0.101 × 10 1 −0.277 × 10 2
C = 0.13 × 10 18 20,0000.378 × 10 1 −0.272 × 10 2 0.102 × 10 1 −0.314 × 10 2
40,0000.459 × 10 1 −0.187 × 10 2 0.103 × 10 1 −0.355 × 10 2
80,0000.523 × 10 1 −0.100 × 10 2 0.104 × 10 1 −0.399 × 10 2
O I 4S-4P25000.452−0.1670.204−0.434 × 10 1
50000.538−0.1960.205−0.495 × 10 1
28,935.2 Å10,0000.693−0.1960.206−0.561 × 10 1
C = 0.18 × 10 20 20,0000.922−0.1770.208−0.632 × 10 1
40,0001.19−0.1380.210−0.712 × 10 1
80,0001.44−0.1120.213−0.801 × 10 1
O I 4S-5P25000.280−0.1280.126−0.324 × 10 1
50000.331−0.1350.128−0.374 × 10 1
13,082.2 Å10,0000.412−0.1260.129−0.427 × 10 1
C = 0.16 × 10 19 20,0000.527−0.1110.131−0.485 × 10 1
40,0000.647−0.928 × 10 1 0.133−0.549 × 10 1
80,0000.741−0.669 × 10 1 0.135−0.618 × 10 1
O I 4S-6P25000.280−0.1280.126−0.323 × 10 1
50000.330−0.1340.128−0.373 × 10 1
13,082.2 Å10,0000.411−0.1250.129−0.426 × 10 1
C = 0.16 × 10 19 20,0000.527−0.1100.130−0.484 × 10 1
40,0000.647−0.915 × 10 1 0.132−0.548 × 10 1
80,0000.741−0.659 × 10 1 0.135−0.616 × 10 1
O I 2P-3S25000.895 × 10 4 0.809 × 10 4 0.248 × 10 4 0.230 × 10 4
50000.104 × 10 3 0.931 × 10 4 0.278 × 10 4 0.261 × 10 4
1303.5 Å10,0000.124 × 10 3 0.109 × 10 3 0.312 × 10 4 0.293 × 10 4
C = 0.20 × 10 18 20,0000.142 × 10 3 0.124 × 10 3 0.350 × 10 4 0.330 × 10 4
40,0000.153 × 10 3 0.127 × 10 3 0.393 × 10 4 0.371 × 10 4
80,0000.162 × 10 3 0.116 × 10 3 0.442 × 10 4 0.417 × 10 4
Triplets
O I 2P-4S25000.436 × 10 3 0.332 × 10 3 0.101 × 10 3 0.908 × 10 4
50000.513 × 10 3 0.389 × 10 3 0.113 × 10 3 0.104 × 10 3
1040.1 Å10,0000.576 × 10 3 0.451 × 10 3 0.127 × 10 3 0.118 × 10 3
C = 0.37 × 10 17 20,0000.608 × 10 3 0.476 × 10 3 0.143 × 10 3 0.134 × 10 3
40,0000.640 × 10 3 0.444 × 10 3 0.160 × 10 3 0.150 × 10 3
80,0000.689 × 10 3 0.357 × 10 3 0.180 × 10 3 0.169 × 10 3
O I 3P-4S25000.714 × 10 1 0.497 × 10 1 0.168 × 10 1 0.135 × 10 1
50000.821 × 10 1 0.604 × 10 1 0.184 × 10 1 0.154 × 10 1
13,168.2 Å10,0000.907 × 10 1 0.674 × 10 1 0.203 × 10 1 0.175 × 10 1
C = 0.60 × 10 19 20,0000.1020.683 × 10 1 0.224 × 10 1 0.198 × 10 1
40,0000.1160.549 × 10 1 0.249 × 10 1 0.223 × 10 1
80,0000.1380.436 × 10 1 0.277 × 10 1 0.251 × 10 1
O I 2P-3D25000.322 × 10 3 0.229 × 10 3 0.114 × 10 3 0.618 × 10 4
50000.371 × 10 3 0.264 × 10 3 0.119 × 10 3 0.704 × 10 4
1026.6 Å10,0000.414 × 10 3 0.293 × 10 3 0.125 × 10 3 0.799 × 10 4
C = 0.23 × 10 17 20,0000.453 × 10 3 0.298 × 10 3 0.132 × 10 3 0.903 × 10 4
40,0000.494 × 10 3 0.271 × 10 3 0.141 × 10 3 0.102 × 10 3
80,0000.542 × 10 3 0.219 × 10 3 0.151 × 10 3 0.114 × 10 3
O I 2P-4D25000.588 × 10 2 0.275 × 10 2 * 0.157 × 10 2 * 0.115 × 10 2
50000.575 × 10 2 0.244 × 10 2 * 0.177 × 10 2 * 0.141 × 10 2
972.5 Å10,0000.538 × 10 2 0.202 × 10 2 * 0.202 × 10 2 * 0.167 × 10 2
C = 0.57 × 10 15 20,0000.497 × 10 2 0.148 × 10 2 * 0.235 × 10 2 * 0.193 × 10 2
40,0000.459 × 10 2 0.928 × 10 3 0.281 × 10 2 0.222 × 10 2
80,0000.421 × 10 2 0.690 × 10 3 0.345 × 10 2 0.256 × 10 2
O I 3P-3D25000.371 × 10 1 0.221 × 10 1 0.151 × 10 1 0.581 × 10 2
50000.411 × 10 1 0.242 × 10 1 0.154 × 10 1 0.661 × 10 2
11,289.9 Å10,0000.473 × 10 1 0.232 × 10 1 0.157 × 10 1 0.749 × 10 2
