Jet Feedback on kpc Scales: A Review
Abstract
1. Introduction
1.1. A Brief Overview of Classical AGN Feedback
1.2. Scope of the Current Review
- The episodic nature of AGN outbursts and duty cycles (e.g., Morganti 2017 [19]).
2. Modeling Jet-Driven Feedback at Galactic Scales
2.1. Jets in Homogeneous Medium
2.2. Jets in Inhomogeneous Medium
2.2.1. Non-Relativistic Simulations
2.2.2. Relativistic Simulations
- Moderately powerful jets () can potentially clear an ISM with small-sized clouds ( 10–20 pc). Such jets are capable of driving outflows with mean radial velocities higher than the stellar velocity dispersion, even for modest values of Eddington ratios (–), thereby indicating successful negative feedback. In contrast, sufficiently accelerating larger clouds, such as Giant Molecular Clouds (GMCs hereafter) with sizes of ≳50 pc [199,200,201], require substantially higher Eddington ratio ( 0.01–0.1) and jet powers (). This suggests that such cases require more efficient outbursts from a larger mass SMBH to power global outflows. Thus, larger clouds enhance jet confinement and are also more resilient to ablation, as also confirmed in later works [186].
- The jets were found to provide a strong mechanical advantage (i.e., a value greater than unity), which is defined as the ratio of total outward momentum of the clouds to the momentum imparted by the jet until a given time (e.g., ). This enhancement arises because the high-pressure bubble created by the jet accelerates the clouds in addition to the direct ram pressure of the flow. This is similar to the high-momentum boost conjectured for the energy conserving phase of a general AGN-driven outflow [202,203]. The temporal evolution of the mechanical advantage correlates with the fraction of kinetic energy transferred to the ISM, peaking at ∼20–30%, which was later refined to slightly lower values by future simulations [186]. Overall, these results indicate strong coupling of the jet with the ISM.
3. Summary of Key Results
3.1. Evolutionary Stages of the Jet Through an Inhomogeneous Medium
- The Confined phase: The jet remains confined within the clumpy ISM (∼0.5–1 kpc), resulting in the formation of a flood-channel scenario (see right panel of Figure 1). The jet plasma is diverted to low density channels through the clouds, through which it percolates into the ISM. The jet beam’s forward progress is temporarily halted. However, the backflows from the stalled jet disperse its energy over a quasi-spherical volume. This creates a highly pressurized energy-driven bubble, enclosed by a forward shock, sweeping through the ambient medium. Simulations find that the timescale of such a confined phase can last from a few hundred kilo-years to ∼2 Myr, and depends on various factors, such as the jet power, the density of the ambient medium and the spatial extent of the dense gas. In fact, low-power jets may remain confined for a long time, without ever evolving to the later stages [186,187,198,206]. An approximate analytical treatment of the duration of confinement is presented in Appendix A. Since these conditions can vary significantly between different galaxies, the impact of the jet and the efficiency of coupling with the ISM can have a wide variation as well.
- Jet breakout phase: In this phase, the jet and its resultant hemispherical bubble break free from the dense ISM and evolve further. Although free from the confines of the ISM, the jet-driven bubble can still indirectly impact the dense gas in the galaxy. The bubble remains over-pressurized and eventually engulfs the ISM. The combined impact of the bubble and backflows from the tip of the jet drives shocks into clouds away from the jet axis. This enhances turbulence [180] and impacts star formation in the inner few kpc of the galaxy [180,207,208]. Eventually, at late times, as the bubble’s pressure decreases due to its expansion, the impact on the dense ISM is weakened.
- The classical phase: Beyond the breakout phase, the jet carves a clear path through the ISM. Subsequent energy flows have less impact on the ISM. The jet-head proceeds into the low-density stratified halo gas. Beyond this point, the dynamics of the jet are similar to the conventional models of jet propagation into a static homogeneous medium. The dynamics of the ISM and perturbed velocity dispersion of the clouds start to decay back to the pre-jet levels [208].
- 1.
- The volume filling factor of the dense gas ().
- 2.
- Jet’s orientation with respect to the ISM morphology, with jets inclined to a gas disk showing more coupling with the ISM ().
- 3.
- Jet power ().
- 4.
- Mean density of the clouds in the ISM ().
3.2. Global Impact on the ISM
- 1.
- Direct impact of jet-beam (≲1 kpc): Clouds directly along the path of the jet are strongly affected by the flow and are eventually destroyed. Such an interaction influences the evolution of both the clouds and the jet. For large clouds that may nearly cover the jet’s width (e.g., a GMC of size pc), the jet is strongly decelerated until the cloud moves away from its path, or is completely disintegrated. The region of such impact is usually confined to ≲1 kpc, where the jet beam and its ensuing backflow directly interact with the ISM. This region experiences much higher turbulent velocity dispersion and density enhancement [208] due to stronger ram pressure-driven shocks. In addition, the stronger interaction in the central region also results in mass removal and formation of a cavity [180,184,208]. However, simulations that better resolve the cloud structures show that such cavities are not completely devoid of dense gas [205,209]. Strands of dense cloud cores compressed to high densities by radiative shocks remain embedded inside such cavities and are slowly ablated by the jet-driven flows [180,205].
- 2.
- Indirect impact by energy bubble (≳1 kpc): As discussed in Section 3.1, the energy of the confined jet spreads out in the form of an expanding energy bubble and sweeps through the ISM. The nature of this indirect coupling of the jet and the ambient gas depends on the evolutionary phase of the jet (see Section 3.1). During the jet-confinement phase, the forward shock of the energy bubble sweeps through the ISM. The embedded clouds face a steady radial outflow of the jet plasma, which is re-directed in lateral directions, away from the jet axis, through the flood-channel mechanism. This results in outward radial flows inside the ISM. In the jet-breakout phase and beyond, the jet expands beyond the immediate confines along its path and the over-pressured cocoon engulfs the ISM. This is more prominent for gas disks, as shown in the right panel of Figure 3. Such indirect interactions are responsible for more large-scale impact of the jet, beyond the central 1 kpc. This raises the velocity dispersion of the gas and also shock heats a large volume of the ISM [212,213]. Inclined jets that remain strongly confined within the ISM [173,180,187,205] are more agents of feedback, as the decelerated jet-head allows plasma to spread and create widespread radial flows.
3.3. Impact on ISM Kinematics
3.3.1. Multi-Phase Outflow
- Cloud cores: There is collection of mass at K, with high densities near the left face of the 3D figure. This corresponds to the cores of the clouds, with a temperature near the cooling floor of the simulation ( K). The clouds have some positive radial velocity (), which likely is a mixture of the turbulent bulk velocity of the clouds injected at the beginning of the simulation and also mild acceleration after jet–ISM interaction.
- Dense warm outflow: There is a collection of mass in Figure 4 that is shifted from the cloud cores, extending from K to K in temperature, 100–1000 in velocity and density of . This phase corresponds to the dense shock-heated gas accelerated to high velocities that has now cooled. This phase has the highest mass amongst all of the outflowing gas and is the dominant contributor to the kinetic energy budget of the outflows. In observational studies, this phase would correspond to the warm molecular gas [215,222,223,224] or the cold gas outflows [217,221,225], as modeled in Mukherjee et al. [205].However, one must note that the lack of explicit chemical evolution and molecular cooling (however, see [219,220] for recent updates) in these simulations limits quantitative comparison with such observed phases. Nonetheless, the distinct feature in the above phase space diagram qualitatively indicates the multi-phase nature of the ISM shocked by jets and the probable location of the dense molecular phase in the 3D phase space of the simulated gas distribution.
- Shocked cloud layers: Beyond the dense warm phase, there is another distinct, but small, collection of mass, peaking between – K, and at a lower density ( 10–100) than the dense warm phase. The temperature range above corresponds to the peak of the cooling curve. This phase is composed of the outskirts of the clouds being shocked by the enveloping pressure bubble or shocked dense cloud-lets ablated from large clouds [180,213]. It accounts for the majority of the observed emission in optical lines used as diagnostics of shock ionization, such as [OII], [OIII], [SII], etc. [205,213]. It should be noted that the mass represented in this phase is small compared to the dense phase. Hence, masses of ionized gas inferred from such shocked gas are often lower limits to the total ISM mass, which is often difficult to estimate due to the lack of multi-wavelength coverage.
- Hot tenuous outflow: The jet-driven outflows push out the gas ablated from the clouds in a tenuous hot form (, K). This manifests as an elongated tail in the phase-space distributions of Figure 3, which extends to very low densities and high velocities. Such a hot, tenuous gas can potentially be observed in X-ray wavebands [52]. However, detecting the soft thermal X-rays from shocked regions, with sufficient spatial resolution to distinguish them from the central nucleus, is challenging, owing to photoionizing radiation from the AGN. Nonetheless, such X-rays from shocked gas have been tentatively confirmed in several sources, e.g., 3C 171 [226], 3C 305 [227], PKS 2152-69 [228], B2 0258+35 [229]. A broader review of such cases, including both jetted and non-jetted AGN, is presented in Fabbiano and Elvis [230].
3.3.2. Galactic Fountain
3.3.3. Turbulent Velocity Dispersion
3.4. Impact on Star Formation Rate
4. Observational Implications
4.1. Observations of Jet–ISM Interactions
4.2. Implications for Compact and Peaked Spectrum Sources (CSS/GPS/CSO)
5. Concluding Perspectives
5.1. Are Radio-Loud AGNs Gas-Rich?
5.2. Radio-Detected Fraction of AGN?
5.3. Large-Scale Impact on the Host Galaxy?
5.4. AGN Winds and Jets
5.5. Need for Theoretical Improvements
- 1.
- Higher resolution and longer simulations: A primary drawback of the kpc-scale simulations of jet–ISM interaction is the inability to resolve cooling length scales at the outer surface of dense clouds. For example, as outlined in Appendix A of Meenakshi et al. [213], the typical cooling length3 in multi-phase simulations of Mukherjee et al. [180] ranges from ∼0.014 to 1 pc, well below the resolution of the simulations. Achieving such resolutions will require an order of magnitude increase in current resources, which remains a challenging task. Such resolutions are also necessary to better understand the shock–cloud interaction, as demonstrated in Figure 2. Such intricate substructures of the cloudlets are not resolved in current simulations.Besides the need for better resolutions, most of the simulations in this domain have been carried out for only a few Myr, due to the limitations of computational time requirements. However, this explores only a very short phase of the jet and galaxy’s lifetime. Larger-scale studies exploring the jet-driven heating–cooling feedback cycles [22,331,332,333] have explored longer run times of up to a Gyr. However, they do not resolve the multi-phase gas structures internal to the ISM. Future efforts have to explore at least a few tens of Myr of run time, with self-consistent injection of AGN power, to account for at least one duty cycle of the AGN. Such simulations would require larger computational resources, which are expected to become available in the near future.
- 2.
- Better chemistry of gas phases: Existing simulations can be further updated with models that more accurately capture the micro-physics of these systems. One such area is the treatment of the chemistry of ionized and molecular gas phases and other species, such as dust. In most numerical codes, a single fluid prescription is adopted, where the cooling of collisionally ionized gas is derived from pre-computed tables that depend on the total gas densities and temperatures. Only a few works have included more sophisticated treatments of multi-species fluids [220,251], an area that requires significant improvement in the future. In addition to this, the impact of photoionizing radiation from the central AGN has been largely unexplored in large-scale simulations of AGN feedback, barring a few works [209,212,250,317]. Although well explored for studying cloud dynamics in broad line regions or close to wind launch zones (e.g., see [334,335,336], and references therein), their effect on larger kpc-scale simulations is yet to be fully explored.
- 3.
- Magnetic fields: Another ill-explored parameter is the effect of magnetic fields on shock–cloud dynamics and star formation. Very few simulations of jet–ISM interaction have included the evolution of magnetic fields [188,189]. Magnetic fields can potentially change the nature of shock–cloud interaction by affecting Kelvin–Helmholtz growth rates. They will also affect the estimates of turbulence-regulated star formation rates [249], and should be explored in more detail.
- 4.
- Cosmic ray feedback: Another key ingredient overlooked in the current literature is the effect of cosmic rays on the fluid dynamics of jet–ISM interaction, in particular, and AGN feedback in general. Jet–cloud interfaces undergoing diffusive shock acceleration are expected to be active sites for the production of high-energy cosmic rays. Such cosmic rays will provide additional momentum and pressure to the fluid, which would in turn affect the local dynamics of the gas. This has been tentatively explored in some cases, for example, in IC 5063 [337]. Inclusion of cosmic ray diffusion and heating in MHD simulations in general [338,339,340,341,342] and studies of galaxy evolution and jet simulations in particular [343,344,345,346,347,348] is being actively pursued by several groups. However, their impact is yet to be investigated in the context of multi-phase AGN feedback.
- 5.
- Jet composition, plasma processes and instabilities: Most of the simulations of large-scale relativistic jets do not explicitly account for plasma composition, which can influence the nature of the solution but is numerically challenging to implement (see Section 8.2.1 of Martí and Müller [78]). Only a handful of works have explored these issues. Some studies have used a modified EOS incorporating fixed ratios of leptonic and hadronic components in an otherwise single fluid description [117,349,350]. Other recent works have used a more sophisticated two-temperature fluid treatment including electron–ion interaction, which is modeled in a sub-grid framework [115,116]. However, such attempts are still in their infancy for jet simulations, although active development is on-going in other related domains (e.g., [351,352]).Besides jet microphysics, another overlooked domain is the impact of small-scale plasma processes in general and MHD instabilities in particular. Accounting for plasma effects in large-scale jets is understandably difficult, due to the large separation of scales. Nonetheless, particle-in-cell studies of idealized jets or shear layers [353,354,355,356,357,358] have demonstrated the importance of considering fundamental plasma effects such as Weibel, two-stream instabilities, etc. (see Meli and Nishikawa 2021 [359] for a detailed review). Although sophisticated simulations have been performed to investigate particle acceleration of non-thermal electrons by relativistic shocks [360] or reconnection processes [361], the broader impact of such plasma processes on jet dynamics and emission requires further scrutiny.Regarding large-scale fluid instabilities, it is well known that Kelvin–Helmholtz [362,363,364,365], current-driven instabilities (CDIs) [51,366,367,368,369,370], or a mixture of the two, can operate in relativistic jets [82,91,371,372,373]. Linear stability analyses of such instabilities find the growth rates to depend on various jet parameters such as the bulk Lorentz factor [374], jet magnetization and magnetic pitch parameter [66,375], jet’s rotation [376,377], jet opening angle [378,379], etc. Such instabilities can have strong implications for jet collimation and turbulence, which would in turn impact the various morphological classifications of jets (see Costa et al. [84] for an example). Spatially resolved observations of helical structures in jets or their ridge-lines have also hinted towards the presence of such MHD processes in a few sources, such as 3C 273 [380,381,382], M 87 [383,384,385], S5 0836+710 [86,386,387], NGC 315 [388,389], 3C 279 [390], 3C 84 [391], etc. Although several large-scale simulations have well demonstrated the onset and impact of such instabilities (e.g., [79,90,378,392]), more work is needed to unravel how such MHD processes affect jet dynamics and their non-thermal emission.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Duration of the Confined Phase of the Jet in the ISM
- Jet-head velocity (): This is obtained by equating the momentum flux of the jet to the external medium (e.g., clouds), in the frame of the jet’s working surface (see Sections 3 and 3.3 of [62,79], respectively). Using the expression of the jet power () as presented in Equation (A1), one can replace the jet density () to express the jet advance speed in terms of the jet power and ambient density (Equations (A4) and (A5)).
- Jet confinement timescale: It is apparent that dense clouds along the path of the jet can strongly decelerate jets. Typical densities of molecular clouds can range from to , resulting in a decrease in advance speed by several orders of magnitude. An approximate time scale of confinement can be assessed by computing the travel time of the jet-head for a scale height L, e.g., pc, which is typical of core radii of bulges in elliptical galaxies. Assuming the volume filling factor of the dense clouds to be , the jet confinement time in the ISM will be given by:Here is the advance of the jet trough dense clouds with mean density and is the advance speed through the gaps between the clouds with low-density ambient halo gas (e.g., ).