C = 0.28 × 10 19 20,0000.573 × 10 1 0.168 × 10 1 0.162 × 10 1 0.844 × 10 2
40,0000.725 × 10 1 0.115 × 10 1 0.167 × 10 1 0.951 × 10 2
80,0000.869 × 10 1 0.818 × 10 2 0.174 × 10 1 0.107 × 10 1
O I 3P-4D25000.3060.143* 0.812 × 10 1 * 0.596 × 10 1
50000.2990.128* 0.918 × 10 1 * 0.731 × 10 1
7004.1 Å10,0000.2800.102* 0.105* 0.865 × 10 1
C = 0.29 × 10 17 20,0000.2600.744 × 10 1 * 0.122* 0.100
40,0000.2430.493 × 10 1 0.1460.115
80,0000.2250.312 × 10 1 0.1790.133
O I 4P-4D25006.092.78* 1.60* 1.16
50006.002.38* 1.81* 1.43
30,985.0 Å10,0005.761.87* 2.06* 1.69
C = 0.58 × 10 18 20,0005.561.24* 2.39* 1.95
40,0005.410.7962.862.24
80,0005.210.4903.512.59
O I 3D-4P25001.070.354 × 10 2 0.567−0.256 × 10 1
50001.280.305 × 10 1 0.568−0.289 × 10 1
45,608.5 Å10,0001.640.518 × 10 1 0.569−0.326 × 10 1
C = 0.46 × 10 20 20,0002.150.439 × 10 1 0.569−0.366 × 10 1
40,0002.740.421 × 10 1 0.570−0.412 × 10 1
80,0003.270.293 × 10 1 0.572−0.463 × 10 1
O I 3D-5P25000.394−0.1630.185−0.428 × 10 1
50000.466−0.1650.187−0.494 × 10 1
15,672.6 Å10,0000.580−0.1330.189−0.564 × 10 1
C = 0.24 × 10 19 20,0000.738−0.1180.190−0.640 × 10 1
40,0000.899−0.869 × 10 1 0.193−0.723 × 10 1
80,0001.02−0.630 × 10 1 0.196−0.814 × 10 1
O I 3D-6P25000.394−0.1660.185−0.426 × 10 1
50000.466−0.1630.187−0.492 × 10 1
15,672.6 Å10,0000.580−0.1320.189−0.562 × 10 1
C = 0.24 × 10 19 20,0000.738−0.1160.190−0.638 × 10 1
40,0000.899−0.860 × 10 1 0.193−0.721 × 10 1
80,0001.02−0.613 × 10 1 0.196−0.812 × 10 1
Triplets
O I 4D-5P250079.4−35.319.8* −13.4
500081.0−30.722.1* −16.5
104,101.6 Å10,00081.6−24.324.9* −19.6
C = 0.65 × 10 19 20,00083.3−16.928.6* −22.7
40,00085.7−11.733.8−26.0
80,00086.2−8.1241.1−30.0
O I 4D-6P250079.3−34.7* 19.8* −13.4
500081.0−30.8* 22.1* −16.5
104,101.6 Å10,00081.6−24.6* 24.9* −19.5
C = 0.65 × 10 19 20,00083.3−16.9* 28.5* −22.7
40,00085.7−11.633.8−26.0
80,00086.2−8.1141.1−30.0
Quintets
O I 3S-3P25000.448 × 10 2 0.153 × 10 2 0.245 × 10 2 0.414 × 10 3
50000.463 × 10 2 0.169 × 10 2 0.245 × 10 2 0.466 × 10 3
7775.5 Å10,0000.528 × 10 2 0.167 × 10 2 0.246 × 10 2 0.525 × 10 3
C = 0.53 × 10 19 20,0000.694 × 10 2 0.123 × 10 2 0.247 × 10 2 0.590 × 10 3
40,0000.959 × 10 2 0.917 × 10 3 0.248 × 10 2 0.663 × 10 3
80,0000.125 × 10 1 0.716 × 10 3 0.249 × 10 2 0.745 × 10 3
O I 3S-4P25000.704 × 10 2 −0.795 × 10 3 0.336 × 10 2 −0.423 × 10 3
50000.815 × 10 2 −0.188 × 10 4 0.336 × 10 2 −0.480 × 10 3
3948.5 Å10,0000.100 × 10 1 0.682 × 10 3 0.337 × 10 2 −0.543 × 10 3
C = 0.26 × 10 18 20,0000.124 × 10 1 0.119 × 10 2 0.338 × 10 2 −0.611 × 10 3
40,0000.151 × 10 1 0.989 × 10 3 0.340 × 10 2 −0.687 × 10 3
80,0000.177 × 10 1 0.786 × 10 3 0.343 × 10 2 −0.773 × 10 3
O I 3S-5P25000.193 × 10 1 −0.829 × 10 2 0.775 × 10 2 −0.248 × 10 2
50000.223 × 10 1 −0.697 × 10 2 0.787 × 10 2 −0.287 × 10 2
3349.2 Å10,0000.272 × 10 1 −0.416 × 10 2 0.801 × 10 2 −0.329 × 10 2
C = 0.85 × 10 17 20,0000.339 × 10 1 −0.250 × 10 2 0.820 × 10 2 −0.373 × 10 2
40,0000.401 × 10 1 −0.143 × 10 2 0.845 × 10 2 −0.423 × 10 2
80,0000.451 × 10 1 −0.409 × 10 3 0.881 × 10 2 −0.476 × 10 2