Appendix B. Observations of Jet–ISM Interaction
Source/Survey | Gas Phase | Comments and References | |
---|---|---|---|
1 | J1430 (Tea Cup), J1509, J1356, part of the QSOFEED survey | Molecular (CO, WH2, PAH), Ionized (Optical+Xrays) | Part of a sample of 48 Type-2 Seyferts (44 detected in radio) with several examples of well defined jetted system driving outflows. [240,395,396,397,398,399,400] |
2 | NGC 5929 | Molecular (WH2), Ionized (FeII) | Outflows perpendicular to the jet axis. [236,401] |
3 | QFeedS survey | Molecular (CO), Ionized | A survey of 42 sources [298], many radio-quiet [298,402] but showing jet-like features (∼88% cases [299]) and dense gas (for 17 sources [300,301]). Multi-wavelength studies of feedback performed for a subset of sources, including outflows perpendicular to the jet. [237,238,403] |
4 | NGC 5972 | Ionized | Detection of jet-induced shocks. [404] |
5 | 3C 293 (UGC 8782) | Molecular (WH2), Atomic (HI absorption), Ionized | [405,406,407,408,409] |
6 | IC 5063 | Molecular (CO, WH2), Ionized (IR/optical+X-rays) | A very well studied source with a jet strongly inclined into a kpc-scale disk. Shows outflow perpendicular to the jet. [217,410,411,412,413,414] |
7 | NGC 5643, NGC 1068, NGC 1386, NGC 1365 | Ionized | Part of the MAGNUM survey, also including IC 5063. Several of these sources show outflow perpendicular to the jet. [235,415,416] |
8 | NGC 3393 | Molecular (CO), Ionized (Optical+X-rays) | [417,418,419] |
9 | NGC 7319 in Stephan’s quintet | Molecular (CO), Ionized | A well studied group of 5 interacting galaxies with one showing prominent jet–ISM interaction. [420,421] |
10 | 3C 326 | Molecular (CO, WH2), Ionized | Early evidence of strong jet-induced turbulence, refined with better spatial resolution (JWST) to uncover in situ outflows [222,422,423,424] |
11 | GATOS survey | Molecular (CO), Ionized | A survey of dusty CND of 19+ Seyferts [195,425]. Several show very prominent jet–ISM interaction, reported as part of this survey and also from other multi-wavelength observations. [426,427,428,429] |
12 | WIDE-AEGIS-2018003848 | Ionized | Detection of strong shock from emission line modelling, likely powered by the radio jet. [430] |
13 | B2 0258+35 (NGC 1167) | Molecular (CO), Ionized (X-ray) | A confirmed detection of jet clearing the central kpc of dense gas. Tentative confirmation of thermal X-rays. [221,229,234,278] |
14 | NGC 3100, IC 1531, NGC 3557 | Molecular (CO, tentative HCO+) | A subset from a survey of 11 LERGs, showing evidence of only mild jet–ISM interaction, in spite of potential conditions available for more stronger effects observed elsewhere. [210,431,432,433] |
15 | NGC 1052 | Ionized | Prominent ionized bubble along the galaxy’s minor axis, blown by a jet inclined towards a nuclear gas disk, besides detection of large-scale disturbed kinematics and shocks. [434,435,436,437] |
16 | NGC 3079 | Radio (deceleration of knots), Ionized | A well studied source with prominent gas filaments from nuclear outflows [438]. Observed pc-scale jet–ISM interaction [439,440], which may power the large-scale outflow [441,442]. |
17 | XID2028 | Molecular (CO), Ionized | Co-spatial collimated molecular, ionized jet-driven outflows outflow piercing gas shells (≳6 kpc) from the nucleus. [443,444] |
18 | 4C 31.04 | Ionized, Neutral | CSS source with pc jet but large-scale (∼0.3–2 kpc) shocked gas. [216,225] |
19 | NGC 3998 | Radio | Indirect evidence of jet–medium interaction from radio emission. [445] |
20 | NGC 4579 (Messier 58) | Molecular (CO, WH2, PAH), Ionized | [446] |
21 | IRAS 10565+2448 | Molecular (CO), Atomic (HI emission+absorption), Ionized | [447] |
22 | 4C 41.17 | Molecular (CO), Ionized | A galaxy associated with positive feedback [245,448] |
23 | PKS 1549-79 | Molecular (CO), Ionized, Atomic (HI absorption) | Nuclear molecular outflow, extended ionized outflow. [449,450] |
24 | Sub sample of 9 sources from the southern 2 Jy sample [451] | Ionized | Broad integrated outflowing emission lines (, FWHM ) driven by jets. [452] |
25 | 3C 273 | Molecular (CO), Ionized | Expanding jet-driven cocoon impinging on a gas disk. [453] |
26 | HE 1353-1917, HE0040-1105 | Ionized | Nuclear-scale jet-driven outflow. Part of the CARS survey. [454,455] |
27 | 4C 12.50 (F13451+1232) | Molecular (CO, WH2), Ionized | Strong jet-driven nuclear (≲100 pc) outflow [456,457,458], but not on large scales[459]. |
28 | TNJ 1338-1942 | Ionized | Jet impact on extra-galactic gas cloud with extreme kinematics. [460,461,462] |
29 | NGC 6328 (PKS 1718-649) | Molecular (CO) | GPS source with pc-scale jet interacting with ambient gas. [463] |
30 | PKS 0023-26 | Molecular (CO) | [464] |
31 | HzRG-MRC 0152-209 (Dragonfly galaxy) | Molecular (CO) | Molecular outflow (jet/AGN-driven) perpendicular to the jet, with indications of jet–ISM interaction at small scales. [465] |
32 | ESO 420-G13 | Molecular (CO), Ionized | [466] |
33 | Jet-driven HI outflows (including 3C 236, 3C 305, 3C 459, OQ 208) | Molecular (CO), Atomic (HI absorption) | [467,468,469,470] |
34 | NGC 4258 (Messier 106) | Molecular (WH2), Ionized, X-rays | Detection of shocks and turbulence induced by jets. [253,254,255] |
35 | Molecular Hydrogen Emission line Galaxies (MOHEG) | Molecular (WH2) | A sample of 17 Radio-Loud galaxies with detections of warm H2 lines and indications of jet-driven shocks. [471] |
36 | PKS B1934-63 | Ionized, WH2 | Compact GPC source with ionized outflow but not in molecular phase. [472] |
37 | Cen A (NGC 5128) | Molecular (CO) | Jet-induced inefficient star formation in filaments along the jet. [473,474] |
38 | Cygnus A | Molecular (WH2, PAH), Ionized | High velocity ∼6 kpc-scale outflow driven by jet. [475] |
39 | SINFONI survey of RLAGN | Molecular (WH2), Ionized | A survey of 33 powerful RLAGN, confirming widespread jet-driven extreme gas kinematics. [223,224,476] |
40 | NGC 6951 | Ionized | [477] |
41 | PKS 2152-69 | Ionized (Optical+X-rays) | Highly ionized gas cloud 8 kpc from the galaxy impacted by a jet. [228,478,479]. |
42 | PKS PKS2250-41 | Ionized | Interaction of a jet with gas in a companion galaxy. [480,481,482] |
43 | IRAS 00183-7111 | Molecular | Jet–ISM interaction in a ULIRG [483] |
44 | J165315.06+234943.0 (Beetle) | Ionized | Detection of extreme gas kinematics up to 46 kpc from the galaxy due to shocks from a jet in a radio-quiet quasar [484]. |
1 | Simulations of gas clouds in a wind are often informally referred to as ‘cloud-crushing’ experiments [160]. The nomenclature arises as they investigate the survivability of clouds embedded inside inside gas flows. They have been performed more widely in the context of more gentler star formation-driven outflows (e.g., see [161,162,163,164,165,166,167,168,169], and references therein). The basic physics and results from such simulations also holds true for AGN-driven winds, which however are hotter, and have higher velocities than star formation driven outflows. |
2 | The volume filling factor is defined as , with . Here is the density probability distribution function (PDF). is the critical temperature of the dense clouds, beyond which the fractal density is replaced by the halo gas in the simulation. Since the dense clouds are considered to be in pressure equilibrium with the halo gas, the essentially implies a lower cut-off of the lognormal density PDF (). |
3 | Cooling length of a shock can be approximately defined as the distance traversed by the shock with a velocity during a typical cooling time: . The cooling time scale, , is obtained by dividing the internal energy per unit volume ( is ) for an ideal gas with adiabatic index) by the cooling rate () [330]. For a more accurate temperature depedent defintion, see Section 10 of Sutherland and Dopita 2017 [214]. |
References
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Harrison, C.M.; Ramos Almeida, C. Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation. Galaxies 2024, 12, 17. [Google Scholar] [CrossRef]
- Lea, S.M.; Silk, J.; Kellogg, E.; Murray, S. Thermal-Bremsstrahlung Interpretation of Cluster X-Ray Sources. Astrophys. J. 1973, 184, L105. [Google Scholar] [CrossRef]
- Cowie, L.L.; Binney, J. Radiative regulation of gas flow within clusters of galaxies: A model for cluster X-ray sources. Astrophys. J. 1977, 215, 723–732. [Google Scholar] [CrossRef]
- Fabian, A.C.; Nulsen, P.E.J. Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 1977, 180, 479–484. [Google Scholar] [CrossRef]
- Fabian, A.C.; Nulsen, P.E.J. Cooling flows, low-mass objects and the Galactic halo. Mon. Not. R. Astron. Soc. 1994, 269, L33. [Google Scholar]
- Peterson, J.R.; Paerels, F.B.S.; Kaastra, J.S.; Arnaud, M.; Reiprich, T.H.; Fabian, A.C.; Mushotzky, R.F.; Jernigan, J.G.; Sakelliou, I. X-ray imaging-spectroscopy of Abell 1835. Astron. Astrophys. 2001, 365, L104–L109. [Google Scholar] [CrossRef]
- Tamura, T.; Kaastra, J.S.; Peterson, J.R.; Paerels, F.B.S.; Mittaz, J.P.D.; Trudolyubov, S.P.; Stewart, G.; Fabian, A.C.; Mushotzky, R.F.; Lumb, D.H.; et al. X-ray spectroscopy of the cluster of galaxies Abell 1795 with XMM-Newton. Astron. Astrophys. 2001, 365, L87–L92. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar]
- Bower, R.G.; Benson, A.J.; Malbon, R.; Helly, J.C.; Frenk, C.S.; Baugh, C.M.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef]
- Martí, J.M. Numerical Simulations of Jets from Active Galactic Nuclei. Galaxies 2019, 7, 24. [Google Scholar] [CrossRef]
- Komissarov, S.; Porth, O. Numerical simulations of jets. New Astron. Rev. 2021, 92, 101610. [Google Scholar] [CrossRef]
- Perucho, M.; López-Miralles, J. Numerical simulations of relativistic jets. J. Plasma Phys. 2023, 89, 915890501. [Google Scholar] [CrossRef]
- Veilleux, S.; Maiolino, R.; Bolatto, A.D.; Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 2020, 28, 2. [Google Scholar] [CrossRef]
- Laha, S.; Reynolds, C.S.; Reeves, J.; Kriss, G.; Guainazzi, M.; Smith, R.; Veilleux, S.; Proga, D. Ionized outflows from active galactic nuclei as the essential elements of feedback. Nat. Astron. 2021, 5, 13–24. [Google Scholar] [CrossRef]
- Harrison, C.M. Impact of supermassive black hole growth on star formation. Nat. Astron. 2017, 1, 0165. [Google Scholar] [CrossRef]
- Morganti, R. The many routes to AGN feedback. Front. Astron. Space Sci. 2017, 4, 42. [Google Scholar] [CrossRef]
- Eckert, D.; Gaspari, M.; Gastaldello, F.; Le Brun, A.M.C.; O’Sullivan, E. Feedback from Active Galactic Nuclei in Galaxy Groups. Universe 2021, 7, 142. [Google Scholar] [CrossRef]
- Combes, F. Active Galactic Nuclei: Fueling and Feedback; IoP Publishing: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Bourne, M.A.; Yang, H.Y.K. Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies 2023, 11, 73. [Google Scholar] [CrossRef]
- Tadhunter, C. Radio AGN in the local universe: Unification, triggering and evolution. Astron. Astrophys. Rev. 2016, 24, 10. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Baldi, R.D. The nature of compact radio sources: The case of FR 0 radio galaxies. Astron. Astrophys. Rev. 2023, 31, 3. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T. The interstellar and circumnuclear medium of active nuclei traced by H i 21 cm absorption. Astron. Astrophys. Rev. 2018, 26, 4. [Google Scholar] [CrossRef]
- Storchi-Bergmann, T.; Schnorr-Müller, A. Observational constraints on the feeding of supermassive black holes. Nat. Astron. 2019, 3, 48–61. [Google Scholar] [CrossRef]
- Gaspari, M.; Tombesi, F.; Cappi, M. Linking macro-, meso- and microscales in multiphase AGN feeding and feedback. Nat. Astron. 2020, 4, 10–13. [Google Scholar] [CrossRef]
- Combes, F. Fueling Processes on (Sub-)kpc Scales. Galaxies 2023, 11, 120. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M.; Sutherland, R.S.; Silk, J. Galaxy-scale AGN feedback—Theory. Astron. Nachrichten 2016, 337, 167. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y. Resolved simulations of jet–ISM interaction: Implications for gas dynamics and star formation. Astron. Nachrichten 2021, 342, 1140–1145. [Google Scholar] [CrossRef]
- Morganti, R.; Murthy, S.; Guillard, P.; Oosterloo, T.; Garcia-Burillo, S. Young Radio Sources Expanding in Gas-Rich ISM: Using Cold Molecular Gas to Trace Their Impact. Galaxies 2023, 11, 24. [Google Scholar] [CrossRef]
- Krause, M.G.H. Jet Feedback in Star-Forming Galaxies. Galaxies 2023, 11, 29. [Google Scholar] [CrossRef]
- Blandford, R.D.; Rees, M.J. A “twin-exhaust” model for double radio sources. Mon. Not. R. Astron. Soc. 1974, 169, 395–415. [Google Scholar] [CrossRef]
- Scheuer, P.A.G. Models of extragalactic radio sources with a continuous energy supply from a central object. Mon. Not. R. Astron. Soc. 1974, 166, 513. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Ostriker, J.P. Particle acceleration by astrophysical shocks. Astrophys. J. 1978, 221, L29–L32. [Google Scholar] [CrossRef]
- Rayburn, D.R. A numerical study of the continuous beam model of extragalactic radio sources. Mon. Not. R. Astron. Soc. 1977, 179, 603–617. [Google Scholar] [CrossRef]
- Yokosawa, M.; Ikeuchi, S.; Sakashita, S. Structure and Expansion Law of a Hypersonic Beam. Publ. Astron. Soc. Jpn. 1982, 34, 461. [Google Scholar] [CrossRef]
- Norman, M.L.; Winkler, K.H.A.; Smarr, L.; Smith, M.D. Structure and dynamics of supersonic jets. Astron. Astrophys. 1982, 113, 285–302. [Google Scholar]
- Wilson, M.J.; Scheuer, P.A.G. The anisotropy of emission from hotspots in extragalactic radio sources. Mon. Not. R. Astron. Soc. 1983, 205, 449–463. [Google Scholar] [CrossRef]
- Williams, A.G.; Gull, S.F. A three-dimensional model of the fluid dynamics of radio-trail sources. Nature 1984, 310, 33–36. [Google Scholar] [CrossRef]
- Arnold, C.N.; Arnett, W.D. Three-dimensional Structure and Dynamics of a Supersonic Jet. Astrophys. J. 1986, 305, L57. [Google Scholar] [CrossRef]
- Hardee, P.E.; Clarke, D.A. The non-Linear Dynamics of a Three-Dimensional Jet. Astrophys. J. 1992, 400, L9. [Google Scholar] [CrossRef]
- Norman, M.L.; Balsara, D.S. 3-D Hydrodynamical Simulations of Extragalactic Jets. In Jets in Extragalactic Radio Sources; Röser, H.J., Meisenheimer, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 421, p. 229. [Google Scholar] [CrossRef]
- Norman, M.L.; Hardee, P.E. Spatial Stability of the Slab Jet. II. Numerical Simulations. Astrophys. J. 1988, 334, 80. [Google Scholar] [CrossRef]
- Clarke, D.A.; Norman, M.L.; Burns, J.O. Numerical Simulations of a Magnetically Confined Jet. Astrophys. J. 1986, 311, L63. [Google Scholar] [CrossRef]
- Clarke, D.A.; Norman, M.L.; Burns, J.O. Numerical Observations of a Simulated Jet with a Passive Helical Magnetic Field. Astrophys. J. 1989, 342, 700. [Google Scholar] [CrossRef]
- Koessl, D.; Mueller, E. Numerical simulations of astrophysical jets: The influence of boundary conditions and grid resolution. Astron. Astrophys. 1988, 206, 204–218. [Google Scholar]
- Mignone, A.; Rossi, P.; Bodo, G.; Ferrari, A.; Massaglia, S. High-resolution 3D relativistic MHD simulations of jets. Mon. Not. R. Astron. Soc. 2010, 402, 7–12. [Google Scholar] [CrossRef]
- Sutherland, R.S.; Bicknell, G.V. Interactions of a Light Hypersonic Jet with a Nonuniform Interstellar Medium. Astrophys. J. Suppl. Ser. 2007, 173, 37. [Google Scholar] [CrossRef]
- Cohen, M.H.; Kellermann, K.I.; Shaffer, D.B.; Linfield, R.P.; Moffet, A.T.; Romney, J.D.; Seielstad, G.A.; Pauliny-Toth, I.I.K.; Preuss, E.; Witzel, A.; et al. Radio sources with superluminal velocities. Nature 1977, 268, 405–409. [Google Scholar] [CrossRef]
- Cohen, M.H.; Pearson, T.J.; Readhead, A.C.S.; Seielstad, G.A.; Simon, R.S.; Walker, R.C. Superluminal variations in 3C 120, 3C 273, and 3C 345. Astrophys. J. 1979, 231, 293–298. [Google Scholar] [CrossRef]
- O’Dell, S.L. The continuum radiation of compact extragalactic objects. In Proceedings of the BL Lac Objects, Pittsburgh, PA, USA, 24–26 April 1978; Wolfe, A.M., Ed.; University of Pittsburgh: Pittsburgh, PA, USA, 1978; pp. 312–325. [Google Scholar]
- Blandford, R.D.; McKee, C.F.; Rees, M.J. Super-luminal expansion in extragalactic radio sources. Nature 1977, 267, 211–216. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Wilson, M.J. Steady relativistic fluid jets. Mon. Not. R. Astron. Soc. 1987, 226, 447–454. [Google Scholar] [CrossRef]
- van Putten, M.H.P.M. A Two-dimensional Relativistic (Gamma = 3.25) Jet Simulation. Astrophys. J. 1993, 408, L21. [Google Scholar] [CrossRef]
- Marti, J.M.; Mueller, E.; Ibanez, J.M. Hydrodynamical simulations of relativistic jets. Astron. Astrophys. 1994, 281, L9–L12. [Google Scholar]
- Marti, J.M.A.; Muller, E.; Font, J.A.; Ibanez, J.M. Morphology and Dynamics of Highly Supersonic Relativistic Jets. Astrophys. J. 1995, 448, L105. [Google Scholar] [CrossRef]
- Martí, J.M.; Müller, E.; Font, J.A.; Ibáñez, J.M.Z.; Marquina, A. Morphology and Dynamics of Relativistic Jets. Astrophys. J. 1997, 479, 151–163. [Google Scholar] [CrossRef]
- Duncan, G.C.; Hughes, P.A. Simulations of Relativistic Extragalactic Jets. Astrophys. J. 1994, 436, L119. [Google Scholar] [CrossRef]
- Koide, S.; Nishikawa, K.I.; Mutel, R.L. A Two-dimensional Simulation of Relativistic Magnetized Jet. Astrophys. J. 1996, 463, L71. [Google Scholar] [CrossRef]
- Rosen, A.; Hughes, P.A.; Duncan, G.C.; Hardee, P.E. A Comparison of the Morphology and Stability of Relativistic and Nonrelativistic Jets. Astrophys. J. 1999, 516, 729–743. [Google Scholar] [CrossRef]
- Bodo, G.; Mamatsashvili, G.; Rossi, P.; Mignone, A. Linear stability analysis of magnetized relativistic jets: The non-rotating case. Mon. Not. R. Astron. Soc. 2013, 434, 3030–3046. [Google Scholar] [CrossRef]
- van Putten, M.H.P.M. Knots in Simulations of Magnetized Relativistic Jets. Astrophys. J. 1996, 467, L57. [Google Scholar] [CrossRef]
- Nishikawa, K.I.; Koide, S.; Sakai, J.i.; Christodoulou, D.M.; Sol, H.; Mutel, R.L. Three-Dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected along a Magnetic Field. Astrophys. J. 1997, 483, L45–L48. [Google Scholar] [CrossRef]
- Nishikawa, K.I.; Koide, S.; Sakai, J.i.; Christodoulou, D.M.; Sol, H.; Mutel, R.L. Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected into an Oblique Magnetic Field. Astrophys. J. 1998, 498, 166–169. [Google Scholar] [CrossRef]
- Komissarov, S.S. Numerical simulations of relativistic magnetized jets. Mon. Not. R. Astron. Soc. 1999, 308, 1069–1076. [Google Scholar] [CrossRef]
- Komissarov, S.S. A Godunov-type scheme for relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 1999, 303, 343–366. [Google Scholar] [CrossRef]
- Koldoba, A.V.; Kuznetsov, O.A.; Ustyugova, G.V. An approximate Riemann solver for relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 2002, 333, 932–942. [Google Scholar] [CrossRef]
- Del Zanna, L.; Bucciantini, N. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics. Astron. Astrophys. 2002, 390, 1177–1186. [Google Scholar] [CrossRef]
- Del Zanna, L.; Bucciantini, N.; Londrillo, P. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics. Astron. Astrophys. 2003, 400, 397–413. [Google Scholar] [CrossRef]
- Leismann, T.; Antón, L.; Aloy, M.A.; Müller, E.; Martí, J.M.; Miralles, J.A.; Ibáñez, J.M. Relativistic MHD simulations of extragalactic jets. Astron. Astrophys. 2005, 436, 503–526. [Google Scholar] [CrossRef]
- Mignone, A.; Plewa, T.; Bodo, G. The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics. Astrophys. J. Suppl. Ser. 2005, 160, 199–219. [Google Scholar] [CrossRef]
- Mignone, A.; Bodo, G. An HLLC Riemann solver for relativistic flows—II. Magnetohydrodynamics. Mon. Not. R. Astron. Soc. 2006, 368, 1040–1054. [Google Scholar] [CrossRef]
- Martí, J.M.; Müller, E. Numerical Hydrodynamics in Special Relativity. Living Rev. Relativ. 2003, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Bodo, G.; Mignone, A.; Rossi, P.; Vaidya, B. Simulating the dynamics and non-thermal emission of relativistic magnetized jets I. Dynamics. Mon. Not. R. Astron. Soc. 2020, 499, 681–701. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Bodo, G.; Rossi, P. A polarization study of jets interacting with turbulent magnetic fields. Mon. Not. R. Astron. Soc. 2023, 526, 5418–5440. [Google Scholar] [CrossRef]
- Mattia, G.; Del Zanna, L.; Bugli, M.; Pavan, A.; Ciolfi, R.; Bodo, G.; Mignone, A. Resistive relativistic MHD simulations of astrophysical jets. Astron. Astrophys. 2023, 679, A49. [Google Scholar] [CrossRef]
- Rossi, P.; Bodo, G.; Massaglia, S.; Capetti, A. The different flavors of extragalactic jets: Magnetized relativistic flows. Astron. Astrophys. 2024, 685, A4. [Google Scholar] [CrossRef]
- Upreti, N.; Vaidya, B.; Shukla, A. Bridging simulations of kink instability in relativistic magnetized jets with radio emission and polarisation. J. High Energy Astrophys. 2024, 44, 146–163. [Google Scholar] [CrossRef]
- Costa, A.; Bodo, G.; Tavecchio, F.; Rossi, P.; Capetti, A.; Massaglia, S.; Sciaccaluga, A.; Baldi, R.D.; Giovannini, G. FR0 jets and recollimation-induced instabilities. Astron. Astrophys. 2024, 682, L19. [Google Scholar] [CrossRef]
- Costa, A.; Bodo, G.; Tavecchio, F.; Rossi, P.; Coppi, P.; Sciaccaluga, A.; Boula, S. How do recollimation-induced instabilities shape the propagation of hydrodynamic relativistic jets? arXiv 2025, arXiv:2503.18602. [Google Scholar] [CrossRef]
- Perucho, M.; Lobanov, A.P. Physical properties of the jet in <ASTROBJ>0836+710</ASTROBJ> revealed by its transversal structure. Astron. Astrophys. 2007, 469, L23–L26. [Google Scholar] [CrossRef]
- Rossi, P.; Mignone, A.; Bodo, G.; Massaglia, S.; Ferrari, A. Formation of dynamical structures in relativistic jets: The FRI case. Astron. Astrophys. 2008, 488, 795–806. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Laing, R.A.; Hardee, P.E. On the deceleration of Fanaroff-Riley Class I jets: Mass loading by stellar winds. Mon. Not. R. Astron. Soc. 2014, 441, 1488–1503. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A. Making Faranoff-Riley I radio sources. I. Numerical hydrodynamic 3D simulations of low-power jets. Astron. Astrophys. 2016, 596, A12. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A. Making Faranoff-Riley I radio sources. II. The effects of jet magnetization. Astron. Astrophys. 2019, 621, A132. [Google Scholar] [CrossRef]
- Rossi, P.; Bodo, G.; Massaglia, S.; Capetti, A. The different flavors of extragalactic jets: The role of relativistic flow deceleration. Astron. Astrophys. 2020, 642, A69. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, A.; Mignone, A. Making Fanaroff-Riley I radio sources. III. The effects of the magnetic field on relativistic jets’ propagation and source morphologies. Astron. Astrophys. 2022, 659, A139. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Seo, J.; Ryu, D.; Kang, H. A Simulation Study of Low-power Relativistic Jets: Flow Dynamics and Radio Morphology of FR-I Jets. Astrophys. J. 2024, 976, 91. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Quilis, V. Long-term FRII jet evolution: Clues from three-dimensional simulations. Mon. Not. R. Astron. Soc. 2019, 482, 3718–3735. [Google Scholar] [CrossRef]
- Seo, J.; Kang, H.; Ryu, D. A Simulation Study of Ultra-relativistic Jets. II. Structures and Dynamics of FR-II Jets. Astrophys. J. 2021, 920, 144. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Quilis, V. Long-term FRII jet evolution in dense environments. Mon. Not. R. Astron. Soc. 2022, 510, 2084–2096. [Google Scholar] [CrossRef]
- Begelman, M.C.; Cioffi, D.F. Overpressured Cocoons in Extragalactic Radio Sources. Astrophys. J. 1989, 345, L21. [Google Scholar] [CrossRef]
- Kaiser, C.R.; Alexander, P. A self-similar model for extragalactic radio sources. Mon. Not. R. Astron. Soc. 1997, 286, 215–222. [Google Scholar] [CrossRef]
- Falle, S.A.E.G. Self-similar jets. Mon. Not. R. Astron. Soc. 1991, 250, 581. [Google Scholar] [CrossRef]
- Carvalho, J.C.; O’Dea, C.P. Evolution of Global Properties of Powerful Radio Sources. I. Hydrodynamical Simulations in a Constant Density Atmosphere and Comparison with Self-similar Models. Astrophys. J. Suppl. Ser. 2002, 141, 337–370. [Google Scholar] [CrossRef]
- O’Neill, S.M.; Tregillis, I.L.; Jones, T.W.; Ryu, D. Three-dimensional Simulations of MHD Jet Propagation through Uniform and Stratified External Environments. Astrophys. J. 2005, 633, 717–732. [Google Scholar] [CrossRef]
- Perucho, M.; Quilis, V.; Martí, J.M. Intracluster Medium Reheating by Relativistic Jets. Astrophys. J. 2011, 743, 42. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Quilis, V.; Ricciardelli, E. Large-scale jets from active galactic nuclei as a source of intracluster medium heating: Cavities and shocks. Mon. Not. R. Astron. Soc. 2014, 445, 1462–1481. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 2013, 430, 174–196. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments—II. Magnetic field configuration and observability. Mon. Not. R. Astron. Soc. 2014, 443, 1482–1499. [Google Scholar] [CrossRef]
- English, W.; Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments—III. Powerful relativistic and non-relativistic jets. Mon. Not. R. Astron. Soc. 2016, 461, 2025–2043. [Google Scholar] [CrossRef]
- English, W.; Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments—IV. Remnant radio galaxies. Mon. Not. R. Astron. Soc. 2019, 490, 5807–5819. [Google Scholar] [CrossRef]
- Chen, Y.H.; Heinz, S.; Enßlin, T.A. Jets, bubbles, and heat pumps in galaxy clusters. Mon. Not. R. Astron. Soc. 2019, 489, 1939–1949. [Google Scholar] [CrossRef]
- Jerrim, L.A.; Shabala, S.S.; Yates-Jones, P.M.; Krause, M.G.H.; Turner, R.J.; Anderson, C.S.; Stewart, G.S.C.; Power, C.; Rodman, P.E. Faraday rotation as a probe of radio galaxy environment in RMHD AGN jet simulations. Mon. Not. R. Astron. Soc. 2024, 531, 2532–2550. [Google Scholar] [CrossRef]
- Giri, G.; Bagchi, J.; Thorat, K.; Deane, R.P.; Delhaize, J.; Saikia, D.J. Probing the formation of megaparsec-scale giant radio galaxies: I. Dynamical insights from magnetohydrodynamic simulations. Astron. Astrophys. 2025, 693, A77. [Google Scholar] [CrossRef]
- Hardcastle, M.J. A simulation-based analytic model of radio galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 2768–2786. [Google Scholar] [CrossRef]
- Matthews, J.H.; Bell, A.R.; Blundell, K.M.; Araudo, A.T. Ultrahigh energy cosmic rays from shocks in the lobes of powerful radio galaxies. Mon. Not. R. Astron. Soc. 2019, 482, 4303–4321. [Google Scholar] [CrossRef]
- Seo, J.; Ryu, D.; Kang, H. A Simulation Study of Ultra-relativistic Jets. III. Particle Acceleration in FR-II Jets. Astrophys. J. 2023, 944, 199. [Google Scholar] [CrossRef]
- Seo, J.; Ryu, D.; Kang, H. Model Spectrum of Ultrahigh-energy Cosmic Rays Accelerated in FR-I Radio Galaxy Jets. Astrophys. J. 2024, 962, 46. [Google Scholar] [CrossRef]
- Ohmura, T.; Machida, M. Simulations of two-temperature jets in galaxy clusters. I. Effect of jet magnetization on dynamics and electron heating. Astron. Astrophys. 2023, 679, A160. [Google Scholar] [CrossRef]
- Ohmura, T.; Machida, M.; Akamatsu, H. Simulations of two-temperature jets in galaxy clusters. II. X-ray properties of the forward shock. Astron. Astrophys. 2023, 679, A161. [Google Scholar] [CrossRef]
- Joshi, R.K.; Chattopadhyay, I. The Morphology and Dynamics of Relativistic Jets with Relativistic Equation of State. Astrophys. J. 2023, 948, 13. [Google Scholar] [CrossRef]
- Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S. 3D relativistic MHD numerical simulations of X-shaped radio sources. Astron. Astrophys. 2017, 606, A57. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Wagner, A.Y.; Bicknell, G.V.; Sutherland, R.S.; McNamara, B.R. Jet-intracluster medium interaction in Hydra A–I. Estimates of jet velocity from inner knots. Mon. Not. R. Astron. Soc. 2014, 444, 1600–1614. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Wagner, A.Y.; Bicknell, G.V.; Sutherland, R.S.; McNamara, B.R. Jet-intracluster medium interaction in Hydra A—II The effect of jet precession. Mon. Not. R. Astron. Soc. 2016, 458, 802–815. [Google Scholar] [CrossRef]
- Horton, M.A.; Krause, M.G.H.; Hardcastle, M.J. 3D hydrodynamic simulations of large-scale precessing jets: Radio morphology. Mon. Not. R. Astron. Soc. 2020, 499, 5765–5781. [Google Scholar] [CrossRef]
- Giri, G.; Vaidya, B.; Rossi, P.; Bodo, G.; Mukherjee, D.; Mignone, A. Modelling X-shaped radio galaxies: Dynamical and emission signatures from the Back-flow model. Astron. Astrophys. 2022, 662, A5. [Google Scholar] [CrossRef]
- Giri, G.; Vaidya, B.; Fendt, C. Deciphering the Morphological Origins of X-shaped Radio Galaxies: Numerical Modeling of Backflow versus Jet Reorientation. Astrophys. J. Suppl. Ser. 2023, 268, 49. [Google Scholar] [CrossRef]
- Giri, G.; Fendt, C.; Thorat, K.; Bodo, G.; Rossi, P. X-shaped radio galaxies: Probing jet evolution, ambient medium dynamics, and their intricate interconnection. Front. Astron. Space Sci. 2024, 11, 1371101. [Google Scholar] [CrossRef]
- Tregillis, I.L.; Jones, T.W.; Ryu, D. Simulating Electron Transport and Synchrotron Emission in Radio Galaxies: Shock Acceleration and Synchrotron Aging in Three-dimensional Flows. Astrophys. J. 2001, 557, 475–491. [Google Scholar] [CrossRef]
- Tregillis, I.L.; Jones, T.W.; Ryu, D. Synthetic Observations of Simulated Radio Galaxies. I. Radio and X-Ray Analysis. Astrophys. J. 2004, 601, 778–797. [Google Scholar] [CrossRef]
- Vaidya, B.; Mignone, A.; Bodo, G.; Rossi, P.; Massaglia, S. A Particle Module for the PLUTO Code. II. Hybrid Framework for Modeling Nonthermal Emission from Relativistic Magnetized Flows. Astrophys. J. 2018, 865, 144. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bodo, G.; Rossi, P.; Mignone, A.; Vaidya, B. Simulating the dynamics and synchrotron emission from relativistic jets—II. Evolution of non-thermal electrons. Mon. Not. R. Astron. Soc. 2021, 505, 2267–2284. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Bodo, G.; Rossi, P.; Harrison, C.M. A comparative study of radio signatures from winds and jets: Modelling synchrotron emission and polarization. Mon. Not. R. Astron. Soc. 2024, 533, 2213–2231. [Google Scholar] [CrossRef]
- Chen, Y.H.; Heinz, S.; Hooper, E. A numerical study of the impact of jet magnetic topology on radio galaxy evolution. Mon. Not. R. Astron. Soc. 2023, 522, 2850–2868. [Google Scholar] [CrossRef]
- Dubey, R.P.; Fendt, C.; Vaidya, B. Particles in Relativistic MHD Jets. I. Role of Jet Dynamics in Particle Acceleration. Astrophys. J. 2023, 952, 1. [Google Scholar] [CrossRef]
- Dubey, R.P.; Fendt, C.; Vaidya, B. Particles in Relativistic Magnetohydrodynamic Jets. II. Bridging Jet Dynamics with Multi–wave band Nonthermal Emission Signatures. Astrophys. J. 2024, 976, 144. [Google Scholar] [CrossRef]
- Blandford, R.D.; Koenigl, A. A Model for the Knots in the M87 Jet. Astrophys. Lett. 1979, 20, 15. [Google Scholar]
- Schreier, E.J.; Gorenstein, P.; Feigelson, E.D. High-resolution X-ray observations of M87—Nucleus, jet and radio halo. Astrophys. J. 1982, 261, 42–50. [Google Scholar] [CrossRef]
- Biretta, J.A.; Owen, F.N.; Hardee, P.E. Observations of the M 87 jet at 15 GHz with 0”.12 resolution. Astrophys. J. 1983, 274, L27–L30. [Google Scholar] [CrossRef]
- Falle, S.A.E.G.; Wilson, M.J. A theoretical model of the M 87 jet. Mon. Not. R. Astron. Soc. 1985, 216, 79–84. [Google Scholar] [CrossRef]
- Biretta, J.A.; Zhou, F.; Owen, F.N. Detection of Proper Motions in the M87 Jet. Astrophys. J. 1995, 447, 582. [Google Scholar] [CrossRef]