O I 3S-6P25000.496 × 10 1 −0.274 × 10 1 * 0.169 × 10 1 * −0.695 × 10 2
50000.569 × 10 1 −0.245 × 10 1 * 0.175 × 10 1 * −0.831 × 10 2
3123.0 Å10,0000.680 × 10 1 −0.170 × 10 1 * 0.182 × 10 1 * −0.969 × 10 2
C = 0.39 × 10 17 20,0000.836 × 10 1 −0.122 × 10 1 0.190 × 10 1 −0.111 × 10 1
40,0000.965 × 10 1 −0.742 × 10 2 0.199 × 10 1 −0.127 × 10 1
80,0000.106−0.277 × 10 2 0.211 × 10 1 −0.144 × 10 1
O I 4S-4P25000.500−0.2540.172−0.654 × 10 1
50000.572−0.2830.176−0.748 × 10 1
27,644.6 Å10,0000.680−0.2920.180−0.849 × 10 1
C = 0.13 × 10 20 20,0000.840−0.2730.185−0.962 × 10 1
40,0001.04−0.2160.192−0.108
80,0001.22−0.1760.201−0.122
O I 4S-5P25000.279−0.1440.105* −0.371 × 10 1
50000.321−0.1470.107* −0.431 × 10 1
12,270.6 Å10,0000.389−0.1180.110−0.494 × 10 1
C = 0.11 × 10 19 20,0000.491−0.1030.113−0.562 × 10 1
40,0000.592−0.789 × 10 1 0.117−0.637 × 10 1
80,0000.671−0.510 × 10 1 0.123−0.717 × 10 1
O I 4S-6P25000.489−0.265* 0.163* −0.682 × 10 1
50000.561−0.258* 0.170* −0.816 × 10 1
9697.5 Å10,0000.669−0.189* 0.177* −0.951 × 10 1
C = 0.38 × 10 18 20,0000.828−0.1500.184−0.109
40,0000.963−0.963 × 10 1 0.194−0.125
80,0001.06−0.427 × 10 1 0.205−0.141
O I 3P-4S25000.490 × 10 1 0.349 × 10 1 0.115 × 10 1 0.950 × 10 2
50000.569 × 10 1 0.417 × 10 1 0.126 × 10 1 0.108 × 10 1
11,302.5 Å10,0000.634 × 10 1 0.485 × 10 1 0.140 × 10 1 0.123 × 10 1
C = 0.46 × 10 19 20,0000.694 × 10 1 0.492 × 10 1 0.155 × 10 1 0.139 × 10 1
40,0000.766 × 10 1 0.414 × 10 1 0.173 × 10 1 0.157 × 10 1
80,0000.900 × 10 1 0.317 × 10 1 0.193 × 10 1 0.177 × 10 1
Quintets
O I 3P-3D25000.314 × 10 1 0.212 × 10 1 0.105 × 10 1 0.559 × 10 2
50000.358 × 10 1 0.246 × 10 1 0.109 × 10 1 0.638 × 10 2
9266.4 Å10,0000.396 × 10 1 0.248 × 10 1 0.114 × 10 1 0.724 × 10 2
C = 0.14 × 10 19 20,0000.442 × 10 1 0.233 × 10 1 0.121 × 10 1 0.819 × 10 2
40,0000.499 × 10 1 0.182 × 10 1 0.129 × 10 1 0.921 × 10 2
80,0000.563 × 10 1 0.145 × 10 1 0.140 × 10 1 0.104 × 10 1
O I 3P-4D25000.1930.111* 0.469 × 10 1 * 0.352 × 10 1
50000.1970.101* 0.526 × 10 1 * 0.425 × 10 1
6159.0 Å10,0000.1920.868 × 10 1 0.593 × 10 1 0.499 × 10 1
C = 0.39 × 10 17 20,0000.1840.668 × 10 1 0.677 × 10 1 0.576 × 10 1
40,0000.1750.457 × 10 1 0.788 × 10 1 0.657 × 10 1
80,0000.1650.301 × 10 1 0.945 × 10 1 0.748 × 10 1
O I 4P-4D25003.752.06* 0.885* 0.653
50003.871.91* 0.990* 0.791
26,514.7 Å10,0003.841.641.110.928
C = 0.72 × 10 18 20,0003.781.191.271.07
40,0003.740.8151.471.22
80,0003.630.5121.771.39
O I 3D-4P25002.31−1.130.903−0.275
50002.66−1.090.913−0.315
59,761.5 Å10,0003.16−0.9870.926−0.357
C = 0.60 × 10 20 20,0003.91−0.7510.943−0.404
40,0004.74−0.6240.968−0.455
80,0005.44−0.4641.01−0.512
O I 3D-5P25000.746−0.398* 0.250* −0.103
50000.860−0.384* 0.260* −0.123
11,950.4 Å10,0001.03−0.294* 0.270* −0.144
C = 0.58 × 10 18 20,0001.26−0.2050.281−0.165
40,0001.46−0.1310.296−0.188
80,0001.60−0.498 × 10 1 0.313−0.214
O I 3D-6P25000.487−0.2310.186−0.629 × 10 1
50000.568−0.2110.189−0.730 × 10 1
16,114.7 Å10,0000.686−0.1550.193−0.836 × 10 1
C = 0.20 × 10 19 20,0000.856−0.1300.198−0.951 × 10 1
40,0001.02−0.1010.205−0.108
80,0001.14−0.600 × 10 1 0.215−0.121