- Perlman, E.S.; Biretta, J.A.; Zhou, F.; Sparks, W.B.; Macchetto, F.D. Optical and Radio Polarimetry of the M87 Jet at 0.2” Resolution. Astron. J. 1999, 117, 2185–2198. [Google Scholar] [CrossRef]
- Kraft, R.P.; Forman, W.R.; Jones, C.; Murray, S.S.; Hardcastle, M.J.; Worrall, D.M. Chandra Observations of the X-Ray Jet in Centaurus A. Astrophys. J. 2002, 569, 54–71. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Worrall, D.M.; Kraft, R.P.; Forman, W.R.; Jones, C.; Murray, S.S. Radio and X-Ray Observations of the Jet in Centaurus A. Astrophys. J. 2003, 593, 169–183. [Google Scholar] [CrossRef]
- Worrall, D.M. The X-ray jets of active galaxies. Astron. Astrophys. Rev. 2009, 17, 1–46. [Google Scholar] [CrossRef]
- Bogensberger, D.; Miller, J.M.; Mushotzky, R.; Brandt, W.N.; Kammoun, E.; Zoghbi, A.; Behar, E. Superluminal proper motion in the X-ray jet of Centaurus A. arXiv 2024, arXiv:2408.14078. [Google Scholar] [CrossRef]
- Hardcastle, M.J. Physical conditions in hotspots-what the new data are telling us. New Astron. Rev. 2003, 47, 649–652. [Google Scholar] [CrossRef]
- Begelman, M.C. Baby Cygnus A’s. In Cygnus A: Study of a Radio Galaxy; Carilli, C.L., Harris, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1996; p. 209. [Google Scholar]
- Bicknell, G.V.; Dopita, M.A.; O’Dea, C.P. Unification of the Radio and Optical Properties of GPS and CSS Radio Sources. Astrophys. J. 1997, 485, 112. [Google Scholar] [CrossRef]
- O’Dea, C.P. The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources. Publ. Astron. Soc. Pac. 1998, 110, 493–532. [Google Scholar] [CrossRef]
- Begelman, M.C. Young radio galaxies and their environments. In Proceedings of the The Most Distant Radio Galaxies, Amsterdam, The Netherlands, 15–17 October 1997; Röttgering, H.J.A., Best, P.N., Lehnert, M.D., Eds.; Royal Netherlands Academy of Arts and Sciences: Amsterdam, The Netherlands, 1999; p. 173. [Google Scholar]
- DeYoung, D.S. F-R I and F-R II Radio Galaxies. Astrophys. J. 1993, 405, L13. [Google Scholar] [CrossRef]
- Steffen, W.; Gómez, J.L.; Raga, A.C.; Williams, R.J.R. Jet-Cloud Interactions and the Brightening of the Narrow-Line Region in Seyfert Galaxies. Astrophys. J. 1997, 491, L73–L76. [Google Scholar] [CrossRef]
- Hooda, J.S.; Wiita, P.J. Three-dimensional Simulations of Extragalactic Jets Crossing Interstellar Medium/Intracluster Medium Interfaces. Astrophys. J. 1996, 470, 211. [Google Scholar] [CrossRef]
- Hooda, J.S.; Wiita, P.J. Instabilities in Three-dimensional Simulations of Astrophysical Jets Crossing Tilted Interfaces. Astrophys. J. 1998, 493, 81–90. [Google Scholar] [CrossRef]
- Hughes, P.A.; Miller, M.A.; Duncan, G.C. Three-dimensional Hydrodynamic Simulations of Relativistic Extragalactic Jets. Astrophys. J. 2002, 572, 713–728. [Google Scholar] [CrossRef]
- Higgins, S.W.; O’Brien, T.J.; Dunlop, J.S. Structures produced by the collision of extragalactic jets with dense clouds. Mon. Not. R. Astron. Soc. 1999, 309, 273–286. [Google Scholar] [CrossRef]
- Wang, Z.; Wiita, P.J.; Hooda, J.S. Radio Jet Interactions with Massive Clouds. Astrophys. J. 2000, 534, 201–212. [Google Scholar] [CrossRef]
- Wiita, P.J. Jet Propagation Through Irregular Media and the Impact of Lobes on Galaxy Formation. Astrophys. Space Sci. 2004, 293, 235–245. [Google Scholar] [CrossRef]
- Choi, E.; Wiita, P.J.; Ryu, D. Hydrodynamic Interactions of Relativistic Extragalactic Jets with Dense Clouds. Astrophys. J. 2007, 655, 769–780. [Google Scholar] [CrossRef]
- Antonuccio-Delogu, V.; Silk, J. Active galactic nuclei jet-induced feedback in galaxies—I. Suppression of star formation. Mon. Not. R. Astron. Soc. 2008, 389, 1750–1762. [Google Scholar] [CrossRef]
- Tortora, C.; Antonuccio-Delogu, V.; Kaviraj, S.; Silk, J.; Romeo, A.D.; Becciani, U. AGN jet-induced feedback in galaxies—II. Galaxy colours from a multicloud simulation. Mon. Not. R. Astron. Soc. 2009, 396, 61–77. [Google Scholar] [CrossRef]
- Dutta, R.; Sharma, P.; Sarkar, K.C.; Stone, J.M. Dissipation of AGN Jets in a Clumpy Interstellar Medium. Astrophys. J. 2024, 973, 148. [Google Scholar] [CrossRef]
- Seidl, B.S.; Gronke, M.; Farber, R.J.; Dolag, K. Multi-cloud crushing – the collective survival of cold clouds in galactic outflows. arXiv 2025, arXiv:2506.05448. [Google Scholar] [CrossRef]
- Cooper, J.L.; Bicknell, G.V.; Sutherland, R.S.; Bland-Hawthorn, J. Starburst-Driven Galactic Winds: Filament Formation and Emission Processes. Astrophys. J. 2009, 703, 330. [Google Scholar] [CrossRef]
- Pittard, J.M.; Hartquist, T.W.; Falle, S.A.E.G. The turbulent destruction of clouds—II. Mach number dependence, mass-loss rates and tail formation. Mon. Not. R. Astron. Soc. 2010, 405, 821–838. [Google Scholar] [CrossRef]
- Scannapieco, E.; Brüggen, M. The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling. Astrophys. J. 2015, 805, 158. [Google Scholar] [CrossRef]
- Pittard, J.M.; Parkin, E.R. The turbulent destruction of clouds—III. Three-dimensional adiabatic shock-cloud simulations. Mon. Not. R. Astron. Soc. 2016, 457, 4470–4498. [Google Scholar] [CrossRef]
- Banda-Barragán, W.E.; Federrath, C.; Crocker, R.M.; Bicknell, G.V. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields. Mon. Not. R. Astron. Soc. 2018, 473, 3454–3489. [Google Scholar] [CrossRef]
- Gronke, M.; Oh, S.P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 2018, 480, L111–L115. [Google Scholar] [CrossRef]
- Cottle, J.; Scannapieco, E.; Brüggen, M.; Banda-Barragán, W.; Federrath, C. The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields. Astrophys. J. 2020, 892, 59. [Google Scholar] [CrossRef]
- Klein, R.I.; McKee, C.F.; Colella, P. On the Hydrodynamic Interaction of Shock Waves with Interstellar Clouds. I. Nonradiative Shocks in Small Clouds. Astrophys. J. 1994, 420, 213. [Google Scholar] [CrossRef]
- Banda-Barragán, W.E.; Parkin, E.R.; Federrath, C.; Crocker, R.M.; Bicknell, G.V. Filament formation in wind-cloud interactions—I. Spherical clouds in uniform magnetic fields. Mon. Not. R. Astron. Soc. 2016, 455, 1309–1333. [Google Scholar] [CrossRef]
- Fragile, P.C.; Murray, S.D.; Anninos, P.; van Breugel, W. Radiative Shock-induced Collapse of Intergalactic Clouds. Astrophys. J. 2004, 604, 74–87. [Google Scholar] [CrossRef]
- Fragile, P.C.; Anninos, P.; Croft, S.; Lacy, M.; Witry, J.W.L. Numerical Simulations of a Jet-Cloud Collision and Starburst: Application to Minkowski’s Object. Astrophys. J. 2017, 850, 171. [Google Scholar] [CrossRef]
- Krause, M.; Alexander, P. Simulations of multiphase turbulence in jet cocoons. Mon. Not. R. Astron. Soc. 2007, 376, 465–478. [Google Scholar] [CrossRef]
- Dugan, Z.; Gaibler, V.; Silk, J. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale. Astrophys. J. 2017, 844, 37. [Google Scholar] [CrossRef]
- Gardner, C.L.; Jones, J.R.; Scannapieco, E.; Windhorst, R.A. Numerical Simulation of Star Formation by the Bow Shock of the Centaurus A Jet. Astrophys. J. 2017, 835, 232. [Google Scholar] [CrossRef]
- Laužikas, M.; Zubovas, K. Slow and steady does the trick: Slow outflows enhance the fragmentation of molecular clouds. Astron. Astrophys. 2024, 690, A396. [Google Scholar] [CrossRef]
- Mandal, A.; Mukherjee, D.; Federrath, C.; Bicknell, G.V.; Nesvadba, N.P.H.; Mignone, A. Probing the role of self-gravity in clouds impacted by AGN-driven winds. Mon. Not. R. Astron. Soc. 2024, 531, 2079–2110. [Google Scholar] [CrossRef]
- Jeyakumar, S. Interaction of radio jets with clouds in the ambient medium: Numerical simulations. Astronomische Nachrichten 2009, 330, 287. [Google Scholar] [CrossRef]
- Nolting, C.; Lacy, M.; Croft, S.; Fragile, P.C.; Linden, S.T.; Nyland, K.; Patil, P. Observations and Simulations of Radio Emission and Magnetic Fields in Minkowski’s Object. Astrophys. J. 2022, 936, 130. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V. Relativistic Jet Feedback in Evolving Galaxies. Astrophys. J. 2011, 728, 29. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.e.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Bicknell, G.V.; Saxton, C.J.; Sutherland, R.S. GPS and CSS Sources—Theory and Modelling. Publ. Astron. Soc. Aust. 2003, 20, 102–109. [Google Scholar] [CrossRef]
- Saxton, C.J.; Bicknell, G.V.; Sutherland, R.S.; Midgley, S. Interactions of jets with inhomogeneous cloudy media. Mon. Not. R. Astron. Soc. 2005, 359, 781–800. [Google Scholar] [CrossRef]
- Gaibler, V.; Khochfar, S.; Krause, M. Asymmetries in extragalactic double radio sources: Clues from 3D simulations of jet-disc interaction. Mon. Not. R. Astron. Soc. 2011, 411, 155–161. [Google Scholar] [CrossRef]
- Gaibler, V.; Khochfar, S.; Krause, M.; Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 2012, 425, 438–449. [Google Scholar] [CrossRef]
- Dugan, Z.; Bryan, S.; Gaibler, V.; Silk, J.; Haas, M. Stellar Signatures of AGN-jet-triggered Star Formation. Astrophys. J. 2014, 796, 113. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Sutherland, R.; Wagner, A. Relativistic jet feedback in high-redshift galaxies—I. Dynamics. Mon. Not. R. Astron. Soc. 2016, 461, 967–983, Erratum in Mon. Not. R. Astron. Soc. 2017, 471, 2790–2800. [Google Scholar] [CrossRef]
- Tanner, R.; Weaver, K.A. Simulations of AGN-driven Galactic Outflow Morphology and Content. Astron. J. 2022, 163, 134. [Google Scholar] [CrossRef]
- Clavijo-Bohórquez, W.E.; de Gouveia Dal Pino, E.M.; Melioli, C. Role of AGN and star formation feedback in the evolution of galaxy outflows. Mon. Not. R. Astron. Soc. 2024, 535, 1696–1720. [Google Scholar] [CrossRef]
- Asahina, Y.; Nomura, M.; Ohsuga, K. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium. Astrophys. J. 2017, 840, 25. [Google Scholar] [CrossRef]
- Fiacconi, D.; Sijacki, D.; Pringle, J.E. Galactic nuclei evolution with spinning black holes: Method and implementation. Mon. Not. R. Astron. Soc. 2018, 477, 3807–3835. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Bourne, M.A.; Sijacki, D. Blandford-Znajek jets in galaxy formation simulations: Method and implementation. Mon. Not. R. Astron. Soc. 2021, 504, 3619–3650. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Sijacki, D.; Bourne, M.A. Blandford-Znajek jets in galaxy formation simulations: Exploring the diversity of outflows produced by spin-driven AGN jets in Seyfert galaxies. Mon. Not. R. Astron. Soc. 2022, 514, 4535–4559. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Sijacki, D.; Bourne, M.A. Simulations of spin-driven AGN jets in gas-rich galaxy mergers. Mon. Not. R. Astron. Soc. 2024, 528, 5432–5451. [Google Scholar] [CrossRef]
- García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L.K.; Schinnerer, E.; Baker, A.J.; et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 2014, 567, A125. [Google Scholar] [CrossRef]
- García-Burillo, S.; Alonso-Herrero, A.; Ramos Almeida, C.; González-Martín, O.; Combes, F.; Usero, A.; Hönig, S.; Querejeta, M.; Hicks, E.K.S.; Hunt, L.K.; et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies. Astron. Astrophys. 2021, 652, A98. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Falle, S.A.E.G. LargeScale Structure of Relativistic Jets. In Proceedings of the Energy Transport in Radio Galaxies and Quasars, Tuscaloosa, AL, USA, 19–23 September 1995; Hardee, P.E., Bridle, A.H., Zensus, J.A., Eds.; Astronomical Society of the Pacific (ASP): San Francisco, CA, USA, 1996; Volume 100, Astronomical Society of the Pacific Conference Series. p. 173. [Google Scholar]
- Perucho, M.; Martí, J.M.; Quilis, V.; Borja-Lloret, M. Radio mode feedback: Does relativity matter? Mon. Not. R. Astron. Soc. 2017, 471, L120–L124. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M. Driving Outflows with Relativistic Jets and the Dependence of Active Galactic Nucleus Feedback Efficiency on Interstellar Medium Inhomogeneity. Astrophys. J. 2012, 757, 136. [Google Scholar] [CrossRef]
- Hughes, A.; Wong, T.; Ott, J.; Muller, E.; Pineda, J.L.; Mizuno, Y.; Bernard, J.P.; Paradis, D.; Maddison, S.; Reach, W.T.; et al. Physical properties of giant molecular clouds in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2010, 406, 2065–2086. [Google Scholar] [CrossRef]
- Hughes, A.; Meidt, S.E.; Colombo, D.; Schinnerer, E.; Pety, J.; Leroy, A.K.; Dobbs, C.L.; García-Burillo, S.; Thompson, T.A.; Dumas, G.; et al. A Comparative Study of Giant Molecular Clouds in M51, M33, and the Large Magellanic Cloud. Astrophys. J. 2013, 779, 46. [Google Scholar] [CrossRef]
- Faesi, C.M.; Lada, C.J.; Forbrich, J. The ALMA View of GMCs in NGC 300: Physical Properties and Scaling Relations at 10 pc Resolution. Astrophys. J. 2018, 857, 19. [Google Scholar] [CrossRef]
- Zubovas, K.; King, A. Clearing Out a Galaxy. Astrophys. J. 2012, 745, L34. [Google Scholar] [CrossRef]
- Faucher-Giguère, C.A.; Quataert, E. The physics of galactic winds driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 425, 605–622. [Google Scholar] [CrossRef]
- Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y.; Sutherland, R.S.; Nesvadba, N.P.H. Relativistic jet feedback—II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 3493–3501. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wagner, A.Y.; Bicknell, G.V.; Morganti, R.; Oosterloo, T.; Nesvadba, N.; Sutherland, R.S. The jet-ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 2018, 476, 80–95. [Google Scholar] [CrossRef]
- Borodina, O.; Ni, Y.; Bennett, J.S.; Weinberger, R.; Bryan, G.L.; Hirschmann, M.; Farcy, M.; Hlavacek-Larrondo, J.; Hernquist, L. You Shall Not Pass! The Propagation of Low-/Moderate-powered Jets Through a Turbulent Interstellar Medium. Astrophys. J. 2025, 981, 149. [Google Scholar] [CrossRef]
- Bieri, R.; Dubois, Y.; Silk, J.; Mamon, G.A.; Gaibler, V. External pressure-triggering of star formation in a disc galaxy: A template for positive feedback. Mon. Not. R. Astron. Soc. 2016, 455, 4166–4182. [Google Scholar] [CrossRef]
- Mandal, A.; Mukherjee, D.; Federrath, C.; Nesvadba, N.P.H.; Bicknell, G.V.; Wagner, A.Y.; Meenakshi, M. Impact of relativistic jets on the star formation rate: A turbulence-regulated framework. Mon. Not. R. Astron. Soc. 2021, 508, 4738–4757. [Google Scholar] [CrossRef]
- Cielo, S.; Bieri, R.; Volonteri, M.; Wagner, A.Y.; Dubois, Y. AGN feedback compared: Jets versus radiation. Mon. Not. R. Astron. Soc. 2018, 477, 1336–1355. [Google Scholar] [CrossRef]
- Ruffa, I.; Prandoni, I.; Laing, R.A.; Paladino, R.; Parma, P.; de Ruiter, H.; Mignano, A.; Davis, T.A.; Bureau, M.; Warren, J. The AGN fuelling/feedback cycle in nearby radio galaxies I. ALMA observations and early results. Mon. Not. R. Astron. Soc. 2019, 484, 4239–4259. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Choi, E.; Ciotti, L.; Novak, G.S.; Proga, D. Momentum Driving: Which Physical Processes Dominate Active Galactic Nucleus Feedback? Astrophys. J. 2010, 722, 642–652. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Wagner, A.Y.; Nesvadba, N.P.H.; Morganti, R.; Janssen, R.M.J.; Bicknell, G.V. The extent of ionization in simulations of radio-loud AGNs impacting kpc gas discs. Mon. Not. R. Astron. Soc. 2022, 511, 1622–1636. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Wagner, A.Y.; Nesvadba, N.P.H.; Bicknell, G.V.; Morganti, R.; Janssen, R.M.J.; Sutherland, R.S.; Mandal, A. Modelling observable signatures of jet-ISM interaction: Thermal emission and gas kinematics. Mon. Not. R. Astron. Soc. 2022, 516, 766–786. [Google Scholar] [CrossRef]
- Sutherland, R.S.; Dopita, M.A. Effects of Preionization in Radiative Shocks. I. Self-consistent Models. Astrophys. J. Suppl. Ser. 2017, 229, 34. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; De Breuck, C.; Lehnert, M.D.; Best, P.N.; Binette, L.; Proga, D. The black holes of radio galaxies during the “Quasar Era”: Masses, accretion rates, and evolutionary stage. Astron. Astrophys. 2011, 525, A43. [Google Scholar] [CrossRef]
- Zovaro, H.R.M.; Sharp, R.; Nesvadba, N.P.H.; Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y.; Groves, B.; Krishna, S. Jets blowing bubbles in the young radio galaxy 4C 31.04. Mon. Not. R. Astron. Soc. 2019, 484, 3393–3409. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Oonk, J.B.R.; Frieswijk, W.; Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 2015, 580, A1. [Google Scholar] [CrossRef]
- Salomé, Q.; Krongold, Y.; Longinotti, A.L.; Bischetti, M.; García-Burillo, S.; Vega, O.; Sánchez-Portal, M.; Feruglio, C.; Jiménez-Donaire, M.J.; Zanchettin, M.V. Star formation efficiency and AGN feedback in narrow-line Seyfert 1 galaxies with fast X-ray nuclear winds. Mon. Not. R. Astron. Soc. 2023, 524, 3130–3145. [Google Scholar] [CrossRef]
- Perucho, M.; López-Miralles, J.; Reynaldi, V.; Labiano, Á. Jet propagation through inhomogeneous media and shock ionization. Astron. Nachrichten 2021, 342, 1171–1175. [Google Scholar] [CrossRef]
- Perucho, M. Shocks, clouds, and atomic outflows in active galactic nuclei hosting relativistic jets. Astron. Astrophys. 2024, 684, A45. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Wagner, A.Y.; Oosterloo, T.; Guillard, P.; Mukherjee, D.; Bicknell, G. Cold gas removal from the centre of a galaxy by a low-luminosity jet. Nat. Astron. 2022, 6, 488–495. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M.D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback. Astron. Astrophys. 2010, 521, A65. [Google Scholar] [CrossRef]
- Collet, C.; Nesvadba, N.P.H.; De Breuck, C.; Lehnert, M.D.; Best, P.; Bryant, J.J.; Hunstead, R.; Dicken, D.; Johnston, H. Kinematic signatures of AGN feedback in moderately powerful radio galaxies at z ~2 observed with SINFONI. Astron. Astrophys. 2016, 586, A152. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; De Breuck, C.; Lehnert, M.D.; Best, P.N.; Collet, C. The SINFONI survey of powerful radio galaxies at z 2: Jet-driven AGN feedback during the Quasar Era. Astron. Astrophys. 2017, 599, A123. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Oosterloo, T.; Schulz, R.; Paragi, Z. Turbulent circumnuclear disc and cold gas outflow in the newborn radio source 4C 31.04. Astron. Astrophys. 2024, 688, A84. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Massaro, F.; Harris, D.E. X-ray emission from the extended emission-line region of the powerful radio galaxy 3C171. Mon. Not. R. Astron. Soc. 2010, 401, 2697–2705. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Massaro, F.; Harris, D.E.; Baum, S.A.; Bianchi, S.; Chiaberge, M.; Morganti, R.; O’Dea, C.P.; Siemiginowska, A. The nature of the jet-driven outflow in the radio galaxy 3C 305. Mon. Not. R. Astron. Soc. 2012, 424, 1774–1789. [Google Scholar] [CrossRef]
- Worrall, D.M.; Birkinshaw, M.; Young, A.J.; Momtahan, K.; Fosbury, R.A.E.; Morganti, R.; Tadhunter, C.N.; Verdoes Kleijn, G. The jet-cloud interacting radio galaxy PKS B2152-699—I. Structures revealed in new deep radio and X-ray observations. Mon. Not. R. Astron. Soc. 2012, 424, 1346–1362. [Google Scholar] [CrossRef]
- Fabbiano, G.; Paggi, A.; Morganti, R.; Baloković, M.; Elvis, M.; Mukherjee, D.; Meenakshi, M.; Siemiginowska, A.; Murthy, S.M.; Oosterloo, T.A.; et al. Jet-ISM Interaction in NGC 1167/B2 0258+35, an LINER with an AGN Past. Astrophys. J. 2022, 938, 105. [Google Scholar] [CrossRef]
- Fabbiano, G.; Elvis, M. The Interaction of the Active Nucleus with the Host Galaxy Interstellar Medium. In Handbook of X-Ray and Gamma-Ray Astrophysics; Bambi, C., Sangangelo, A., Eds.; Springer: Singapore, 2022; p. 92. [Google Scholar] [CrossRef]
- Bourne, M.A.; Zubovas, K.; Nayakshin, S. The resolution bias: Low-resolution feedback simulations are better at destroying galaxies. Mon. Not. R. Astron. Soc. 2015, 453, 1829–1842. [Google Scholar] [CrossRef]
- Gabor, J.M.; Bournaud, F. Active galactic nuclei-driven outflows without immediate quenching in simulations of high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 2014, 441, 1615–1627. [Google Scholar] [CrossRef]
- Costa, T.; Pakmor, R.; Springel, V. Powering galactic superwinds with small-scale AGN winds. Mon. Not. R. Astron. Soc. 2020, 497, 5229–5255. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Oosterloo, T.; Mukherjee, D.; Bayram, S.; Guillard, P.; Wagner, A.Y.; Bicknell, G. Cold gas bubble inflated by a low-luminosity radio jet. Astron. Astrophys. 2025, 694, A110. [Google Scholar] [CrossRef]
- Venturi, G.; Cresci, G.; Marconi, A.; Mingozzi, M.; Nardini, E.; Carniani, S.; Mannucci, F.; Marasco, A.; Maiolino, R.; Perna, M.; et al. MAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 2021, 648, A17. [Google Scholar] [CrossRef]
- Riffel, R.A.; Storchi-Bergmann, T.; Riffel, R. An Outflow Perpendicular to the Radio Jet in the Seyfert Nucleus of NGC 5929. Astrophys. J. 2014, 780, L24. [Google Scholar] [CrossRef]
- Girdhar, A.; Harrison, C.M.; Mainieri, V.; Bittner, A.; Costa, T.; Kharb, P.; Mukherjee, D.; Arrigoni Battaia, F.; Alexander, D.M.; Calistro Rivera, G.; et al. Quasar feedback survey: Multiphase outflows, turbulence, and evidence for feedback caused by low power radio jets inclined into the galaxy disc. Mon. Not. R. Astron. Soc. 2022, 512, 1608–1628. [Google Scholar] [CrossRef]
- Ulivi, L.; Venturi, G.; Cresci, G.; Marconi, A.; Marconcini, C.; Amiri, A.; Belfiore, F.; Bertola, E.; Carniani, S.; D’Amato, Q.; et al. Feedback and ionized gas outflows in four low-radio power AGN at z ∼ 0.15. Astron. Astrophys. 2024, 685, A122. [Google Scholar] [CrossRef]
- Ruschel-Dutra, D.; Storchi-Bergmann, T.; Schnorr-Müller, A.; Riffel, R.A.; Dall’Agnol de Oliveira, B.; Lena, D.; Robinson, A.; Nagar, N.; Elvis, M. AGNIFS survey of local AGN: GMOS-IFU data and outflows in 30 sources. Mon. Not. R. Astron. Soc. 2021, 507, 74–89. [Google Scholar] [CrossRef]
- Audibert, A.; Ramos Almeida, C.; García-Burillo, S.; Combes, F.; Bischetti, M.; Meenakshi, M.; Mukherjee, D.; Bicknell, G.; Wagner, A.Y. Jet-induced molecular gas excitation and turbulence in the Teacup. Astron. Astrophys. 2023, 671, L12. [Google Scholar] [CrossRef]
- Su, K.Y.; Hopkins, P.F.; Bryan, G.L.; Somerville, R.S.; Hayward, C.C.; Anglés-Alcázar, D.; Faucher-Giguère, C.A.; Wellons, S.; Stern, J.; Terrazas, B.A.; et al. Which AGN jets quench star formation in massive galaxies? Mon. Not. R. Astron. Soc. 2021, 507, 175–204. [Google Scholar] [CrossRef]
- Weinberger, R.; Su, K.Y.; Ehlert, K.; Pfrommer, C.; Hernquist, L.; Bryan, G.L.; Springel, V.; Li, Y.; Burkhart, B.; Choi, E.; et al. Active galactic nucleus jet feedback in hydrostatic haloes. Mon. Not. R. Astron. Soc. 2023, 523, 1104–1125. [Google Scholar] [CrossRef]
- Salomé, Q.; Salomé, P.; Combes, F. Jet-induced star formation in 3C 285 and Minkowski’s Object. Astron. Astrophys. 2015, 574, A34. [Google Scholar] [CrossRef]
- Lacy, M.; Croft, S.; Fragile, C.; Wood, S.; Nyland, K. ALMA Observations of the Interaction of a Radio Jet with Molecular Gas in Minkowski’s Object. Astrophys. J. 2017, 838, 146. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y. Gas, dust, and star formation in the positive AGN feedback candidate 4C 41.17 at z = 3.8. Astron. Astrophys. 2020, 639, L13. [Google Scholar] [CrossRef]
- Duggal, C.; O’Dea, C.P.; Baum, S.A.; Labiano, A.; Tadhunter, C.; Worrall, D.M.; Morganti, R.; Tremblay, G.R.; Dicken, D. Optical- and UV-continuum Morphologies of Compact Radio Source Hosts. Astrophys. J. 2024, 965, 17. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Wagner, A.Y.; Mukherjee, D.; Mandal, A.; Janssen, R.M.J.; Zovaro, H.; Neumayer, N.; Bagchi, J.; Bicknell, G. Jet-driven AGN feedback on molecular gas and low star-formation efficiency in a massive local spiral galaxy with a bright X-ray halo. Astron. Astrophys. 2021, 654, A8. [Google Scholar] [CrossRef]
- Krumholz, M.R.; McKee, C.F. A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies. Astrophys. J. 2005, 630, 250–268. [Google Scholar] [CrossRef]
- Federrath, C.; Klessen, R.S. The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations. Astrophys. J. 2012, 761, 156. [Google Scholar] [CrossRef]
- Roos, O.; Juneau, S.; Bournaud, F.; Gabor, J.M. Thermal and Radiative Active Galactic Nucleus Feedback have a Limited Impact on Star Formation in High-redshift Galaxies. Astrophys. J. 2015, 800, 19. [Google Scholar] [CrossRef]
- Richings, A.J.; Faucher-Giguère, C.A. The origin of fast molecular outflows in quasars: Molecule formation in AGN-driven galactic winds. Mon. Not. R. Astron. Soc. 2018, 474, 3673–3699. [Google Scholar] [CrossRef]
- van der Kruit, P.C.; Oort, J.H.; Mathewson, D.S. The Radio Emission of NGC 4258 and the Possible Origin of Spiral Structure. Astron. Astrophys. 1972, 21, 169. [Google Scholar]
- Cecil, G.; Greenhill, L.J.; DePree, C.G.; Nagar, N.; Wilson, A.S.; Dopita, M.A.; Pérez-Fournon, I.; Argon, A.L.; Moran, J.M. The Active Jet in NGC 4258 and Its Associated Shocks. Astrophys. J. 2000, 536, 675–696. [Google Scholar] [CrossRef]
- Ogle, P.M.; Lanz, L.; Appleton, P.N. Jet-shocked H2 and CO in the Anomalous Arms of Molecular Hydrogen Emission Galaxy NGC 4258. Astrophys. J. 2014, 788, L33. [Google Scholar] [CrossRef]
- Appleton, P.N.; Diaz-Santos, T.; Fadda, D.; Ogle, P.; Togi, A.; Lanz, L.; Alatalo, K.; Fischer, C.; Rich, J.; Guillard, P. Jet-related Excitation of the [C II] Emission in the Active Galaxy NGC 4258 with SOFIA. Astrophys. J. 2018, 869, 61. [Google Scholar] [CrossRef]
- Butcher, H.R.; van Breugel, W.; Miley, G.K. Optical observations of radio jets. Astrophys. J. 1980, 235, 749–754. [Google Scholar] [CrossRef]
- Miley, G.K.; Heckman, T.M.; Butcher, H.R.; van Breugel, W.J.M. Optical emission from the extended radio source 3C 277.3 (Coma A). Astrophys. J. 1981, 247, L5–L9. [Google Scholar] [CrossRef]
- Heckman, T.M.; Miley, G.K.; Balick, B.; van Breugel, W.J.M.; Butcher, H.R. An optical and radio investigation of the radio galaxy 3C 305. Astrophys. J. 1982, 262, 529–553. [Google Scholar] [CrossRef]
- Heckman, T.M.; van Breugel, W.J.M.; Miley, G.K. Emission-line gas associated with the radio lobes of the high-luminosity radiosource 3C 171. Astrophys. J. 1984, 286, 509–516. [Google Scholar] [CrossRef]
- van Breugel, W.; Heckman, T.; Butcher, H.; Miley, G. Extended optical line emission from 3C 293: Radio jets propagating through a rotating gaseous disk. Astrophys. J. 1984, 277, 82–91. [Google Scholar] [CrossRef]
- van Breugel, W.; Fomalont, E.B. Is 3C 310 blowing bubbles ? Astrophys. J. 1984, 282, L55–L58. [Google Scholar] [CrossRef]
- Chambers, K.C.; Miley, G.K.; van Breugel, W. Alignment of radio and optical orientations in high-redshift radio galaxies. Nature 1987, 329, 604–606. [Google Scholar] [CrossRef]
- McCarthy, P.J.; van Breugel, W.; Spinrad, H.; Djorgovski, S. A Correlation between the Radio and Optical Morphologies of Distant 3 CR Radio Galaxies. Astrophys. J. 1987, 321, L29. [Google Scholar] [CrossRef]
- de Vries, W.H.; O’Dea, C.P.; Baum, S.A.; Sparks, W.B.; Biretta, J.; de Koff, S.; Golombek, D.; Lehnert, M.D.; Macchetto, F.; McCarthy, P.; et al. Hubble Space Telescope Imaging of Compact Steep-Spectrum Radio Sources. Astrophys. J. Suppl. Ser. 1997, 110, 191–211. [Google Scholar] [CrossRef]
- Vries, W.D.; O’Dea, C.P.; Baum, S.A.; Barthel, P.D. Optical-Radio Alignment in Compact Steep-Spectrum Radio Sources. Astrophys. J. 1999, 526, 27–39. [Google Scholar] [CrossRef]
- McCarthy, P.J. High redshift radio galaxies. Annu. Rev. Astron. Astrophys. 1993, 31, 639–688. [Google Scholar] [CrossRef]
- Fabian, A.C. The alignment of the optical continuum and radio axes of high-redshift radio galaxies: Electron scattering in intracluster gas ? Mon. Not. R. Astron. Soc. 1989, 238, 41P–44. [Google Scholar] [CrossRef]
- Tadhunter, C.N.; Scarrott, S.M.; Draper, P.; Rolph, C. The optical polarizations of high- and intermediate-redshift radio galaxies. Mon. Not. R. Astron. Soc. 1992, 256, 53P–58P. [Google Scholar] [CrossRef]
- Dickson, R.; Tadhunter, C.; Shaw, M.; Clark, N.; Morganti, R. The nebular contribution to the extended UV continua of powerful radio galaxies. Mon. Not. R. Astron. Soc. 1995, 273, L29–L33. [Google Scholar] [CrossRef]
- Tadhunter, C.; Dickson, R.; Morganti, R.; Robinson, T.G.; Wills, K.; Villar-Martin, M.; Hughes, M. The origin of the UV excess in powerful radio galaxies: Spectroscopy and polarimetry of a complete sample of intermediate-redshift radio galaxies. Mon. Not. R. Astron. Soc. 2002, 330, 977–996. [Google Scholar] [CrossRef]
- Kukreti, P.; Morganti, R.; Tadhunter, C.; Santoro, F. Ionised gas outflows over the radio AGN life cycle. Astron. Astrophys. 2023, 674, A198. [Google Scholar] [CrossRef]
- Kukreti, P.; Wylezalek, D.; Alb\’an, M.; DallAgnol de Oliveira, B. Feedback from low-to-moderate luminosity radio-AGN with MaNGA. arXiv 2025, arXiv:2503.20889. [Google Scholar] [CrossRef]
- Calistro Rivera, G.; Alexander, D.M.; Harrison, C.M.; Fawcett, V.A.; Best, P.N.; Williams, W.L.; Hardcastle, M.J.; Rosario, D.J.; Smith, D.J.B.; Arnaudova, M.I.; et al. Ubiquitous radio emission in quasars: Predominant AGN origin and a connection to jets, dust, and winds. Astron. Astrophys. 2024, 691, A191. [Google Scholar] [CrossRef]
- Nandi, P.; Stalin, C.S.; Saikia, D.J. Warm Ionized Gas Outflows in Active Galactic Nuclei: What Causes Them? Astrophys. J. 2025, 984, 20. [Google Scholar] [CrossRef]
- Cheung, E.; Bundy, K.; Cappellari, M.; Peirani, S.; Rujopakarn, W.; Westfall, K.; Yan, R.; Bershady, M.; Greene, J.E.; Heckman, T.M.; et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 2016, 533, 504–508. [Google Scholar] [CrossRef]
- Roy, N.; Bundy, K.; Cheung, E.; Rujopakarn, W.; Cappellari, M.; Belfiore, F.; Yan, R.; Heckman, T.; Bershady, M.; Greene, J.; et al. Detecting Radio AGN Signatures in Red Geysers. Astrophys. J. 2018, 869, 117. [Google Scholar] [CrossRef]
- Roy, N.; Moravec, E.; Bundy, K.; Hardcastle, M.J.; Gürkan, G.; Diego Baldi, R.; Leslie, S.K.; Masters, K.; Gelfand, J.; Riffel, R.; et al. Radio Morphology of Red Geysers. Astrophys. J. 2021, 922, 230. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Oosterloo, T.; Schulz, R.; Mukherjee, D.; Wagner, A.Y.; Bicknell, G.; Prandoni, I.; Shulevski, A. Feedback from low-luminosity radio galaxies: B2 0258+35. Astron. Astrophys. 2019, 629, A58. [Google Scholar] [CrossRef]
- Drevet Mulard, M.; Nesvadba, N.P.H.; Meenakshi, M.; Mukherjee, D.; Wagner, A.; Bicknell, G.; Neumayer, N.; Combes, F.; Zovaro, H.; Janssen, R.M.J.; et al. Star formation in a massive spiral galaxy with a radio-AGN. Astron. Astrophys. 2023, 676, A35. [Google Scholar] [CrossRef]
- Orienti, M.; D’Ammando, F.; Dallacasa, D.; Migliori, G.; Rossi, P.; Bodo, G. VLBA observations of a sample of low-power compact symmetric objects. A&A 2025, 698, A157. [Google Scholar] [CrossRef]
- Dallacasa, D.; Stanghellini, C.; Centonza, M.; Fanti, R. High frequency peakers. I. The bright sample. A&A 2000, 363, 887–900. [Google Scholar] [CrossRef]
- Orienti, M. Radio properties of Compact Steep Spectrum and GHz-Peaked Spectrum radio sources. Astron. Nachrichten 2016, 337, 9. [Google Scholar] [CrossRef]
- Murgia, M. Spectral Ages of CSOs and CSS Sources. Publ. Astron. Soc. Aust. 2003, 20, 19–24. [Google Scholar] [CrossRef]
- An, T.; Baan, W.A. The Dynamic Evolution of Young Extragalactic Radio Sources. Astrophys. J. 2012, 760, 77. [Google Scholar] [CrossRef]
- Patil, P.; Nyland, K.; Whittle, M.; Lonsdale, C.; Lacy, M.; Lonsdale, C.; Mukherjee, D.; Trapp, A.C.; Kimball, A.E.; Lanz, L.; et al. High-resolution VLA Imaging of Obscured Quasars: Young Radio Jets Caught in a Dense ISM. Astrophys. J. 2020, 896, 18. [Google Scholar] [CrossRef]
- Rossetti, A.; Dallacasa, D.; Fanti, C.; Fanti, R.; Mack, K.H. The B3-VLA CSS sample. VII. WSRT polarisation observations and the ambient Faraday medium properties revisited. Astron. Astrophys. 2008, 487, 865–883. [Google Scholar] [CrossRef]