O I 4D-5P250011.4−6.00* 2.63* −1.46
500012.4−5.72* 2.83* −1.79
34,210.0 Å10,00013.5−4.43* 3.07* −2.12
C = 0.12 × 10 19 20,00015.1−3.13* 3.35* −2.46
40,00016.5−2.063.73−2.81
80,00017.2−1.124.26−3.20
O I 4D-6P2500111.−56.9* 25.2* −17.0
5000118.−53.2* 27.7* −20.6
131,456.1 Å10,000123.−45.7* 30.8* −24.2
C = 0.18 × 10 20 20,000129.−32.234.6−27.9
40,000135.−23.239.7−31.8
80,000137.−14.647.0−36.2
Table 2. Stark broadening parameters, W and d, for spectral lines of neutral oxygen (O I), broadened by the collisions with He II ions, are presented. Wavelengths, calculated from the used atomic energy levels, and parameter C [47] are also given. Dividing C with the FWHM, one obtains the maximal pertuber density for which the line may be considered isolated. Results are presented for a perturber density of 10 16 cm 3 and temperatures ranging from 2500 K to 80,000 K. A positive shift is towards the red part of the spectrum. An asterisk before a value indicates that this value is on the limit of validity of impact approximation. The empty places are because values for which the impact approximation is not valid are excluded.
Table 2. Stark broadening parameters, W and d, for spectral lines of neutral oxygen (O I), broadened by the collisions with He II ions, are presented. Wavelengths, calculated from the used atomic energy levels, and parameter C [47] are also given. Dividing C with the FWHM, one obtains the maximal pertuber density for which the line may be considered isolated. Results are presented for a perturber density of 10 16 cm 3 and temperatures ranging from 2500 K to 80,000 K. A positive shift is towards the red part of the spectrum. An asterisk before a value indicates that this value is on the limit of validity of impact approximation. The empty places are because values for which the impact approximation is not valid are excluded.
He II
TransitionT [K]Width [Å]Shift [Å]
Triplets
O I 3S-3P25000.355 × 10 2 0.701 × 10 3
50000.356 × 10 2 0.794 × 10 3
8448.8 Å10,0000.357 × 10 2 0.895 × 10 3
C = 0.54 × 10 19 20,0000.359 × 10 2 0.101 × 10 2
40,0000.362 × 10 2 0.113 × 10 2
80,0000.365 × 10 2 0.127 × 10 2
O I 3S-4P25000.463 × 10 2 0.790 × 10 3
50000.465 × 10 2 0.903 × 10 3
4369.5 Å10,0000.467 × 10 2 0.103 × 10 2
C = 0.42 × 10 18 20,0000.469 × 10 2 0.116 × 10 2
40,0000.471 × 10 2 0.131 × 10 2
80,0000.474 × 10 2 0.147 × 10 2
O I 3S-5P2500* 0.989 × 10 2 * −0.172 × 10 2
5000* 0.100 × 10 1 * −0.199 × 10 2
3693.6 Å10,0000.101 × 10 1 −0.228 × 10 2
C = 0.13 × 10 18 20,0000.101 × 10 1 −0.259 × 10 2
40,0000.102 × 10 1 −0.293 × 10 2
80,0000.102 × 10 1 −0.330 × 10 2
O I 3S-6P2500* 0.989 × 10 2 * −0.171 × 10 2
5000* 0.100 × 10 1 * −0.198 × 10 2
3693.6 Å10,0000.101 × 10 1 −0.227 × 10 2
C = 0.13 × 10 18 20,0000.101 × 10 1 −0.258 × 10 2
40,0000.102 × 10 1 −0.292 × 10 2
80,0000.102 × 10 1 −0.329 × 10 2
O I 4S-4P25000.203−0.355 × 10 1
50000.204−0.405 × 10 1
28,935.2 Å10,0000.205−0.460 × 10 1
C = 0.18 × 10 20 20,0000.206−0.521 × 10 1
40,0000.207−0.586 × 10 1
80,0000.208−0.660 × 10 1
O I 4S-5P2500* 0.125* −0.262 × 10 1
5000* 0.126* −0.305 × 10 1
13,082.2 Å10,0000.127−0.350 × 10 1
C = 0.16 × 10 19 20,0000.128−0.398 × 10 1
40,0000.130−0.451 × 10 1
80,0000.131−0.509 × 10 1
O I 4S-6P2500* 0.125* −0.261 × 10 1
5000* 0.126* −0.304 × 10 1
13,082.2 Å10,0000.127−0.349 × 10 1
C = 0.16 × 10 19 20,0000.128−0.397 × 10 1
40,0000.129−0.450 × 10 1
80,0000.131−0.507 × 10 1
Triplets
O I 2P-3S25000.204 × 10 4 0.189 × 10 4
50000.229 × 10 4 0.214 × 10 4
1303.5 Å10,0000.257 × 10 4 0.241 × 10 4
C = 0.20 × 10 18 20,0000.289 × 10 4 0.272 × 10 4
40,0000.324 × 10 4 0.306 × 10 4
80,0000.364 × 10 4 0.344 × 10 4
O I 2P-4S25000.831 × 10 4 0.740 × 10 4
50000.932 × 10 4 0.850 × 10 4
1040.1 Å10,0000.105 × 10 3 0.968 × 10 4
C = 0.37 × 10 17 20,0000.118 × 10 3 0.110 × 10 3
40,0000.132 × 10 3 0.124 × 10 3
80,0000.148 × 10 3 0.139 × 10 3
O I 3P-4S25000.145 × 10 1 0.110 × 10 1
50000.158 × 10 1 0.126 × 10 1
13,168.2 Å10,0000.173 × 10 1 0.143 × 10 1
C = 0.60 × 10 19 20,0000.190 × 10 1 0.163 × 10 1
40,0000.209 × 10 1 0.183 × 10 1
80,0000.232 × 10 1 0.206 × 10 1
O I 2P-3D25000.109 × 10 3 0.504 × 10 4
50000.112 × 10 3 0.577 × 10 4
1026.6 Å10,0000.116 × 10 3 0.656 × 10 4
C = 0.23 × 10 17 20,0000.121 × 10 3 0.743 × 10 4
40,0000.127 × 10 3 0.836 × 10 4
80,0000.135 × 10 3 0.941 × 10 4
O I 2P-4D2500* 0.129 × 10 2 * 0.896 × 10 3
5000* 0.144 × 10 2 * 0.113 × 10 2
972.5 Å10,000* 0.161 × 10 2 * 0.135 × 10 2
C = 0.57 × 10 15 20,000* 0.181 × 10 2 * 0.158 × 10 2
40,000* 0.203 × 10 2 * 0.181 × 10 2
80,0000.230 × 10 2 0.206 × 10 2
O I 3P-3D25000.148 × 10 1 0.475 × 10 2
50000.150 × 10 1 0.542 × 10 2
11,289.9 Å10,0000.152 × 10 1 0.615 × 10 2
C = 0.28 × 10 19 20,0000.155 × 10 1 0.695 × 10 2
40,0000.158 × 10 1 0.783 × 10 2
80,0000.163 × 10 1 0.881 × 10 2
O I 3P-4D2500* 0.669 × 10 1 * 0.464 × 10 1
5000* 0.748 × 10 1 * 0.584 × 10 1
7004.1 Å10,000* 0.836 × 10 1 * 0.700 × 10 1
C = 0.29 × 10 17 20,000* 0.936 × 10 1 * 0.817 × 10 1
40,000* 0.105* 0.939 × 10 1
80,0000.1190.107
O I 4P-4D2500* 1.32* 0.906
5000* 1.48* 1.14
30,985.0Å10,000* 1.65* 1.36
C = 0.58 × 10 18 20,000* 1.84* 1.59
40,000* 2.07* 1.83
80,0002.342.08
Triplets
O I 3D-4P25000.566−0.210 × 10 1
50000.568−0.238 × 10 1
45,608.5 Å10,0000.568−0.268 × 10 1
C = 0.46 × 10 20 20,0000.569−0.302 × 10 1
40,0000.569−0.339 × 10 1
80,0000.569−0.381 × 10 1
O I 3D-5P2500* 0.183* −0.347 × 10 1
5000* 0.185* −0.403 × 10 1
15,672.6 Å10,0000.187−0.462 × 10 1
C = 0.24 × 10 19 20,0000.188−0.525 × 10 1
40,0000.189−0.595 × 10 1
80,0000.191−0.670 × 10 1
O I 3D-6P2500* 0.183* −0.346 × 10 1
5000* 0.185* −0.401 × 10 1
15,672.6 Å10,0000.187−0.460 × 10 1
C = 0.24 × 10 19 20,0000.188−0.523 × 10 1
40,0000.189−0.593 × 10 1
80,0000.191−0.668 × 10 1
O I 4D-5P2500
5000* 18.5* −13.2
104,101.6 Å10,000* 20.3* −15.8
C = 0.65 × 10 19 20,000* 22.5* −18.5
40,000* 24.9* −21.2
80,000* 28.0* −24.2
O I 4D-6P2500
5000* 18.5* −13.2
104,101.6 Å10,000* 20.3* −15.8
C = 0.65 × 10 19 20,000* 22.5* −18.5
40,000* 24.9* −21.2
80,000* 28.0* −24.2
Quintets
O I 3S-3P25000.244 × 10 2 0.340 × 10 3
50000.245 × 10 2 0.384 × 10 3
7775.5 Å10,0000.245 × 10 2 0.432 × 10 3
C = 0.53 × 10 19 20,0000.245 × 10 2 0.486 × 10 3