- Mantovani, F.; Rossetti, A.; Junor, W.; Saikia, D.J.; Salter, C.J. Radio polarimetry of compact steep spectrum sources at sub-arcsecond resolution. Astron. Astrophys. 2013, 555, A4. [Google Scholar] [CrossRef]
- Guainazzi, M.; Siemiginowska, A.; Stanghellini, C.; Grandi, P.; Piconcelli, E.; Azubike Ugwoke, C. A hard X-ray view of giga-hertz peaked spectrum radio galaxies. Astron. Astrophys. 2006, 446, 87–96. [Google Scholar] [CrossRef]
- Siemiginowska, A.; LaMassa, S.; Aldcroft, T.L.; Bechtold, J.; Elvis, M. X-Ray Properties of the Gigahertz Peaked and Compact Steep Spectrum Sources. Astrophys. J. 2008, 684, 811–821. [Google Scholar] [CrossRef]
- Siemiginowska, A.; Sobolewska, M.; Migliori, G.; Guainazzi, M.; Hardcastle, M.; Ostorero, L.; Stawarz, Ł. X-Ray Properties of the Youngest Radio Sources and Their Environments. Astrophys. J. 2016, 823, 57. [Google Scholar] [CrossRef]
- Ostorero, L.; Moderski, R.; Stawarz, Ł.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J. X-ray-emitting GHz-peaked-spectrum Galaxies: Testing a Dynamical-Radiative Model with Broadband Spectra. Astrophys. J. 2010, 715, 1071–1093. [Google Scholar] [CrossRef]
- Ostorero, L.; Morganti, R.; Diaferio, A.; Siemiginowska, A.; Stawarz, Ł.; Moderski, R.; Labiano, A. Correlation between X-Ray and Radio Absorption in Compact Radio Galaxies. Astrophys. J. 2017, 849, 34. [Google Scholar] [CrossRef]
- Patil, P.; Whittle, M.; Nyland, K.; Lonsdale, C.; Lacy, M.; Kimball, A.E.; Lonsdale, C.; Peters, W.; Clarke, T.E.; Efstathiou, A.; et al. Radio Spectra of Luminous, Heavily Obscured WISE-NVSS Selected Quasars. Astrophys. J. 2022, 934, 26. [Google Scholar] [CrossRef]
- Nascimento, R.S.; Rodríguez-Ardila, A.; Dahmer-Hahn, L.; Fonseca-Faria, M.A.; Riffel, R.; Marinello, M.; Beuchert, T.; Callingham, J.R. Optical properties of Peaked Spectrum radio sources. Mon. Not. R. Astron. Soc. 2022, 511, 214–230. [Google Scholar] [CrossRef]
- Fanti, C. Radio properties of CSSs and GPSs. Astron. Nachrichten 2009, 330, 120–127. [Google Scholar] [CrossRef]
- Miranda Marques, B.L.; Rodríguez-Ardila, A.; Fonseca-Faria, M.A.; Panda, S. Powerful Outflows of Compact Radio Galaxies. Astrophys. J. 2025, 978, 16. [Google Scholar] [CrossRef]
- Baldi, R.D.; Capetti, A.; Massaro, F. FR0CAT: A FIRST catalog of FR 0 radio galaxies. Astron. Astrophys. 2018, 609, A1. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Mainieri, V.; Alexander, D.M.; Arrigoni Battaia, F.; Calistro Rivera, G.; Circosta, C.; Costa, T.; De Breuck, C.; Edge, A.C.; et al. The quasar feedback survey: Discovering hidden Radio-AGN and their connection to the host galaxy ionized gas. Mon. Not. R. Astron. Soc. 2021, 503, 1780–1797. [Google Scholar] [CrossRef]
- Njeri, A.; Harrison, C.M.; Kharb, P.; Beswick, R.; Calistro-Rivera, G.; Circosta, C.; Mainieri, V.; Molyneux, S.; Mullaney, J.; Sasikumar, S. The quasar feedback survey: Zooming into the origin of radio emission with e-MERLIN. Mon. Not. R. Astron. Soc. 2025, 537, 705–722. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Mainieri, V.; Calistro Rivera, G.; Jethwa, P.; Zhang, Z.Y.; Alexander, D.M.; Circosta, C.; Costa, T.; De Breuck, C.; et al. High molecular gas content and star formation rates in local galaxies that host quasars, outflows, and jets. Mon. Not. R. Astron. Soc. 2020, 498, 1560–1575. [Google Scholar] [CrossRef]
- Molyneux, S.J.; Calistro Rivera, G.; De Breuck, C.; Harrison, C.M.; Mainieri, V.; Lundgren, A.; Kakkad, D.; Circosta, C.; Girdhar, A.; Costa, T.; et al. The Quasar Feedback Survey: Characterizing CO excitation in quasar host galaxies. Mon. Not. R. Astron. Soc. 2024, 527, 4420–4439. [Google Scholar] [CrossRef]
- Davis, T.A.; Greene, J.E.; Ma, C.P.; Blakeslee, J.P.; Dawson, J.M.; Pandya, V.; Veale, M.; Zabel, N. The MASSIVE survey—XI. What drives the molecular gas properties of early-type galaxies. Mon. Not. R. Astron. Soc. 2019, 486, 1404–1423. [Google Scholar] [CrossRef]
- Tadhunter, C.; Oosterloo, T.; Morganti, R.; Ramos Almeida, C.; Martín, M.V.; Emonts, B.; Dicken, D. An ALMA CO(1-0) survey of the 2Jy sample: Large and massive molecular discs in radio AGN host galaxies. Mon. Not. R. Astron. Soc. 2024, 532, 4463–4485. [Google Scholar] [CrossRef]
- Ruffa, I.; Davis, T.A. Molecular Gas Kinematics in Local Early-Type Galaxies with ALMA. Galaxies 2024, 12, 36. [Google Scholar] [CrossRef]
- Audibert, A.; Dasyra, K.M.; Papachristou, M.; Fernández-Ontiveros, J.A.; Ruffa, I.; Bisigello, L.; Combes, F.; Salomé, P.; Gruppioni, C. CO in the ALMA Radio-source Catalogue (ARC): The molecular gas content of radio galaxies as a function of redshift. Astron. Astrophys. 2022, 668, A67. [Google Scholar] [CrossRef]
- Best, P.N.; Kauffmann, G.; Heckman, T.M.; Brinchmann, J.; Charlot, S.; Ivezić, Ž.; White, S.D.M. The host galaxies of radio-loud active galactic nuclei: Mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 2005, 362, 25–40. [Google Scholar] [CrossRef]
- Mauch, T.; Sadler, E.M. Radio sources in the 6dFGS: Local luminosity functions at 1.4GHz for star-forming galaxies and radio-loud AGN. Mon. Not. R. Astron. Soc. 2007, 375, 931–950. [Google Scholar] [CrossRef]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, A17. [Google Scholar] [CrossRef]
- Weymann, R.J.; Scott, J.S.; Schiano, A.V.R.; Christiansen, W.A. A thermal wind model for the broad emission line region of quasars. Astrophys. J. 1982, 262, 497–510. [Google Scholar] [CrossRef]
- Schiano, A.V.R. The hydrodynamic effects of nuclear active galaxy winds on host galaxies. Astrophys. J. 1985, 299, 24–40. [Google Scholar] [CrossRef]
- Schiano, A.V.R. The Interaction of Interstellar Clouds with a “Quasar Wind” and Its Relation to the Narrow Emmision Line Regions of Seyfert Galaxies. Astrophys. J. 1986, 302, 81. [Google Scholar] [CrossRef]
- King, A. Black Holes, Galaxy Formation, and the MBH-σ Relation. Astrophys. J. 2003, 596, L27–L29. [Google Scholar] [CrossRef]
- King, A. The AGN-Starburst Connection, Galactic Superwinds, and MBH-σ. Astrophys. J. Lett. 2005, 635, L121–L123. [Google Scholar] [CrossRef]
- Zubovas, K.; Nayakshin, S. Energy- and momentum-conserving AGN feedback outflows. Mon. Not. R. Astron. Soc. 2014, 440, 2625–2635. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Umemura, M.; Bicknell, G.V. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback. Astrophys. J. Lett. 2013, 763, L18. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Torrey, P.; Faucher-Giguère, C.A.; Quataert, E.; Murray, N. Stellar and quasar feedback in concert: Effects on AGN accretion, obscuration, and outflows. Mon. Not. R. Astron. Soc. 2016, 458, 816–831. [Google Scholar] [CrossRef]
- Bieri, R.; Dubois, Y.; Rosdahl, J.; Wagner, A.; Silk, J.; Mamon, G.A. Outflows driven by quasars in high-redshift galaxies with radiation hydrodynamics. Mon. Not. R. Astron. Soc. 2017, 464, 1854–1873. [Google Scholar] [CrossRef]
- Costa, T.; Rosdahl, J.; Sijacki, D.; Haehnelt, M.G. Quenching star formation with quasar outflows launched by trapped IR radiation. Mon. Not. R. Astron. Soc. 2018, 479, 2079–2111. [Google Scholar] [CrossRef]
- Ward, S.R.; Costa, T.; Harrison, C.M.; Mainieri, V. AGN-driven outflows in clumpy media: Multiphase structure and scaling relations. Mon. Not. R. Astron. Soc. 2024, 533, 1733–1755. [Google Scholar] [CrossRef]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Palumbo, G.G.C.; Yaqoob, T.; Braito, V.; Dadina, M. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 2010, 521, A57. [Google Scholar] [CrossRef]
- Tombesi, F.; Tazaki, F.; Mushotzky, R.F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J.N.; Guainazzi, M. Ultrafast outflows in radio-loud active galactic nuclei. Mon. Not. R. Astron. Soc. 2014, 443, 2154–2182. [Google Scholar] [CrossRef]
- Rankine, A.L.; Hewett, P.C.; Banerji, M.; Richards, G.T. BAL and non-BAL quasars: Continuum, emission, and absorption properties establish a common parent sample. Mon. Not. R. Astron. Soc. 2020, 492, 4553–4575. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Greene, J.E. Quasar feedback and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2014, 442, 784–804. [Google Scholar] [CrossRef]
- Nims, J.; Quataert, E.; Faucher-Giguère, C.A. Observational signatures of galactic winds powered by active galactic nuclei. Mon. Not. R. Astron. Soc. 2015, 447, 3612–3622. [Google Scholar] [CrossRef]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nature Astronomy 2019, 3, 387–396. [Google Scholar] [CrossRef]
- Wylezalek, D.; Zakamska, N.L. Evidence of suppression of star formation by quasar-driven winds in gas-rich host galaxies at z < 1? Mon. Not. R. Astron. Soc. 2016, 461, 3724–3739. [Google Scholar] [CrossRef]
- Morabito, L.K.; Matthews, J.H.; Best, P.N.; Gürkan, G.; Jarvis, M.J.; Prandoni, I.; Duncan, K.J.; Hardcastle, M.J.; Kunert-Bajraszewska, M.; Mechev, A.P.; et al. The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey. Astron. Astrophys. 2019, 622, A15. [Google Scholar] [CrossRef]
- Albán, M.; Wylezalek, D.; Comerford, J.M.; Greene, J.E.; Riffel, R.A. Mapping AGN winds: A connection between radio-mode AGNs and the AGN feedback cycle. Astron. Astrophys. 2024, 691, A124. [Google Scholar] [CrossRef]
- Fawcett, V.A.; Harrison, C.M.; Alexander, D.M.; Morabito, L.K.; Kharb, P.; Rosario, D.J.; Baghel, J.; Ghosh, S.; Silpa, S.; Petley, J.; et al. Connection between steep radio spectral slopes and dust extinction in QSOs: Evidence for outflow-driven shocks in dusty QSOs. Mon. Not. R. Astron. Soc. 2025, 537, 2003–2023. [Google Scholar] [CrossRef]
- Sutherland, R.S.; Dopita, M.A. Cooling functions for low-density astrophysical plasmas. ApJS 1993, 88, 253. [Google Scholar] [CrossRef]
- Gaspari, M.; Melioli, C.; Brighenti, F.; D’Ercole, A. The dance of heating and cooling in galaxy clusters: Three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 2011, 411, 349–372. [Google Scholar] [CrossRef]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Reynolds, C.S. How AGN Jets Heat the Intracluster Medium–Insights from Hydrodynamic Simulations. Astrophys. J. 2016, 829, 90. [Google Scholar] [CrossRef]
- Proga, D.; Kallman, T.R. Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation. Astrophys. J. 2004, 616, 688–695. [Google Scholar] [CrossRef]
- Proga, D.; Jiang, Y.F.; Davis, S.W.; Stone, J.M.; Smith, D. The Effects of Irradiation on Cloud Evolution in Active Galactic Nuclei. Astrophys. J. 2014, 780, 51. [Google Scholar] [CrossRef]
- Dyda, S.; Dannen, R.C.; Kallman, T.R.; Davis, S.W.; Proga, D. Time-Dependent AGN Disc Winds II – Effects of Photoionization. arXiv 2025, arXiv:2504.00117. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Paraschos, G.F.; Bisbas, T.G.; Combes, F.; Fernández-Ontiveros, J.A. Insights into the collapse and expansion of molecular clouds in outflows from observable pressure gradients. Nat. Astron. 2022, 6, 1077–1084. [Google Scholar] [CrossRef]
- Snodin, A.P.; Brandenburg, A.; Mee, A.J.; Shukurov, A. Simulating field-aligned diffusion of a cosmic ray gas. Mon. Not. R. Astron. Soc. 2006, 373, 643–652. [Google Scholar] [CrossRef]
- Dubois, Y.; Commerçon, B. An implicit scheme for solving the anisotropic diffusion of heat and cosmic rays in the RAMSES code. Astron. Astrophys. 2016, 585, A138. [Google Scholar] [CrossRef]
- Thomas, T.; Pfrommer, C. Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays. Mon. Not. R. Astron. Soc. 2019, 485, 2977–3008. [Google Scholar] [CrossRef]
- Thomas, T.; Pfrommer, C.; Pakmor, R. A finite volume method for two-moment cosmic ray hydrodynamics on a moving mesh. Mon. Not. R. Astron. Soc. 2021, 503, 2242–2264. [Google Scholar] [CrossRef]
- Chan, T.K.; Kereš, D.; Hopkins, P.F.; Quataert, E.; Su, K.Y.; Hayward, C.C.; Faucher-Giguère, C.A. Cosmic ray feedback in the FIRE simulations: Constraining cosmic ray propagation with GeV γ-ray emission. Mon. Not. R. Astron. Soc. 2019, 488, 3716–3744. [Google Scholar] [CrossRef]
- Guo, F.; Mathews, W.G. Cosmic-ray-dominated AGN Jets and the Formation of X-ray Cavities in Galaxy Clusters. Astrophys. J. 2011, 728, 121. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Ricker, P.M.; Zweibel, E.; Lee, D. The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion. Astrophys. J. 2012, 761, 185. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Yang, H.Y.K.; Reynolds, C.S. Cosmic-Ray Feedback Heating of the Intracluster Medium. Astrophys. J. 2017, 844, 13. [Google Scholar] [CrossRef]
- Ehlert, K.; Weinberger, R.; Pfrommer, C.; Pakmor, R.; Springel, V. Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Mon. Not. R. Astron. Soc. 2018, 481, 2878–2900. [Google Scholar] [CrossRef]
- Farcy, M.; Rosdahl, J.; Dubois, Y.; Blaizot, J.; Martin-Alvarez, S. Radiation-magnetohydrodynamics simulations of cosmic ray feedback in disc galaxies. Mon. Not. R. Astron. Soc. 2022, 513, 5000–5019. [Google Scholar] [CrossRef]
- Su, K.Y.; Bryan, G.L.; Hayward, C.C.; Somerville, R.S.; Hopkins, P.F.; Emami, R.; Faucher-Giguère, C.A.; Quataert, E.; Ponnada, S.B.; Fielding, D.; et al. Unravelling jet quenching criteria across L* galaxies and massive cluster ellipticals. Mon. Not. R. Astron. Soc. 2024, 532, 2724–2740. [Google Scholar] [CrossRef]
- Scheck, L.; Aloy, M.A.; Martí, J.M.; Gómez, J.L.; Müller, E. Does the plasma composition affect the long-term evolution of relativistic jets? Mon. Not. R. Astron. Soc. 2002, 331, 615–634. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Ryu, D. Effects of Fluid Composition on Spherical Flows Around Black Holes. Astrophys. J. 2009, 694, 492–501. [Google Scholar] [CrossRef]
- Chael, A. Survey of radiative, two-temperature magnetically arrested simulations of the black hole M87* I: Turbulent electron heating. Mon. Not. R. Astron. Soc. 2025, 537, 2496–2515. [Google Scholar] [CrossRef]
- Salas, L.D.S.; Liska, M.T.P.; Markoff, S.B.; Chatterjee, K.; Musoke, G.; Porth, O.; Ripperda, B.; Yoon, D.; Mulaudzi, W. Two-temperature treatments in magnetically arrested disc GRMHD simulations more accurately predict light curves of Sagittarius A*. Mon. Not. R. Astron. Soc. 2025, 538, 698–710. [Google Scholar] [CrossRef]
- Nishikawa, K.I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.J. Particle Acceleration in Relativistic Jets Due to Weibel Instability. Astrophys. J. 2003, 595, 555–563. [Google Scholar] [CrossRef]
- Liang, E.; Boettcher, M.; Smith, I. Magnetic Field Generation and Particle Energization at Relativistic Shear Boundaries in Collisionless Electron-Positron Plasmas. Astrophys. J. 2013, 766, L19. [Google Scholar] [CrossRef]
- Nishikawa, K.I.; Frederiksen, J.T.; Nordlund, Å.; Mizuno, Y.; Hardee, P.E.; Niemiec, J.; Gómez, J.L.; Pe’er, A.; Duţan, I.; Meli, A.; et al. Evolution of Global Relativistic Jets: Collimations and Expansion with kKHI and the Weibel Instability. Astrophys. J. 2016, 820, 94. [Google Scholar] [CrossRef]
- Rieger, F.M.; Duffy, P. Particle Acceleration in Shearing Flows: Efficiencies and Limits. Astrophys. J. 2019, 886, L26. [Google Scholar] [CrossRef]
- Chand, T.; Böttcher, M. Inverse Compton Emission and Cooling of Relativistic Particles Accelerated at Shear Boundary Layers in Relativistic Jets. Astrophys. J. 2024, 962, 31. [Google Scholar] [CrossRef]
- Duţan, I.; Nishikawa, K.; Meli, A.; Kobzar, O.; Köhn, C.; Mizuno, Y.; MacDonald, N.; Gómez, J.L.; Hirotani, K. Synthetic spectra from particle-in-cell simulations of relativistic jets containing an initial toroidal magnetic field. Mon. Not. R. Astron. Soc. 2025, 540, 1043–1054. [Google Scholar] [CrossRef]
- Meli, A.; Nishikawa, K.I. Particle-in-Cell Simulations of Astrophysical Relativistic Jets. Universe 2021, 7, 450. [Google Scholar] [CrossRef]
- Sironi, L.; Keshet, U.; Lemoine, M. Relativistic Shocks: Particle Acceleration and Magnetization. Space Sci. Rev. 2015, 191, 519–544. [Google Scholar] [CrossRef]
- Sironi, L.; Uzdensky, D.A.; Giannios, D. Relativistic Magnetic Reconnection in Astrophysical Plasmas: A Powerful Mechanism of Nonthermal Emission. arXiv 2025, arXiv:2506.02101. [Google Scholar] [CrossRef]
- Bodo, G.; Massaglia, S.; Ferrari, A.; Trussoni, E. Kelvin-Helmholtz instability of hydrodynamic supersonic jets. Astron. Astrophys. 1994, 283, 655–676. [Google Scholar]
- Hardee, P.E. On Three-dimensional Structures in Relativistic Hydrodynamic Jets. Astrophys. J. 2000, 533, 176–193. [Google Scholar] [CrossRef]
- Perucho, M.; Hanasz, M.; Martí, J.M.; Sol, H. Stability of hydrodynamical relativistic planar jets. I. Linear evolution and saturation of Kelvin-Helmholtz modes. Astron. Astrophys. 2004, 427, 415–429. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Hanasz, M. Nonlinear stability of relativistic sheared planar jets. Astron. Astrophys. 2005, 443, 863–881. [Google Scholar] [CrossRef]
- Giannios, D.; Spruit, H.C. The role of kink instability in Poynting-flux dominated jets. Astron. Astrophys. 2006, 450, 887–898. [Google Scholar] [CrossRef]
- Moll, R.; Spruit, H.C.; Obergaulinger, M. Kink instabilities in jets from rotating magnetic fields. Astron. Astrophys. 2008, 492, 621–630. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hardee, P.E.; Nishikawa, K.I. Spatial Growth of the Current-driven Instability in Relativistic Jets. Astrophys. J. 2014, 784, 167. [Google Scholar] [CrossRef]
- Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.I.; Hardee, P.E. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. I. Instability of a Static Column. Astrophys. J. 2009, 700, 684–693. [Google Scholar] [CrossRef]
- Bromberg, O.; Singh, C.B.; Davelaar, J.; Philippov, A.A. Kink Instability: Evolution and Energy Dissipation in Relativistic Force-free Nonrotating Jets. Astrophys. J. 2019, 884, 39. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hardee, P.; Nishikawa, K.I. Three-dimensional Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets. Astrophys. J. 2007, 662, 835–850. [Google Scholar] [CrossRef]
- McKinney, J.C.; Blandford, R.D. Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 2009, 394, L126–L130. [Google Scholar] [CrossRef]
- Musso, M.; Bodo, G.; Mamatsashvili, G.; Rossi, P.; Mignone, A. Evolution of current- and pressure-driven instabilities in relativistic jets. Mon. Not. R. Astron. Soc. 2024, 532, 4810–4825. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Cela, J.M.; Hanasz, M.; de La Cruz, R.; Rubio, F. Stability of three-dimensional relativistic jets: Implications for jet collimation. Astron. Astrophys. 2010, 519, A41. [Google Scholar] [CrossRef]
- Chow, A.; Davelaar, J.; Rowan, M.E.; Sironi, L. The Kelvin-Helmholtz Instability at the Boundary of Relativistic Magnetized Jets. Astrophys. J. 2023, 951, L23. [Google Scholar] [CrossRef]
- Bodo, G.; Mamatsashvili, G.; Rossi, P.; Mignone, A. Linear stability analysis of magnetized jets: The rotating case. Mon. Not. R. Astron. Soc. 2016, 462, 3031–3052. [Google Scholar] [CrossRef]
- Bodo, G.; Mamatsashvili, G.; Rossi, P.; Mignone, A. Linear stability analysis of magnetized relativistic rotating jets. Mon. Not. R. Astron. Soc. 2019, 485, 2909–2921. [Google Scholar] [CrossRef]
- Bromberg, O.; Tchekhovskoy, A. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation. Mon. Not. R. Astron. Soc. 2016, 456, 1739–1760. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Bromberg, O. Three-dimensional relativistic MHD simulations of active galactic nuclei jets: Magnetic kink instability and Fanaroff-Riley dichotomy. Mon. Not. R. Astron. Soc. 2016, 461, L46–L50. [Google Scholar] [CrossRef]
- Lobanov, A.P.; Zensus, J.A. A Cosmic Double Helix in the Archetypical Quasar 3C273. Science 2001, 294, 128–131. [Google Scholar] [CrossRef]
- Perucho, M.; Lobanov, A.P.; Martí, J.M.; Hardee, P.E. The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273. Astron. Astrophys. 2006, 456, 493–504. [Google Scholar] [CrossRef]
- Nikonov, A.S.; Kovalev, Y.Y.; Kravchenko, E.V.; Pashchenko, I.N.; Lobanov, A.P. Properties of the jet in M87 revealed by its helical structure imaged with the VLBA at 8 and 15 GHz. Mon. Not. R. Astron. Soc. 2023, 526, 5949–5963. [Google Scholar] [CrossRef]
- Lobanov, A.; Hardee, P.; Eilek, J. Internal structure and dynamics of the kiloparsec-scale jet in M87. New Astron. Rev. 2003, 47, 629–632. [Google Scholar] [CrossRef]
- Hardee, P.E.; Eilek, J.A. Using Twisted Filaments to Model the Inner Jet in M 87. Astrophys. J. 2011, 735, 61. [Google Scholar] [CrossRef]
- Mertens, F.; Lobanov, A.P.; Walker, R.C.; Hardee, P.E. Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys. 2016, 595, A54. [Google Scholar] [CrossRef]
- Perucho, M.; Kovalev, Y.Y.; Lobanov, A.P.; Hardee, P.E.; Agudo, I. Anatomy of Helical Extragalactic Jets: The Case of S5 0836+710. Astrophys. J. 2012, 749, 55. [Google Scholar] [CrossRef]
- Vega-García, L.; Perucho, M.; Lobanov, A.P. Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis. Astron. Astrophys. 2019, 627, A79. [Google Scholar] [CrossRef]
- Worrall, D.M.; Birkinshaw, M.; Laing, R.A.; Cotton, W.D.; Bridle, A.H. The inner jet of radio galaxy NGC 315 as observed with Chandra and the Very Large Array. Mon. Not. R. Astron. Soc. 2007, 380, 2–14. [Google Scholar] [CrossRef]
- Park, J.; Zhao, G.Y.; Nakamura, M.; Mizuno, Y.; Pu, H.Y.; Asada, K.; Takahashi, K.; Toma, K.; Kino, M.; Cho, I.; et al. Discovery of Limb Brightening in the Parsec-scale Jet of NGC 315 through Global Very Long Baseline Interferometry Observations and Its Implications for Jet Models. Astrophys. J. 2024, 973, L45. [Google Scholar] [CrossRef]
- Fuentes, A.; Gómez, J.L.; Martí, J.M.; Perucho, M.; Zhao, G.Y.; Lico, R.; Lobanov, A.P.; Bruni, G.; Kovalev, Y.Y.; Chael, A.; et al. Filamentary structures as the origin of blazar jet radio variability. Nat. Astron. 2023, 7, 1359–1367. [Google Scholar] [CrossRef]
- Paraschos, G.F.; Mpisketzis, V. Unravelling the dynamics of cosmic vortices: Probing a Kelvin-Helmholtz instability in the jet of 3C 84. Astron. Astrophys. 2025, 696, L7. [Google Scholar] [CrossRef]
- Perucho, M. Triggering mixing and deceleration in FRI jets: A solution. Mon. Not. R. Astron. Soc. 2020, 494, L22–L26. [Google Scholar] [CrossRef]
- Bicknell, G.V. On the Relationship between BL Lacertae Objects and Fanaroff-Riley I Radio Galaxies. Astrophys. J. 1994, 422, 542. [Google Scholar] [CrossRef]
- Carvalho, J.C. The evolution of GHz-peaked-spectrum radio sources. Astron. Astrophys. 1998, 329, 845–852. [Google Scholar]
- Lansbury, G.B.; Jarvis, M.E.; Harrison, C.M.; Alexander, D.M.; Del Moro, A.; Edge, A.C.; Mullaney, J.R.; Thomson, A.P. Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble. Astrophys. J. 2018, 856, L1. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Bischetti, M.; García-Burillo, S.; Alonso-Herrero, A.; Audibert, A.; Cicone, C.; Feruglio, C.; Tadhunter, C.N.; Pierce, J.C.S.; Pereira-Santaella, M.; et al. The diverse cold molecular gas contents, morphologies, and kinematics of type-2 quasars as seen by ALMA. Astron. Astrophys. 2022, 658, A155. [Google Scholar] [CrossRef]
- Venturi, G.; Treister, E.; Finlez, C.; D’Ago, G.; Bauer, F.; Harrison, C.M.; Ramos Almeida, C.; Revalski, M.; Ricci, F.; Sartori, L.F.; et al. Complex AGN feedback in the Teacup galaxy. A powerful ionised galactic outflow, jet-ISM interaction, and evidence for AGN-triggered star formation in a giant bubble. Astron. Astrophys. 2023, 678, A127. [Google Scholar] [CrossRef]
- Bessiere, P.S.; Ramos Almeida, C.; Holden, L.R.; Tadhunter, C.N.; Canalizo, G. QSOFEED: Relationship between star formation and active galactic nuclei feedback. Astron. Astrophys. 2024, 689, A271. [Google Scholar] [CrossRef]
- Zanchettin, M.V.; Ramos Almeida, C.; Audibert, A.; Acosta-Pulido, J.A.; Cezar, P.H.; Hicks, E.; Lapi, A.; Mullaney, J. Unveiling the warm molecular outflow component of type-2 quasars with SINFONI. Astron. Astrophys. 2025, 695, A185. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Garcia-Bernete, I.; Pereira-Santaella, M.; Speranza, G.; Maiolino, R.; Ji, X.; Audibert, A.; Cezar, P.H.; Acosta-Pulido, J.A.; Alonso-Herrero, A.; et al. JWST MIRI reveals the diversity of nuclear mid-infrared spectra of nearby type-2 quasars. arXiv 2025, arXiv:2504.01595. [Google Scholar] [CrossRef]
- Riffel, R.A.; Storchi-Bergmann, T.; Riffel, R. Feeding versus feedback in active galactic nuclei from near-infrared integral field spectroscopy—X. NGC 5929. Mon. Not. R. Astron. Soc. 2015, 451, 3587–3605. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Thomson, A.P.; Circosta, C.; Mainieri, V.; Alexander, D.M.; Edge, A.C.; Lansbury, G.B.; Molyneux, S.J.; Mullaney, J.R. Prevalence of radio jets associated with galactic outflows and feedback from quasars. Mon. Not. R. Astron. Soc. 2019, 485, 2710–2730. [Google Scholar] [CrossRef]
- Girdhar, A.; Harrison, C.M.; Mainieri, V.; Fernández Aranda, R.; Alexander, D.M.; Arrigoni Battaia, F.; Bianchin, M.; Calistro Rivera, G.; Circosta, C.; Costa, T.; et al. Quasar feedback survey: Molecular gas affected by central outflows and by 10-kpc radio lobes reveal dual feedback effects in ’radio quiet’ quasars. Mon. Not. R. Astron. Soc. 2024, 527, 9322–9342. [Google Scholar] [CrossRef]
- Ali, A.; Sebastian, B.; Kakkad, D.; Silpa, S.; Kharb, P.; O’Dea, C.P.; Singha, M.; Rubinur, K.; Baum, S.A.; Bait, O.; et al. Jet-mode feedback in NGC 5972: Insights from resolved MUSE, GMRT and VLA observations. arXiv 2025, arXiv:2503.19031. [Google Scholar] [CrossRef]
- Mahony, E.K.; Morganti, R.; Emonts, B.H.C.; Oosterloo, T.A.; Tadhunter, C. The location and impact of jet-driven outflows of cold gas: The case of 3C 293. Mon. Not. R. Astron. Soc. 2013, 435, L58–L62. [Google Scholar] [CrossRef]
- Lanz, L.; Ogle, P.M.; Evans, D.; Appleton, P.N.; Guillard, P.; Emonts, B. Jet-ISM Interaction in the Radio Galaxy 3C 293: Jet-driven Shocks Heat ISM to Power X-Ray and Molecular H2 Emission. Astrophys. J. 2015, 801, 17. [Google Scholar] [CrossRef]
- Mahony, E.K.; Oonk, J.B.R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B.H.C.; Oosterloo, T.A. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293. Mon. Not. R. Astron. Soc. 2016, 455, 2453–2460. [Google Scholar] [CrossRef]
- Riffel, R.A.; Riffel, R.; Bianchin, M.; Storchi-Bergmann, T.; Souza-Oliveira, G.L.; Zakamska, N.L. Spatially resolved observations of outflows in the radio loud AGN of UGC 8782. Mon. Not. R. Astron. Soc. 2023, 521, 3260–3272. [Google Scholar] [CrossRef]
- Costa-Souza, J.H.; Riffel, R.A.; Souza-Oliveira, G.L.; Zakamska, N.L.; Bianchin, M.; Storchi-Bergmann, T.; Riffel, R. Blowing Star Formation Away in Active Galactic Nuclei Hosts. I. Observation of Warm Molecular Outflows with JWST MIRI. Astrophys. J. 2024, 974, 127. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Combes, F.; Oosterloo, T.; Oonk, J.B.R.; Morganti, R.; Salomé, P.; Vlahakis, N. ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astron. Astrophys. 2016, 595, L7. [Google Scholar] [CrossRef]
- Oosterloo, T.; Raymond Oonk, J.B.; Morganti, R.; Combes, F.; Dasyra, K.; Salomé, P.; Vlahakis, N.; Tadhunter, C. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063. Astron. Astrophys. 2017, 608, A38. [Google Scholar] [CrossRef]
- Fonseca-Faria, M.A.; Rodríguez-Ardila, A.; Contini, M.; Dahmer-Hahn, L.G.; Morganti, R. Physical conditions and extension of the coronal line region in IC 5063. Mon. Not. R. Astron. Soc. 2023, 524, 143–160. [Google Scholar] [CrossRef]
- Travascio, A.; Fabbiano, G.; Paggi, A.; Elvis, M.; Maksym, W.P.; Morganti, R.; Oosterloo, T.; Fiore, F. AGN-Host Interaction in IC 5063. I. Large-scale X-Ray Morphology and Spectral Analysis. Astrophys. J. 2021, 921, 129. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Paraschos, G.F.; Combes, F.; Patapis, P.; Helou, G.; Papachristou, M.; Fernandez-Ontiveros, J.A.; Bisbas, T.G.; Spinoglio, L.; Armus, L.; et al. A Case Study of Gas Impacted by Black-hole Jets with the JWST: Outflows, Bow Shocks, and High Excitation of the Gas in the Galaxy IC 5063. Astrophys. J. 2024, 977, 156. [Google Scholar] [CrossRef]
- Cresci, G.; Marconi, A.; Zibetti, S.; Risaliti, G.; Carniani, S.; Mannucci, F.; Gallazzi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; et al. The MAGNUM survey: Positive feedback in the nuclear region of NGC 5643 suggested by MUSE. Astron. Astrophys. 2015, 582, A63. [Google Scholar] [CrossRef]
- Marconcini, C.; Marconi, A.; Cresci, G.; Mannucci, F.; Ulivi, L.; Venturi, G.; Scialpi, M.; Tozzi, G.; Belfiore, F.; Bertola, E.; et al. Evidence of the fast acceleration of AGN-driven winds at kiloparsec scales. Nat. Astron. 2025, 9, 907–915. [Google Scholar] [CrossRef]
- Finlez, C.; Nagar, N.M.; Storchi-Bergmann, T.; Schnorr-Müller, A.; Riffel, R.A.; Lena, D.; Mundell, C.G.; Elvis, M.S. The complex jet- and bar-perturbed kinematics in NGC 3393 as revealed with ALMA and GEMINI-GMOS/IFU. Mon. Not. R. Astron. Soc. 2018, 479, 3892–3908. [Google Scholar] [CrossRef]
- Maksym, W.P.; Fabbiano, G.; Elvis, M.; Karovska, M.; Paggi, A.; Raymond, J.; Wang, J.; Storchi-Bergmann, T. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging. Astrophys. J. 2017, 844, 69. [Google Scholar] [CrossRef]
- Maksym, W.P.; Fabbiano, G.; Elvis, M.; Karovska, M.; Paggi, A.; Raymond, J.; Wang, J.; Storchi-Bergmann, T.; Risaliti, G. CHEERS Results from NGC 3393. III. Chandra X-Ray Spectroscopy of the Narrow Line Region. Astrophys. J. 2019, 872, 94. [Google Scholar] [CrossRef]
- Pereira-Santaella, M.; Álvarez-Márquez, J.; García-Bernete, I.; Labiano, A.; Colina, L.; Alonso-Herrero, A.; Bellocchi, E.; García-Burillo, S.; Hönig, S.F.; Ramos Almeida, C.; et al. Low-power jet-interstellar medium interaction in NGC 7319 revealed by JWST/MIRI MRS. Astron. Astrophys. 2022, 665, L11. [Google Scholar] [CrossRef]
- Emonts, B.H.C.; Appleton, P.N.; Lisenfeld, U.; Guillard, P.; Xu, C.K.; Reach, W.T.; Barcos-Muñoz, L.; Labiano, A.; Ogle, P.M.; O’Sullivan, E.; et al. Bird’s-eye View of Molecular Gas across Stephan’s Quintet Galaxy Group and Intragroup Medium. Astrophys. J. 2025, 978, 111. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Boulanger, F.; Lehnert, M.D.; Guillard, P.; Salome, P. Dense gas without star formation: The kpc-sized turbulent molecular disk in 3C 326 N. Astron. Astrophys. 2011, 536, L5. [Google Scholar] [CrossRef]
- Villa-Vélez, J.A.; Godard, B.; Guillard, P.; Pineau des Forêts, G. Radiative and mechanical energies in galaxies. I. Contributions of molecular shocks and PDRs in 3C 326 N. Astron. Astrophys 2024, 688, A96. [Google Scholar] [CrossRef]
- Leftley, J.H.; Nesvadba, N.P.H.; Bicknell, G.V.; Janssen, R.M.J.; Mukherjee, D.; Petrov, R.; Shende, M.B.; Zovaro, H.R.M. JWST/NIRSpec and MIRI observations of an expanding, jet-driven bubble of warm H2 in the radio galaxy 3C 326 N. Astron. Astrophys. 2024, 689, A314. [Google Scholar] [CrossRef]
- Peralta de Arriba, L.; Alonso-Herrero, A.; García-Burillo, S.; García-Bernete, I.; Villar-Martín, M.; García-Lorenzo, B.; Davies, R.; Rosario, D.J.; Hönig, S.F.; Levenson, N.A.; et al. A radio-jet-driven outflow in the Seyfert 2 galaxy NGC 2110? Astron. Astrophys. 2023, 675, A58. [Google Scholar] [CrossRef]
- García-Bernete, I.; Alonso-Herrero, A.; García-Burillo, S.; Pereira-Santaella, M.; García-Lorenzo, B.; Carrera, F.J.; Rigopoulou, D.; Ramos Almeida, C.; Villar Martín, M.; González-Martín, O.; et al. Multiphase feedback processes in the Sy2 galaxy NGC 5643. Astron. Astrophys. 2021, 645, A21. [Google Scholar] [CrossRef]
- Alonso Herrero, A.; García-Burillo, S.; Pereira-Santaella, M.; Shimizu, T.; Combes, F.; Hicks, E.K.S.; Davies, R.; Ramos Almeida, C.; García-Bernete, I.; Hönig, S.F.; et al. AGN feedback in action in the molecular gas ring of the Seyfert galaxy NGC 7172. Astron. Astrophys. 2023, 675, A88. [Google Scholar] [CrossRef]