40,0000.246 × 10 2 0.546 × 10 3
80,0000.247 × 10 2 0.614 × 10 3
O I 3S-4P25000.335 × 10 2 −0.347 × 10 3
50000.336 × 10 2 −0.394 × 10 3
3948.5 Å10,0000.336 × 10 2 −0.447 × 10 3
C = 0.26 × 10 18 20,0000.337 × 10 2 −0.503 × 10 3
40,0000.337 × 10 2 −0.566 × 10 3
80,0000.338 × 10 2 −0.637 × 10 3
O I 3S-5P2500* 0.760 × 10 2 * −0.200 × 10 2
50000.772 × 10 2 −0.234 × 10 2
3349.2 Å10,0000.782 × 10 2 −0.269 × 10 2
C = 0.85 × 10 17 20,0000.793 × 10 2 −0.306 × 10 2
40,0000.806 × 10 2 −0.347 × 10 2
80,0000.824 × 10 2 −0.392 × 10 2
Quintets
O I 3S-6P2500
5000* 0.167 × 10 1 * −0.669 × 10 2
3123.0 Å10,000* 0.172 × 10 1 * −0.788 × 10 2
C = 0.39 × 10 17 20,000* 0.178 × 10 1 * −0.909 × 10 2
40,0000.185 × 10 1 −0.104 × 10 1
80,0000.193 × 10 1 −0.118 × 10 1
O I 4S-4P25000.169−0.533 × 10 1
50000.171−0.612 × 10 1
27,644.6 Å10,0000.174−0.697 × 10 1
C = 0.13 × 10 20 20,0000.177−0.790 × 10 1
40,0000.181−0.891 × 10 1
80,0000.187−0.100
O I 4S-5P25000.103* −0.300 × 10 1
50000.105* −0.351 × 10 1
12,270.6 Å10,0000.106−0.404 × 10 1
C = 0.11 × 10 19 20,0000.108−0.461 × 10 1
40,0000.111−0.523 × 10 1
80,0000.114−0.591 × 10 1
O I 4S-6P2500
5000* 0.162* −0.657 × 10 1
9697.5 Å10,000* 0.167* −0.773 × 10 1
C = 0.38 × 10 18 20,000* 0.173* −0.893 × 10 1
40,0000.179−0.102
80,0000.187−0.116
O I 3P-4S25000.980 × 10 2 0.775 × 10 2
50000.107 × 10 1 0.888 × 10 2
11,302.5 Å10,0000.118 × 10 1 0.101 × 10 1
C = 0.46 × 10 19 20,0000.131 × 10 1 0.115 × 10 1
40,0000.145 × 10 1 0.129 × 10 1
80,0000.161 × 10 1 0.145 × 10 1
O I 3P-3D25000.998 × 10 2 0.457 × 10 2
50000.103 × 10 1 0.523 × 10 2
9266.4 Å10,0000.106 × 10 1 0.594 × 10 2
C = 0.14 × 10 19 20,0000.111 × 10 1 0.674 × 10 2
40,0000.116 × 10 1 0.758 × 10 2
80,0000.123 × 10 1 0.854 × 10 2
O I 3P-4D2500* 0.391 × 10 1 * 0.277 × 10 1
5000* 0.435 × 10 1 * 0.341 × 10 1
6159.0 Å10,000* 0.484 × 10 1 * 0.405 × 10 1
C = 0.39 × 10 17 20,000* 0.540 × 10 1 * 0.470 × 10 1
40,0000.603 × 10 1 0.538 × 10 1
80,0000.678 × 10 1 0.612 × 10 1
O I 4P-4D2500* 0.742* 0.514
5000* 0.823* 0.634
26,514.7 Å10,000* 0.913* 0.753
C = 0.72 × 10 18 20,000* 1.02* 0.873
40,0001.131.00
80,0001.271.14
Quintets
O I 3D-4P25000.892−0.224
50000.900−0.258
59,761.5 Å10,0000.908−0.293
C = 0.60 × 10 20 20,0000.917−0.332
40,0000.930−0.374
80,0000.947−0.422
O I 3D-5P2500
5000* 0.248
11,950.4 Å10,000* 0.255* −0.117
C = 0.58 × 10 18 20,000* 0.264* −0.135
40,0000.274−0.154
80,0000.286−0.175
O I 3D-6P2500* 0.182* −0.508 × 10 1
5000* 0.185* −0.594 × 10 1
16,114.7 Å10,0000.188−0.684 × 10 1
C = 0.20 × 10 19 20,0000.191−0.780 × 10 1
40,0000.195−0.885 × 10 1
80,0000.200−0.100
O I 4D-5P2500
5000
34,210.0 Å10,000* 2.70* −1.71
C = 0.12 × 10 19 20,000* 2.89* −2.00
40,000* 3.11* −2.30
80,000* 3.37* −2.62
O I 4D-6P2500* 21.8* −13.3
5000* 23.8* −16.5
131,456.1 Å10,000* 25.9* −19.6
C = 0.18 × 10 20 20,000* 28.4* −22.8
40,00031.2−26.1
80,00034.6−29.7
Table 3. In this table, electron-impact widths from this work ( W T W ) are compared with the semi-clas-sical results of Griem [29] ( W G ) and of Alonizan et al. [34] ( W A ). The electron density is 10 17 cm 3 .