- Esposito, F.; Alonso-Herrero, A.; García-Burillo, S.; Casasola, V.; Combes, F.; Dallacasa, D.; Davies, R.; García-Bernete, I.; García-Lorenzo, B.; Hermosa Muñoz, L.; et al. AGN feedback in the Local Universe: Multiphase outflow of the Seyfert galaxy NGC 5506. Astron. Astrophys. 2024, 686, A46. [Google Scholar] [CrossRef]
- Zhang, L.; Packham, C.; Hicks, E.K.S.; Davies, R.I.; Shimizu, T.T.; Alonso-Herrero, A.; Hermosa Muñoz, L.; García-Bernete, I.; Pereira-Santaella, M.; Audibert, A.; et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). IV. Exploring Ionized Gas Outflows in Central Kiloparsec Regions of GATOS Seyferts. Astrophys. J. 2024, 974, 195. [Google Scholar] [CrossRef]
- D’Eugenio, F.; Maiolino, R.; Mahatma, V.H.; Mazzolari, G.; Carniani, S.; de Graaff, A.; Maseda, M.V.; Parlanti, E.; Bunker, A.J.; Ji, X.; et al. JWST/NIRSpec WIDE survey: A z = 4.6 low-mass star-forming galaxy hosting a jet-driven shock with low ionization and solar metallicity. Mon. Not. R. Astron. Soc. 2025, 536, 51–71. [Google Scholar] [CrossRef]
- Ruffa, I.; Davis, T.A.; Prandoni, I.; Laing, R.A.; Paladino, R.; Parma, P.; de Ruiter, H.; Casasola, V.; Bureau, M.; Warren, J. The AGN fuelling/feedback cycle in nearby radio galaxies—II. Kinematics of the molecular gas. Mon. Not. R. Astron. Soc. 2019, 489, 3739–3757. [Google Scholar] [CrossRef]
- Ruffa, I.; Laing, R.A.; Prandoni, I.; Paladino, R.; Parma, P.; Davis, T.A.; Bureau, M. The AGN fuelling/feedback cycle in nearby radio galaxies—III. 3D relative orientations of radio jets and CO discs and their interaction. Mon. Not. R. Astron. Soc. 2020, 499, 5719–5731. [Google Scholar] [CrossRef]
- Ruffa, I.; Prandoni, I.; Davis, T.A.; Laing, R.A.; Paladino, R.; Casasola, V.; Parma, P.; Bureau, M. The AGN fuelling/feedback cycle in nearby radio galaxies—IV. Molecular gas conditions and jet-ISM interaction in NGC 3100. Mon. Not. R. Astron. Soc. 2022, 510, 4485–4503. [Google Scholar] [CrossRef]
- Dopita, M.A.; Shastri, P.; Davies, R.; Kewley, L.; Hampton, E.; Scharwächter, J.; Sutherland, R.; Kharb, P.; Jose, J.; Bhatt, H.; et al. Probing the Physics of Narrow Line Regions in Active Galaxies. II. The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Astrophys. J. Suppl. Ser. 2015, 217, 12. [Google Scholar] [CrossRef]
- Cazzoli, S.; Hermosa Muñoz, L.; Márquez, I.; Masegosa, J.; Castillo-Morales, Á.; Gil de Paz, A.; Hernández-García, L.; La Franca, F.; Ramos Almeida, C. Unexplored outflows in nearby low luminosity AGNs. The case of NGC 1052. Astron. Astrophys. 2022, 664, A135. [Google Scholar] [CrossRef]
- Molina, M.; Eracleous, M.; Barth, A.J.; Maoz, D.; Runnoe, J.C.; Ho, L.C.; Shields, J.C.; Walsh, J.L. The Shocking Power Sources of LINERs. Astrophys. J. 2018, 864, 90. [Google Scholar] [CrossRef]
- Goold, K.; Seth, A.; Molina, M.; Ohlson, D.; Runnoe, J.C.; Böker, T.; Davis, T.A.; Dumont, A.; Eracleous, M.; Fernández-Ontiveros, J.A.; et al. ReveaLLAGN 0: First Look at JWST MIRI Data of Sombrero and NGC 1052. Astrophys. J. 2024, 966, 204. [Google Scholar] [CrossRef]
- Cecil, G.; Bland-Hawthorn, J.; Veilleux, S.; Filippenko, A.V. Jet- and Wind-driven Ionized Outflows in the Superbubble and Star-forming Disk of NGC 3079. Astrophys. J. 2001, 555, 338–355. [Google Scholar] [CrossRef]
- Middelberg, E.; Agudo, I.; Roy, A.L.; Krichbaum, T.P. Jet-cloud collisions in the jet of the Seyfert galaxy NGC3079. Mon. Not. R. Astron. Soc. 2007, 377, 731–740. [Google Scholar] [CrossRef]
- Fernandez, L.C.; Secrest, N.J.; Johnson, M.C.; Fischer, T.C. FRAMEx. IV. Mechanical Feedback from the Active Galactic Nucleus in NGC 3079. Astrophys. J. 2023, 958, 61. [Google Scholar] [CrossRef]
- Shafi, N.; Oosterloo, T.A.; Morganti, R.; Colafrancesco, S.; Booth, R. The ‘shook up’ galaxy NGC 3079: The complex interplay between H I, activity and environment. Mon. Not. R. Astron. Soc. 2015, 454, 1404–1415. [Google Scholar] [CrossRef]
- Veilleux, S.; Meléndez, M.; Stone, M.; Cecil, G.; Hodges-Kluck, E.; Bland-Hawthorn, J.; Bregman, J.; Heitsch, F.; Martin, C.L.; Mueller, T.; et al. Exploring the dust content of galactic haloes with Herschel—IV. NGC 3079. Mon. Not. R. Astron. Soc. 2021, 508, 4902–4918. [Google Scholar] [CrossRef]
- Brusa, M.; Cresci, G.; Daddi, E.; Paladino, R.; Perna, M.; Bongiorno, A.; Lusso, E.; Sargent, M.T.; Casasola, V.; Feruglio, C.; et al. Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astron. Astrophys. 2018, 612, A29. [Google Scholar] [CrossRef]
- Cresci, G.; Tozzi, G.; Perna, M.; Brusa, M.; Marconcini, C.; Marconi, A.; Carniani, S.; Brienza, M.; Giroletti, M.; Belfiore, F.; et al. Bubbles and outflows: The novel JWST/NIRSpec view of the z = 1.59 obscured quasar XID2028. Astron. Astrophys. 2023, 672, A128. [Google Scholar] [CrossRef]
- Sridhar, S.S.; Morganti, R.; Nyland, K.; Frank, B.S.; Harwood, J.; Oosterloo, T. LOFAR view of NGC 3998, a sputtering AGN. Astron. Astrophys. 2020, 634, A108. [Google Scholar] [CrossRef]
- Ogle, P.M.; López, I.E.; Reynaldi, V.; Togi, A.; Rich, R.M.; Román, J.; Caceres, O.; Li, Z.C.; Donnelly, G.; Smith, J.D.T.; et al. Radio Jet Feedback on the Inner Disk of Virgo Spiral Galaxy Messier 58. Astrophys. J. 2024, 962, 196. [Google Scholar] [CrossRef]
- Su, R.; Mahony, E.K.; Gu, M.; Sadler, E.M.; Curran, S.J.; Allison, J.R.; Yoon, H.; Aditya, J.N.H.S.; Chandola, Y.; Chen, Y.; et al. Does a radio jet drive the massive multiphase outflow in the ultra-luminous infrared galaxy IRAS 10565 + 2448? Mon. Not. R. Astron. Soc. 2023, 520, 5712–5723. [Google Scholar] [CrossRef]
- Bicknell, G.; Sutherland, R.; van Breugel, W.; Dopita, M.; Dey, A.; Miley, G. Jet-induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C 41.17. Astrophys. J. Lett. 2000, 540, 678. [Google Scholar] [CrossRef]
- Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.; González Delgado, R.M.; Tzioumis, A.; Inskip, K.J. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: Evidence for a high accretion rate and warm outflow. Mon. Not. R. Astron. Soc. 2006, 370, 1633–1650. [Google Scholar] [CrossRef]
- Oosterloo, T.; Morganti, R.; Tadhunter, C.; Raymond Oonk, J.B.; Bignall, H.E.; Tzioumis, T.; Reynolds, C. ALMA observations of PKS 1549-79: A case of feeding and feedback in a young radio quasar. Astron. Astrophys. 2019, 632, A66. [Google Scholar] [CrossRef]
- Tadhunter, C.N.; Morganti, R.; Robinson, A.; Dickson, R.; Villar-Martin, M.; Fosbury, R.A.E. The nature of the optical-radio correlations for powerful radio galaxies. Mon. Not. R. Astron. Soc. 1998, 298, 1035–1047. [Google Scholar] [CrossRef]
- Santoro, F.; Tadhunter, C.; Baron, D.; Morganti, R.; Holt, J. AGN-driven outflows and the AGN feedback efficiency in young radio galaxies. Astron. Astrophys. 2020, 644, A54. [Google Scholar] [CrossRef]
- Husemann, B.; Bennert, V.N.; Jahnke, K.; Davis, T.A.; Woo, J.H.; Scharwächter, J.; Schulze, A.; Gaspari, M.; Zwaan, M.A. Jet-driven Galaxy-scale Gas Outflows in the Hyperluminous Quasar 3C 273. Astrophys. J. 2019, 879, 75. [Google Scholar] [CrossRef]
- Husemann, B.; Scharwächter, J.; Davis, T.A.; Pérez-Torres, M.; Smirnova-Pinchukova, I.; Tremblay, G.R.; Krumpe, M.; Combes, F.; Baum, S.A.; Busch, G.; et al. The Close AGN Reference Survey (CARS). A massive multi-phase outflow impacting the edge-on galaxy HE 1353-1917. Astron. Astrophys. 2019, 627, A53. [Google Scholar] [CrossRef]
- Singha, M.; Winkel, N.; Vaddi, S.; Perez Torres, M.; Gaspari, M.; Smirnova-Pinchukova, I.; O’Dea, C.P.; Combes, F.; Omoruyi, O.; Rose, T.; et al. The Close AGN Reference Survey (CARS): An Interplay between Radio Jets and AGN Radiation in the Radio-quiet AGN HE0040-1105. Astrophys. J. 2023, 959, 107. [Google Scholar] [CrossRef]
- Morganti, R.; Fogasy, J.; Paragi, Z.; Oosterloo, T.; Orienti, M. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action. Science 2013, 341, 1082–1085. [Google Scholar] [CrossRef]
- Villar Martín, M.; Castro-Rodríguez, N.; Pereira Santaella, M.; Lamperti, I.; Tadhunter, C.; Emonts, B.; Colina, L.; Alonso Herrero, A.; Cabrera-Lavers, A.; Bellocchi, E. Limited impact of jet-induced feedback in the multi-phase nuclear interstellar medium of 4C12.50. Astron. Astrophys. 2023, 673, A25. [Google Scholar] [CrossRef]
- Holden, L.R.; Tadhunter, C.; Audibert, A.; Oosterloo, T.; Ramos Almeida, C.; Morganti, R.; Pereira-Santaella, M.; Lamperti, I. ALMA reveals a compact and massive molecular outflow driven by the young AGN in a nearby ULIRG. Mon. Not. R. Astron. Soc. 2024, 530, 446–456. [Google Scholar] [CrossRef]
- Holden, L.R.; Tadhunter, C.N. No evidence for fast, galaxy-wide ionized outflows in a nearby quasar—The importance of accounting for beam smearing. Mon. Not. R. Astron. Soc. 2025, 536, 1857–1877. [Google Scholar] [CrossRef]
- Duncan, K.J.; Windhorst, R.A.; Koekemoer, A.M.; Röttgering, H.J.A.; Cohen, S.H.; Jansen, R.A.; Summers, J.; Tompkins, S.; Hutchison, T.A.; Conselice, C.J.; et al. JWST’s PEARLS: TN J1338-1942—I. Extreme jet-triggered star formation in a z = 4.11 luminous radio galaxy. Mon. Not. R. Astron. Soc. 2023, 522, 4548–4564. [Google Scholar] [CrossRef]
- Roy, N.; Heckman, T.; Overzier, R.; Saxena, A.; Duncan, K.; Miley, G.; Villar Martín, M.; Gabányi, K.É.; Aydar, C.; Bosman, S.E.I.; et al. JWST Reveals Powerful Feedback from Radio Jets in a Massive Galaxy at z = 4.1. Astrophys. J. 2024, 970, 69. [Google Scholar] [CrossRef]
- Saxena, A.; Overzier, R.A.; Villar-Martín, M.; Heckman, T.; Roy, N.; Duncan, K.J.; Röttgering, H.; Miley, G.; Aydar, C.; Best, P.; et al. Widespread AGN feedback in a forming brightest cluster galaxy at z = 4.1, unveiled by JWST. Mon. Not. R. Astron. Soc. 2024, 531, 4391–4407. [Google Scholar] [CrossRef]
- Papachristou, M.; Dasyra, K.M.; Fernández-Ontiveros, J.A.; Audibert, A.; Ruffa, I.; Combes, F.; Polkas, M.; Gkogkou, A. A plausible link between dynamically unsettled molecular gas and the radio jet in NGC 6328. Astron. Astrophys. 2023, 679, A115. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Tadhunter, C.; Bernhard, E.P.; Raymond Oonk, J.B. Taking snapshots of the jet-ISM interplay: The case of PKS 0023-26. Astron. Astrophys. 2021, 656, A55. [Google Scholar] [CrossRef]
- Zhong, Y.; Inoue, A.K.; Sugahara, Y.; Morokuma-Matsui, K.; Komugi, S.; Kaneko, H.; Fudamoto, Y. Revisiting the Dragonfly galaxy II. Young, radiatively efficient radio-loud AGN drives massive molecular outflow in a starburst merger at z = 1.92. Mon. Not. R. Astron. Soc. 2024, 529, 4531–4553. [Google Scholar] [CrossRef]
- Fernández-Ontiveros, J.A.; Dasyra, K.M.; Hatziminaoglou, E.; Malkan, M.A.; Pereira-Santaella, M.; Papachristou, M.; Spinoglio, L.; Combes, F.; Aalto, S.; Nagar, N.; et al. A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet. Astron. Astrophys. 2020, 633, A127. [Google Scholar] [CrossRef]
- Morganti, R.; Tadhunter, C.N.; Oosterloo, T.A. Fast neutral outflows in powerful radio galaxies: A major source of feedback in massive galaxies. Astron. Astrophys. 2005, 444, L9–L13. [Google Scholar] [CrossRef]
- Struve, C.; Conway, J.E. The circumnuclear cold gas environments of the powerful radio galaxies 3C 236 and 4C 31.04. Astron. Astrophys. 2012, 546, A22. [Google Scholar] [CrossRef]
- Schulz, R.; Morganti, R.; Nyland, K.; Paragi, Z.; Mahony, E.K.; Oosterloo, T. Mapping the neutral atomic hydrogen gas outflow in the restarted radio galaxy 3C 236. Astron. Astrophys. 2018, 617, A38. [Google Scholar] [CrossRef]
- Guillard, P.; Ogle, P.M.; Emonts, B.H.C.; Appleton, P.N.; Morganti, R.; Tadhunter, C.; Oosterloo, T.; Evans, D.A.; Evans, A.S. Strong Molecular Hydrogen Emission and Kinematics of the Multiphase Gas in Radio Galaxies with Fast Jet-driven Outflows. Astrophys. J. 2012, 747, 95. [Google Scholar] [CrossRef]
- Ogle, P.; Boulanger, F.; Guillard, P.; Evans, D.A.; Antonucci, R.; Appleton, P.N.; Nesvadba, N.; Leipski, C. Jet-powered Molecular Hydrogen Emission from Radio Galaxies. Astrophys. J. 2010, 724, 1193–1217. [Google Scholar] [CrossRef]
- Santoro, F.; Rose, M.; Morganti, R.; Tadhunter, C.; Oosterloo, T.A.; Holt, J. Probing multi-phase outflows and AGN feedback in compact radio galaxies: The case of PKS B1934-63. Astron. Astrophys. 2018, 617, A139. [Google Scholar] [CrossRef]
- Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I. Star formation efficiency along the radio jet in Centaurus A. Astron. Astrophys. 2016, 586, A45. [Google Scholar] [CrossRef]
- Salomé, Q.; Salomé, P.; Miville-Deschênes, M.A.; Combes, F.; Hamer, S. Inefficient jet-induced star formation in Centaurus A. High resolution ALMA observations of the northern filaments. Astron. Astrophys. 2017, 608, A98. [Google Scholar] [CrossRef]
- Ogle, P.M.; Sebastian, B.; Aravindan, A.; McDonald, M.; Canalizo, G.; Ashby, M.L.N.; Azadi, M.; Antonucci, R.; Barthel, P.; Baum, S.; et al. The JWST View of Cygnus A: Jet-driven Coronal Outflow with a Twist. Astrophys. J. 2025, 983, 98. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Drouart, G.; De Breuck, C.; Best, P.; Seymour, N.; Vernet, J. Gas kinematics in powerful radio galaxies at z 2: Energy supply from star formation, AGN, and radio jets. Astron. Astrophys. 2017, 600, A121. [Google Scholar] [CrossRef]
- May, D.; Steiner, J.E.; Ricci, T.V.; Menezes, R.B.; Andrade, I.S. Digging process in NGC 6951: The molecular disc bumped by the jet. Mon. Not. R. Astron. Soc. 2016, 457, 949–970. [Google Scholar] [CrossRef]
- Tadhunter, C.N.; Fosbury, R.A.E.; Binette, L.; Danziger, I.J.; Robinson, A. Detached nuclear-like activity in the radio galaxy PKS 2152-69. Nature 1987, 325, 504–507. [Google Scholar] [CrossRef]
- Tadhunter, C.N.; Fosbury, R.A.E.; di Serego Alighieri, S.; Bland, J.; Danziger, I.J.; Goss, W.M.; McAdam, W.B.; Snijders, M.A.J. Very extended ionized gas in radio galaxies—IV. PKS 2152-69. Mon. Not. R. Astron. Soc. 1988, 235, 403–423. [Google Scholar] [CrossRef]
- Clark, N.E.; Tadhunter, C.N.; Morganti, R.; Killeen, N.E.B.; Fosbury, R.A.E.; Hook, R.N.; Siebert, J.; Shaw, M.A. Radio, optical and X-ray observations of PKS 2250-41: A jet/galaxy collision? Mon. Not. R. Astron. Soc. 1997, 286, 558–582. [Google Scholar] [CrossRef]
- Villar-Martín, M.; Tadhunter, C.; Morganti, R.; Axon, D.; Koekemoer, A. PKS 2250-41 and the role of jet-cloud interactions in powerful radio galaxies. Mon. Not. R. Astron. Soc. 1999, 307, 24–40. [Google Scholar] [CrossRef]
- Inskip, K.J.; Villar-Martín, M.; Tadhunter, C.N.; Morganti, R.; Holt, J.; Dicken, D. PKS2250-41: A case study for triggering. Mon. Not. R. Astron. Soc. 2008, 386, 1797–1810. [Google Scholar] [CrossRef]
- Ruffa, I.; Spavone, M.; Iodice, E.; Garcia-Burillo, S.; Davis, T.A.; Iwasawa, K.; Spoon, H.W.W.; Paladino, R.; Perna, M.; Vignali, C. The link between galaxy merger, radio jet expansion and molecular outflow in the ULIRG IRAS 00183-7111. arXiv 2025, arXiv:2506.07852. [Google Scholar] [CrossRef]
- Villar-Martín, M.; Emonts, B.; Cabrera Lavers, A.; Tadhunter, C.; Mukherjee, D.; Humphrey, A.; Rodríguez Zaurín, J.; Ramos Almeida, C.; Pérez Torres, M.; Bessiere, P. Galaxy-wide radio-induced feedback in a radio-quiet quasar. Mon. Not. R. Astron. Soc. 2017, 472, 4659–4678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, D. Jet Feedback on kpc Scales: A Review. Galaxies 2025, 13, 102. https://doi.org/10.3390/galaxies13050102
Mukherjee D. Jet Feedback on kpc Scales: A Review. Galaxies. 2025; 13(5):102. https://doi.org/10.3390/galaxies13050102
Chicago/Turabian StyleMukherjee, Dipanjan. 2025. "Jet Feedback on kpc Scales: A Review" Galaxies 13, no. 5: 102. https://doi.org/10.3390/galaxies13050102
APA StyleMukherjee, D. (2025). Jet Feedback on kpc Scales: A Review. Galaxies, 13(5), 102. https://doi.org/10.3390/galaxies13050102