Table 3. In this table, electron-impact widths from this work ( W T W ) are compared with the semi-clas-sical results of Griem [29] ( W G ) and of Alonizan et al. [34] ( W A ). The electron density is 10 17 cm 3 .
TransitionT [K] W TW  [Å] W G  [Å] W A  [Å]
Triplets
O I 3S-3P50000.721 × 10 1 0.788 × 10 1
8448.8 Å10,0000.822 × 10 1 0.103
C = 0.54 × 10 20 20,0000.1070.139
40,0000.1450.181
O I 3S-4P50000.1070.1170.116
4369.5 Å10,0000.1300.1600.141
C = 0.42 × 10 19 20,0000.1610.2140.175
40,0000.2000.2620.217
O I 2P-3S50000.104 × 10 2 0.144 × 10 2 0.112 × 10 2
1303.5 Å10,0000.124 × 10 2 0.164 × 10 2 0.133 × 10 2
C = 0.20 × 10 19 20,0000.142 × 10 2 0.185 × 10 2 0.151 × 10 2
40,0000.153 × 10 2 0.216 × 10 2 0.162 × 10 2
O I 3P-4S50000.8210.918
13,168.2 Å10,0000.9071.094
C = 0.60 × 10 20 20,0001.021.32
40,0001.161.59
O I 2P-3D50000.371 × 10 2 0.418 × 10 2
1026.6 Å10,0000.414 × 10 2 0.488 × 10 2
C = 0.23 × 10 18 20,0000.453 × 10 2 0.570 × 10 2
40,0000.494 × 10 2 0.646 × 10 2
O I 3P-4D50002.853.50
7004.1 Å10,0002.703.30
C = 0.29 × 10 18 20,0002.533.08
40,0002.382.84
Quintets
O I 3S-3P50000.463 × 10 1 0.456 × 10 1 0.552 × 10 1
7775.5 Å10,0000.528 × 10 1 0.630 × 10 1 0.630 × 10 1
C = 0.53 × 10 20 20,0000.694 × 10 1 0.894 × 10 1 0.825 × 10 1
40,0000.959 × 10 1 0.1210.113
O I 3S-4P50000.815 × 10 1 0.906 × 10 1 0.901 × 10 1
3948.5 Å10,0000.1000.1250.110
C = 0.26 × 10 19 20,0000.1240.1640.137
40,0000.1510.1970.167
O I 3P-4S50000.5690.644
11,302.5 Å10,0000.6340.752
C = 0.46 × 10 20 20,0000.6940.894
40,0000.7661.04
O I 3P-3D50000.3580.384
9266.4 Å10,0000.3960.444
C = 0.14 × 10 20 20,0000.4420.516
40,0000.4990.588
O I 3P-4D50001.952.34
6159.0 Å10,0001.902.32
C = 0.39 × 10 18 20,0001.832.22
40,0001.752.08
Table 4. In this table, electron-impact shifts from this work ( d T W ) are compared with the semiclassical results of Griem [29] ( d G ) and of Alonizan et al. [34] ( d A ). The electron density is 10 17 cm 3 .
Table 4. In this table, electron-impact shifts from this work ( d T W ) are compared with the semiclassical results of Griem [29] ( d G ) and of Alonizan et al. [34] ( d A ). The electron density is 10 17 cm 3 .
TransitionT [K] d TW  [Å] d G  [Å] d A  [Å]
Triplets
O I 3S-3P50000.374 × 10 1 0.358 × 10 1
8448.8 Å10,0000.350 × 10 1 0.373 × 10 1
C = 0.54 × 10 20 20,0000.306 × 10 1 0.356 × 10 1
40,0000.224 × 10 1 0.310 × 10 1
O I 3S-4P50000.419 × 10 1 0.331 × 10 1 0.480 × 10 1
4369.5 Å10,0000.475 × 10 1 0.356 × 10 1 0.527 × 10 1
C = 0.42 × 10 19 20,0000.479 × 10 1 0.358 × 10 1 0.532 × 10 1
40,0000.371 × 10 1 0.330 × 10 1 0.414 × 10 1
O I 2P-3S50000.927 × 10 3 0.872 × 10 3 0.975 × 10 3
1303.5 Å10,0000.108 × 10 2 0.100 × 10 2 0.115 × 10 2
C = 0.20 × 10 19 20,0000.124 × 10 2 0.110 × 10 2 0.130 × 10 2
40,0000.127 × 10 2 0.110 × 10 2 0.134 × 10 2
O I 3P-4S50000.5960.548
13,168.2 Å10,0000.6690.597
C = 0.60 × 10 20 20,0000.6830.594
40,0000.5480.532
O I 2P-3D50000.259 × 10 2 0.256 × 10 2
1026.6 Å10,0000.291 × 10 2 0.273 × 10 2
C = 0.23 × 10 18 20,0000.297 × 10 2 0.270 × 10 2
40,0000.271 × 10 2 0.248 × 10 2
O I 3P-4D50001.031.20
7004.1 Å10,0000.8690.999
C = 0.29 × 10 18 20,0000.6930.805
40,0000.4820.628
Quintets
O I 3S-3P50000.168 × 10 1 0.144 × 10 1 0.182 × 10 1
7775.5 Å10,0000.167 × 10 1 0.143 × 10 1 0.181 × 10 1
C = 0.53 × 10 20 20,0000.123 × 10 1 0.130 × 10 1 0.135 × 10 1
40,0000.917 × 10 2 0.108 × 10 1 0.102 × 10 1
O I 3S-4P5000−0.188 × 10 3 −0.683 × 10 2 −0.443 × 10 6
3948.5 Å10,0000.688 × 10 2 −0.172 × 10 2 0.735 × 10 2
C = 0.26 × 10 19 20,0000.119 × 10 1 0.298 × 10 2 0.127 × 10 1
40,0000.989 × 10 2 0.597 × 10 2 0.108 × 10 1
O I 3P-4S50000.4100.377
11,302.5 Å10,0000.4810.416
C = 0.46 × 10 20 20,0000.4910.419
40,0000.4140.379
O I 3P-3D50000.2430.223
9266.4 Å10,0000.2460.228
C = 0.14 × 10 20 20,0000.2330.214
40,0000.1820.184
O I 3P-4D50000.8910.945
6159.0 Å10,0000.7910.813
C = 0.39 × 10 18 20,0000.6460.668
40,0000.4520.527
Table 5. In this table, ratios of Stark widths of Griem [29] ( W G ) and of Alonizan et al. [34] ( W A ) with Stark widths from this work ( W T W ) are presented. The electron density is 10 17 cm 3 .
Table 5. In this table, ratios of Stark widths of Griem [29] ( W G ) and of Alonizan et al. [34] ( W A ) with Stark widths from this work ( W T W ) are presented. The electron density is 10 17 cm 3 .
Electrons Protons
TransitionT [K] W G / W TW W A / W TW W A / W TW
Triplets
O I 3S-4P50001.091.081.05
4369.5 A40,0001.311.081.05
O I 2P-3S50001.381.081.05
1303.5 A40,0001.411.061.05
Quintets
O I 3S-3P50000.981.191.28
7775.5 A40,0001.261.181.27
O I 3S-4P50001.111.111.17
3948.5 A40,0001.301.111.16
Table 6. In this table, ratios of Stark shifts of Griem [29] ( d G ) and of Alonizan et al. [34] ( d A ) with Stark shifts from this work ( d T W ) are presented. The electron density is 10 17 cm 3 .
Table 6. In this table, ratios of Stark shifts of Griem [29] ( d G ) and of Alonizan et al. [34] ( d A ) with Stark shifts from this work ( d T W ) are presented. The electron density is 10 17 cm 3 .
Electrons Protons
TransitionT [K] d G / d TW d A / d TW d A / d TW
Triplets
O I 3S-4P50000.791.151.12
4369.5 A40,0000.891.121.11
O I 2P-3S50000.941.051.05
1303.5 A40,0000.871.061.05
Quintets
O I 3S-3P50000.861.081.09
7775.5 A40,0001.181.111.09
O I 3S-4P5000360.061.06
3948.5 A40,0000.601.091.06
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Dimitrijević, M.S.; Sahal-Bréchot, S. Stark Broadening of O I Spectral Lines. Galaxies 2025, 13, 116. https://doi.org/10.3390/galaxies13050116

AMA Style

Dimitrijević MS, Sahal-Bréchot S. Stark Broadening of O I Spectral Lines. Galaxies. 2025; 13(5):116. https://doi.org/10.3390/galaxies13050116

Chicago/Turabian Style

Dimitrijević, Milan S., and Sylvie Sahal-Bréchot. 2025. "Stark Broadening of O I Spectral Lines" Galaxies 13, no. 5: 116. https://doi.org/10.3390/galaxies13050116

APA Style

Dimitrijević, M. S., & Sahal-Bréchot, S. (2025). Stark Broadening of O I Spectral Lines. Galaxies, 13(5), 116. https://doi.org/10.3390/galaxies13050116

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop