Cosmic Magnification of High-Redshift Submillimeter Galaxies
Abstract
1. Introduction
2. Theoretical Basis
2.1. Magnification Bias
2.2. Cosmic Magnification
2.3. Description of the Galaxy–Matter Cross-Correlation: The Halo Model
3. Methodology
3.1. Galaxy Samples
3.2. Measurements
3.3. Parameter Estimation
4. Results
4.1. Cosmology Using a Single Wide Redshift Bin
4.2. Cosmology with a Tomographic Analysis
4.3. Parallel Analyses
5. Outlook and Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbott, T.; Abdalla, F.B.; Aleksić, J.; Allam, S.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; et al. The Dark Energy Survey: More than dark energy—An overview. Mon. Not. R. Astron. Soc. 2016, 460, 1270–1299. [Google Scholar] [CrossRef]
- de Jong, J.T.A.; Verdoes Kleijn, G.A.; Kuijken, K.H.; Valentijn, E.A. The Kilo-Degree Survey. Exp. Astron. 2013, 35, 25–44. [Google Scholar] [CrossRef]
- Aihara, H.; Arimoto, N.; Armstrong, R.; Arnouts, S.; Bahcall, N.A.; Bickerton, S.; Bosch, J.; Bundy, K.; Capak, P.L.; Chan, J.H. H; et al. The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publ. Astron. Soc. Jpn. 2018, 70, S4. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Aguena, M.; Alarcon, A.; Allam, S.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Annis, J.; Avila, S.; Bacon, D.; et al. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Amon, A.; Gruen, D.; Troxel, M.A.; MacCrann, N.; Dodelson, S.; Choi, A.; Doux, C.; Secco, L.F.; Samuroff, S.; Krause, E.; et al. Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Phys. Rev. D 2022, 105, 023514. [Google Scholar] [CrossRef]
- Dark Energy Survey and Kilo-Degree Survey Collaboration; Abbott, T.M.C.; Aguena, M.; Alarcon, A.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Asgari, M.; Avila, S.; Bacon, D.; et al. DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys. Open J. Astrophys. 2023, 6, 36. [Google Scholar] [CrossRef]
- Asgari, M.; Lin, C.A.; Joachimi, B.; Giblin, B.; Heymans, C.; Hildebrandt, H.; Kannawadi, A.; Stölzner, B.; Tröster, T.; van den Busch, J.L.; et al. KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 2021, 645, A104. [Google Scholar] [CrossRef]
- Dvornik, A.; Heymans, C.; Asgari, M.; Mahony, C.; Joachimi, B.; Bilicki, M.; Chisari, E.; Hildebrandt, H.; Hoekstra, H.; Johnston, H.; et al. KiDS-1000: Combined halo-model cosmology constraints from galaxy abundance, galaxy clustering, and galaxy-galaxy lensing. Astron. Astrophys. 2023, 675, A189. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Sugiyama, S.; Dalal, R.; Terasawa, R.; Rau, M.M.; Mandelbaum, R.; Takada, M.; More, S.; Strauss, M.A.; et al. Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions. Phys. Rev. D 2023, 108, 123518. [Google Scholar] [CrossRef]
- Abell, P.A.; Allison, J.; Anderson, S.F.; Andrew, J.R.; Angel, J.R.P.; Armus, L.; Arnett, D.; Asztalos, S.J.; Axelrod, T.S.; Bailey, S.; et al. LSST Science Book, Version 2.0. arXiv 2009, arXiv:0912.0201. [Google Scholar] [CrossRef]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report. arXiv 2011, arXiv:1110.3193. [Google Scholar] [CrossRef]
- Schneider, P.; Ehlers, J.; Falco, E.E. Gravitational Lenses; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Bartelmann, M.; Schneider, P. Weak gravitational lensing. Phys. Rep. 2001, 340, 291–472. [Google Scholar] [CrossRef]
- Seldner, M.; Peebles, P.J.E. Statistical analysis of catalogs of extragalactic objects. XI. Evidence of correlation of QSOs and Lick galaxy counts. Astrophys. J. 1979, 227, 30–36. [Google Scholar] [CrossRef]
- Scranton, R.; Ménard, B.; Richards, G.T.; Nichol, R.C.; Myers, A.D.; Jain, B.; Gray, A.; Bartelmann, M.; Brunner, R.J.; Connolly, A.J.; et al. Detection of Cosmic Magnification with the Sloan Digital Sky Survey. Astrophys. J. 2005, 633, 589–602. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Ménard, B.; Scranton, R.; Fukugita, M.; Richards, G. Measuring the galaxy-mass and galaxy-dust correlations through magnification and reddening. Mon. Not. R. Astron. Soc. 2010, 405, 1025–1039. [Google Scholar] [CrossRef]
- Hildebrandt, H.; van Waerbeke, L.; Erben, T. CARS: The CFHTLS-Archive-Research Survey. III. First detection of cosmic magnification in samples of normal high-z galaxies. Astron. Astrophys. 2009, 507, 683–691. [Google Scholar] [CrossRef]
- Morrison, C.B.; Scranton, R.; Ménard, B.; Schmidt, S.J.; Tyson, J.A.; Ryan, R.; Choi, A.; Wittman, D.M. Tomographic magnification of Lyman-break galaxies in the Deep Lens Survey. Mon. Not. R. Astron. Soc. 2012, 426, 2489–2499. [Google Scholar] [CrossRef]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef]
- Griffin, M.J.; Abergel, A.; Abreu, A.; Ade, P.A.R.; André, P.; Augueres, J.L.; Babbedge, T.; Bae, Y.; Baillie, T.; Baluteau, J.P.; et al. The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 2010, 518, L3. [Google Scholar] [CrossRef]
- Poglitsch, A.; Waelkens, C.; Geis, N.; Feuchtgruber, H.; Vandenbussche, B.; Rodriguez, L.; Krause, O.; Renotte, E.; van Hoof, C.; Saraceno, P.; et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 2010, 518, L2. [Google Scholar] [CrossRef]
- Oliver, S.J.; Bock, J.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Beelen, A.; Béthermin, M.; Blain, A.; et al. The Herschel Multi-tiered Extragalactic Survey: HerMES. Mon. Not. R. Astron. Soc. 2012, 424, 1614–1635. [Google Scholar] [CrossRef]
- Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; et al. The Herschel ATLAS. Publ. Astron. Soc. Pac. 2010, 122, 499. [Google Scholar] [CrossRef]
- Amblard, A.; Cooray, A.; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I.K.; Bamford, S.; et al. Herschel-ATLAS: Dust temperature and redshift distribution of SPIRE and PACS detected sources using submillimetre colours. Astron. Astrophys. 2010, 518, L9. [Google Scholar] [CrossRef]
- Lapi, A.; González-Nuevo, J.; Fan, L.; Bressan, A.; De Zotti, G.; Danese, L.; Negrello, M.; Dunne, L.; Eales, S.; Maddox, S.; et al. Herschel-ATLAS Galaxy Counts and High-redshift Luminosity Functions: The Formation of Massive Early-type Galaxies. Astrophys. J. 2011, 742, 24. [Google Scholar] [CrossRef]
- González-Nuevo, J.; Lapi, A.; Fleuren, S.; Bressan, S.; Danese, L.; De Zotti, G.; Negrello, M.; Cai, Z.Y.; Fan, L.; Sutherland, W.; et al. Herschel-ATLAS: Toward a Sample of ~1000 Strongly Lensed Galaxies. Astrophys. J. 2012, 749, 65. [Google Scholar] [CrossRef]
- Pearson, E.A.; Eales, S.; Dunne, L.; Gonzalez-Nuevo, J.; Maddox, S.J.; Aguirre, E.; Baes, M.; Baker, A.J.; Bourne, N.; Bradford, C.M.; et al. H-ATLAS: Estimating redshifts of Herschel sources from sub-mm fluxes. Mon. Not. R. Astrono. Soc. 2013, 435, 2753–2763. [Google Scholar] [CrossRef]
- Smail, I.; Ivison, R.J.; Blain, A.W. A Deep Sub-millimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution. Astrophys. J. 1997, 490, L5–L8. [Google Scholar] [CrossRef]
- Barger, A.J.; Cowie, L.L.; Sanders, D.B.; Fulton, E.; Taniguchi, Y.; Sato, Y.; Kawara, K.; Okuda, H. Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift. Nature 1998, 394, 248–251. [Google Scholar] [CrossRef]
- Hughes, D.H.; Serjeant, S.; Dunlop, J.; Rowan-Robinson, M.; Blain, A.; Mann, R.G.; Ivison, R.; Peacock, J.; Efstathiou, A.; Gear, W.; et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 1998, 394, 241–247. [Google Scholar] [CrossRef]
- Blain, A.; Smail, I.; Ivison, R.; Kneib, J.P.; Frayer, D.T. Submillimeter Galaxies. Phys. Rep. 2002, 369, 111–176. [Google Scholar] [CrossRef]
- Valiante, E.; Smith, M.W.L.; Eales, S.; Maddox, S.J.; Ibar, E.; Hopwood, R.; Dunne, L.; Cigan, P.J.; Dye, S.; Pascale, E.; et al. The Herschel-ATLAS data release 1—I. Maps, catalogues and number counts. Mon. Not. R. Astrono. Soc. 2016, 462, 3146–3179. [Google Scholar] [CrossRef]
- Smith, R.E.; Peacock, J.A.; Jenkins, A.; White, S.D.M.; Frenk, C.S.; Pearce, F.R.; Thomas, P.A.; Efstathiou, G.; Couchman, H.M.P. Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. R. Astrono. Soc. 2003, 341, 1311–1332. [Google Scholar] [CrossRef]
- Coppin, K.; Chapin, E.L.; Mortier, A.M.J.; Scott, S.E.; Borys, C.; Dunlop, J.S.; Halpern, M.; Hughes, D.H.; Pope, A.; Scott, D.; et al. The SCUBA Half-Degree Extragalactic Survey—II. Submillimetre maps, catalogue and number counts. Mon. Not. R. Astrono. Soc. 2006, 372, 1621–1652. [Google Scholar] [CrossRef]
- Devlin, M.J.; Ade, P.A.R.; Aretxaga, I.; Bock, J.J.; Chapin, E.L.; Griffin, M.; Gundersen, J.O.; Halpern, M.; Hargrave, P.C.; Hughes, D.H.; et al. Over half of the far-infrared background light comes from galaxies at z >= 1.2. Nature 2009, 458, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Patanchon, G.; Ade, P.A.R.; Bock, J.J.; Chapin, E.L.; Devlin, M.J.; Dicker, S.R.; Griffin, M.; Gundersen, J.O.; Halpern, M.; Hargrave, P.C.; et al. Submillimeter Number Counts from Statistical Analysis of BLAST Maps. Astrophys. J. 2009, 707, 1750–1765. [Google Scholar] [CrossRef]
- Wang, L.; Cooray, A.; Farrah, D.; Amblard, A.; Auld, R.; Bock, J.; Brisbin, D.; Burgarella, D.; Chanial, P.; Clements, D.L.; et al. HerMES: Detection of cosmic magnification of submillimetre galaxies using angular cross-correlation. Mon. Not. R. Astrono. Soc. 2011, 414, 596–601. [Google Scholar] [CrossRef]
- González-Nuevo, J.; Lapi, A.; Negrello, M.; Danese, L.; De Zotti, G.; Amber, S.; Baes, M.; Bland-Hawthorn, J.; Bourne, N.; Brough, S.; et al. Herschel-ATLAS/GAMA: SDSS cross-correlation induced by weak lensing. Mon. Not. R. Astrono. Soc. 2014, 442, 2680–2690. [Google Scholar] [CrossRef]
- Driver, S.P.; Norberg, P.; Baldry, I.K.; Bamford, S.P.; Hopkins, A.M.; Liske, J.; Loveday, J.; Peacock, J.A.; Hill, D.T.; Kelvin, L.S.; et al. GAMA: Towards a physical understanding of galaxy formation. Astron. Geophys. 2009, 50, 5.12–5.19. [Google Scholar] [CrossRef]
- Baldry, I.K.; Robotham, A.S.G.; Hill, D.T.; Driver, S.P.; Liske, J.; Norberg, P.; Bamford, S.P.; Hopkins, A.M.; Loveday, J.; Peacock, J.A.; et al. Galaxy And Mass Assembly (GAMA): The input catalogue and star-galaxy separation. Mon. Not. R. Astrono. Soc. 2010, 404, 86–100. [Google Scholar] [CrossRef]
- Liske, J.; Baldry, I.K.; Driver, S.P.; Tuffs, R.J.; Alpaslan, M.; Andrae, E.; Brough, S.; Cluver, M.E.; Grootes, M.W.; Gunawardhana, M.L.P.; et al. Galaxy And Mass Assembly (GAMA): End of survey report and data release 2. Mon. Not. R. Astrono. Soc. 2015, 452, 2087–2126. [Google Scholar] [CrossRef]
- González-Nuevo, J.; Lapi, A.; Bonavera, L.; Danese, L.; de Zotti, G.; Negrello, M.; Bourne, N.; Cooray, A.; Dunne, L.; Dye, S.; et al. H-ATLAS/GAMA: Magnification bias tomography. Astrophysical constraints above ~1 arcmin. J. Cosmol. Astropart. Phys. 2017, 2017, 024. [Google Scholar] [CrossRef]
- Limber, D.N. The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. Astrophys. J. 1953, 117, 134. [Google Scholar] [CrossRef]
- Kaiser, N. Weak Gravitational Lensing of Distant Galaxies. Astrophys. J. 1992, 388, 272. [Google Scholar] [CrossRef]
- Cooray, A.; Sheth, R.K. Halo models of large scale structure. Phys. Rep. 2002, 372, 1–129. [Google Scholar] [CrossRef]
- Takahashi, R.; Sato, M.; Nishimichi, T.; Taruya, A.; Oguri, M. Revising the Halofit Model for the Nonlinear Matter Power Spectrum. Astrophys. J. 2012, 761, 152. [Google Scholar] [CrossRef]
- McDonald, P.; Roy, A. Clustering of dark matter tracers: Generalizing bias for the coming era of precision LSS. J. Cosmol. Astropart. Phys. 2009, 2009, 020. [Google Scholar] [CrossRef]
- Saito, S.; Baldauf, T.; Vlah, Z.; Seljak, U.; Okumura, T.; McDonald, P. Understanding higher-order nonlocal halo bias at large scales by combining the power spectrum with the bispectrum. Phys. Rev. D 2014, 90, 123522. [Google Scholar] [CrossRef]
- Scherrer, R.J.; Bertschinger, E. Statistics of Primordial Density Perturbations from Discrete Seed Masses. Astrophys. J. 1991, 381, 349. [Google Scholar] [CrossRef]
- Seljak, U. Analytic model for galaxy and dark matter clustering. Mon. Not. R. Astrono. Soc. 2000, 318, 203–213. [Google Scholar] [CrossRef]
- Asgari, M.; Mead, A.J.; Heymans, C. The halo model for cosmology: A pedagogical review. Open J. Astrophys. 2023, 6, 39. [Google Scholar] [CrossRef]
- Kitayama, T.; Suto, Y. Semianalytic Predictions for Statistical Properties of X-ray Clusters of Galaxies in Cold Dark Matter Universes. Astrophys. J. 1996, 469, 480. [Google Scholar] [CrossRef]
- Sheth, R.K.; Tormen, G. Large scale bias and the peak background split. Mon. Not. R. Astrono. Soc. 1999, 308, 119–126. [Google Scholar] [CrossRef]
- Cole, S.; Kaiser, N. Biased clustering in the cold dark matter cosmogony. Mon. Not. R. Astrono. Soc. 1989, 237, 1127–1146. [Google Scholar] [CrossRef]
- Mo, H.J.; White, S.D.M. An analytic model for the spatial clustering of dark matter haloes. Mon. Not. R. Astrono. Soc. 1996, 282, 347–361. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Bullock, J.S.; Kolatt, T.S.; Sigad, Y.; Somerville, R.S.; Kravtsov, A.V.; Klypin, A.A.; Primack, J.R.; Dekel, A. Profiles of dark haloes: Evolution, scatter and environment. Mon. Not. R. Astrono. Soc. 2001, 321, 559–575. [Google Scholar] [CrossRef]
- Duffy, A.R.; Schaye, J.; Kay, S.T.; Dalla Vecchia, C. Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology. Mon. Not. R. Astrono. Soc. 2008, 390, L64–L68. [Google Scholar] [CrossRef]
- Dutton, A.A.; Macciò, A.V. Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astrono. Soc. 2014, 441, 3359–3374. [Google Scholar] [CrossRef]
- Diemer, B.; Kravtsov, A.V. A Universal Model for Halo Concentrations. Astrophys. J. 2015, 799, 108. [Google Scholar] [CrossRef]
- Weinberg, N.N.; Kamionkowski, M. Constraining dark energy from the abundance of weak gravitational lenses. Mon. Not. R. Astrono. Soc. 2003, 341, 251–262. [Google Scholar] [CrossRef]
- Zehavi, I.; Zheng, Z.; Weinberg, D.H.; Frieman, J.A.; Berlind, A.A.; Blanton, M.R.; Scoccimarro, R.; Sheth, R.K.; Strauss, M.A.; Kayo, I.; et al. The Luminosity and Color Dependence of the Galaxy Correlation Function. Astrophys. J. 2005, 630, 1–27. [Google Scholar] [CrossRef]
- Zheng, Z.; Berlind, A.A.; Weinberg, D.H.; Benson, A.J.; Baugh, C.M.; Cole, S.; Davé, R.; Frenk, C.S.; Katz, N.; Lacey, C.G. Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies. Astrophys. J. 2005, 633, 791–809. [Google Scholar] [CrossRef]
- Yang, X.; Mo, H.J.; van den Bosch, F.C. Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics. Astrophys. J. 2008, 676, 248–261. [Google Scholar] [CrossRef]
- Nishimichi, T.; Takada, M.; Takahashi, R.; Osato, K.; Shirasaki, M.; Oogi, T.; Miyatake, H.; Oguri, M.; Murata, R.; Kobayashi, Y.; et al. Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophys. J. 2019, 884, 29. [Google Scholar] [CrossRef]
- Mead, A.J.; Verde, L. Including beyond-linear halo bias in halo models. Mon. Not. R. Astrono. Soc. 2021, 503, 3095–3111. [Google Scholar] [CrossRef]
- Mead, A.J.; Peacock, J.A.; Heymans, C.; Joudaki, S.; Heavens, A.F. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models. Mon. Not. R. Astrono. Soc. 2015, 454, 1958–1975. [Google Scholar] [CrossRef]
- Mead, A.J.; Tröster, T.; Heymans, C.; Van Waerbeke, L.; McCarthy, I.G. A hydrodynamical halo model for weak-lensing cross correlations. Astron. Astrophys. 2020, 641, A130. [Google Scholar] [CrossRef]
- Mead, A.J.; Brieden, S.; Tröster, T.; Heymans, C. HMCODE-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback. Mon. Not. R. Astrono. Soc. 2021, 502, 1401–1422. [Google Scholar] [CrossRef]
- Heitmann, K.; Higdon, D.; White, M.; Habib, S.; Williams, B.J.; Lawrence, E.; Wagner, C. The Coyote Universe. II. Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum. Astrophys. J. 2009, 705, 156–174. [Google Scholar] [CrossRef]
- Heitmann, K.; White, M.; Wagner, C.; Habib, S.; Higdon, D. The Coyote Universe. I. Precision Determination of the Nonlinear Matter Power Spectrum. Astrophys. J. 2010, 715, 104–121. [Google Scholar] [CrossRef]
- Lawrence, E.; Heitmann, K.; White, M.; Higdon, D.; Wagner, C.; Habib, S.; Williams, B. The Coyote Universe. III. Simulation Suite and Precision Emulator for the Nonlinear Matter Power Spectrum. Astrophys. J. 2010, 713, 1322–1331. [Google Scholar] [CrossRef]
- Heitmann, K.; Bingham, D.; Lawrence, E.; Bergner, S.; Habib, S.; Higdon, D.; Pope, A.; Biswas, R.; Finkel, H.; Frontiere, N.; et al. The Mira-Titan Universe: Precision Predictions for Dark Energy Surveys. Astrophys. J. 2016, 820, 108. [Google Scholar] [CrossRef]
- Lawrence, E.; Heitmann, K.; Kwan, J.; Upadhye, A.; Bingham, D.; Habib, S.; Higdon, D.; Pope, A.; Finkel, H.; Frontiere, N. The Mira-Titan Universe. II. Matter Power Spectrum Emulation. Astrophys. J. 2017, 847, 50. [Google Scholar] [CrossRef]
- Euclid Collaboration; Knabenhans, M.; Stadel, J.; Marelli, S.; Potter, D.; Teyssier, R.; Legrand, L.; Schneider, A.; Sudret, B.; Blot, L.; et al. Euclid preparation: II. The EUCLIDEMULATOR—A tool to compute the cosmology dependence of the nonlinear matter power spectrum. Mon. Not. R. Astrono. Soc. 2019, 484, 5509–5529. [Google Scholar] [CrossRef]
- Euclid Collaboration; Knabenhans, M.; Stadel, J.; Potter, D.; Dakin, J.; Hannestad, S.; Tram, T.; Marelli, S.; Schneider, A.; Teyssier, R.; et al. Euclid preparation: IX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Mon. Not. R. Astrono. Soc. 2021, 505, 2840–2869. [Google Scholar] [CrossRef]
- Angulo, R.E.; Zennaro, M.; Contreras, S.; Aricò, G.; Pellejero-Ibañez, M.; Stücker, J. The BACCO simulation project: Exploiting the full power of large-scale structure for cosmology. Mon. Not. R. Astrono. Soc. 2021, 507, 5869–5881. [Google Scholar] [CrossRef]
- Contreras, S.; Angulo, R.E.; Chaves-Montero, J.; Kugel, R.; Schaller, M.; Schaye, J. Validating the clustering predictions of empirical models with the FLAMINGO simulations. Astron. Astrophys. 2024, 690, A311. [Google Scholar] [CrossRef]
- Ivison, R.J.; Lewis, A.J.R.; Weiss, A.; Arumugam, V.; Simpson, J.M.; Holland, W.S.; Maddox, S.; Dunne, L.; Valiante, E.; van der Werf, P.; et al. The Space Density of Luminous Dusty Star-forming Galaxies at z > 4: SCUBA-2 and LABOCA Imaging of Ultrared Galaxies from Herschel-ATLAS. Astrophys. J. 2016, 832, 78. [Google Scholar] [CrossRef]
- Driver, S.P.; Hill, D.T.; Kelvin, L.S.; Robotham, A.S.G.; Liske, J.; Norberg, P.; Baldry, I.K.; Bamford, S.P.; Hopkins, A.M.; Loveday, J.; et al. Galaxy and Mass Assembly (GAMA): Survey diagnostics and core data release. Mon. Not. R. Astrono. Soc. 2011, 413, 971–995. [Google Scholar] [CrossRef]
- Wen, Z.L.; Han, J.L.; Liu, F.S. A Catalog of 132,684 Clusters of Galaxies Identified from Sloan Digital Sky Survey III. Astrophys. J. Suppl. Ser. 2012, 199, 34. [Google Scholar] [CrossRef]
- Zou, H.; Gao, J.; Xu, X.; Zhou, X.; Ma, J.; Zhou, Z.; Zhang, T.; Nie, J.; Wang, J.; Xue, S. Galaxy Clusters from the DESI Legacy Imaging Surveys. I. Cluster Detection. Astrophys. J. Suppl. Ser. 2021, 253, 56. [Google Scholar] [CrossRef]
- Pâris, I.; Petitjean, P.; Ross, N.P.; Myers, A.D.; Aubourg, É.; Streblyanska, A.; Bailey, S.; Armengaud, É.; Palanque-Delabrouille, N.; Yèche, C.; et al. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release. Astron. Astrophys. 2017, 597, A79. [Google Scholar] [CrossRef]
- Landy, S.D.; Szalay, A.S. Bias and Variance of Angular Correlation Functions. Astrophys. J. 1993, 412, 64. [Google Scholar] [CrossRef]
- Herranz, D. Foreground-Background Galaxy Correlations in the Hubble Deep Fields. In Proceedings of the Cosmological Physics with Gravitational Lensing; Tran Thanh Van, J., Mellier, Y., Moniez, M., Eds.; EDP Sciences: Les Ulis, France, 2001; p. 197. [Google Scholar]
- Norberg, P.; Baugh, C.M.; Gaztañaga, E.; Croton, D.J. Statistical analysis of galaxy surveys—I. Robust error estimation for two-point clustering statistics. Mon. Not. R. Astrono. Soc. 2009, 396, 19–38. [Google Scholar] [CrossRef]
- Cueli, M.M.; González-Nuevo, J.; Bonavera, L.; Lapi, A.; Crespo, D.; Casas, J.M. Methodological refinement of the submillimeter galaxy magnification bias. I. Cosmological analysis with a single redshift bin. Astron. Astrophys. 2024, 686, A190. [Google Scholar] [CrossRef]
- González-Nuevo, J.; Cueli, M.M.; Bonavera, L.; Lapi, A.; Migliaccio, M.; Argüeso, F.; Toffolatti, L. Cosmological constraints on the magnification bias on sub-millimetre galaxies after large-scale bias corrections. Astron. Astrophys. 2021, 646, A152. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VIII. Gravitational lensing. Astron. Astrophys. 2020, 641, A8. [Google Scholar] [CrossRef]
- Chevallier, M.; Polarski, D. Accelerating Universes with Scaling Dark Matter. Int. J. Mod. Phys. D 2001, 10, 213–223. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the Expansion History of the Universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef]
- Lapi, A.; Shankar, F.; Mao, J.; Granato, G.L.; Silva, L.; De Zotti, G.; Danese, L. Quasar Luminosity Functions from Joint Evolution of Black Holes and Host Galaxies. Astrophys. J. 2006, 650, 42–56. [Google Scholar] [CrossRef]
- Bonavera, L.; González-Nuevo, J.; Cueli, M.M.; Ronconi, T.; Migliaccio, M.; Lapi, A.; Casas, J.M.; Crespo, D. Cosmology with the submillimetre galaxies magnification bias: Proof of concept. Astron. Astrophys. 2020, 639, A128. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; Bonavera, L.; Crespo, D.; González-Nuevo, J.; Cueli, M.M.; Casas, J.M.; Cabo, S.R. Cosmic insights from galaxy clusters: Exploring magnification bias on sub-millimetre galaxies. Astron. Astrophys. 2024, 685, A155. [Google Scholar] [CrossRef]
- Cueli, M.M.; Cabo, S.R.; González-Nuevo, J.; Bonavera, L.; Lapi, A.; Viel, M.; Crespo, D.; Casas, J.M.; Fernández-Fernández, R. Toward the measurement of neutrino masses: Performance of cosmic magnification with submillimeter galaxies. Astron. Astrophys. 2024, 687, A300. [Google Scholar] [CrossRef]
- Bonavera, L.; Cueli, M.M.; González-Nuevo, J.; Ronconi, T.; Migliaccio, M.; Lapi, A.; Casas, J.M.; Crespo, D. Cosmology with the submillimetre galaxies magnification bias. Tomographic analysis. Astron. Astrophys. 2021, 656, A99. [Google Scholar] [CrossRef]
- Bonavera, L.; Cueli, M.M.; González-Nuevo, J.; Casas, J.M.; Crespo, D. Methodological refinement of the submillimeter galaxy magnification bias. II. Cosmological analysis with tomography. Astron. Astrophys. 2024, 686, A191. [Google Scholar] [CrossRef]
- Cueli, M.M.; Bonavera, L.; González-Nuevo, J.; Lapi, A. A direct and robust method to observationally constrain the halo mass function via the submillimeter magnification bias: Proof of concept. Astron. Astrophys. 2021, 645, A126. [Google Scholar] [CrossRef]
- Tinker, J.; Kravtsov, A.V.; Klypin, A.; Abazajian, K.; Warren, M.; Yepes, G.; Gottlöber, S.; Holz, D.E. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality. Astrophys. J. 2008, 688, 709–728. [Google Scholar] [CrossRef]
- Cueli, M.M.; Bonavera, L.; González-Nuevo, J.; Crespo, D.; Casas, J.M.; Lapi, A. Tomography-based observational measurements of the halo mass function via the submillimeter magnification bias. Astron. Astrophys. 2022, 662, A44. [Google Scholar] [CrossRef]
- Despali, G.; Giocoli, C.; Angulo, R.E.; Tormen, G.; Sheth, R.K.; Baso, G.; Moscardini, L. The universality of the virial halo mass function and models for non-universality of other halo definitions. Mon. Not. R. Astrono. Soc. 2016, 456, 2486–2504. [Google Scholar] [CrossRef]
- Bonavera, L.; González-Nuevo, J.; Suárez Gómez, S.L.; Lapi, A.; Bianchini, F.; Negrello, M.; Díez, E.; Santos, J.D.; de Cos, F.J. QSOs sigposting cluster size halos as gravitational lenses: Halo mass, projected mass density profile and concentration at z~0.7. J. Cosmol. Astropart. Phys. 2019, 2019, 021. [Google Scholar] [CrossRef]
- Fernandez, L.; Cueli, M.M.; González-Nuevo, J.; Bonavera, L.; Crespo, D.; Casas, J.M.; Lapi, A. Galaxy cluster mass density profile derived using the submillimetre galaxies magnification bias. Astron. Astrophys. 2022, 658, A19. [Google Scholar] [CrossRef]
- Crespo, D.; González-Nuevo, J.; Bonavera, L.; Cueli, M.M.; Casas, J.M.; Goitia, E. Quasi-stellar objects and galaxy mass density profiles derived using the submillimetre galaxies magnification bias. Astron. Astrophys. 2022, 667, A146. [Google Scholar] [CrossRef]
- Crespo, D.; González-Nuevo, J.; Bonavera, L.; Cueli, M.M.; Casas, J.M. Mass density profiles at kiloparsec scales using the sub-millimetre galaxies magnification bias. Astron. Astrophys. 2024, 684, A109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cueli, M.M.; González-Nuevo, J.; Bonavera, L.; Lapi, A. Cosmic Magnification of High-Redshift Submillimeter Galaxies. Galaxies 2025, 13, 89. https://doi.org/10.3390/galaxies13040089
Cueli MM, González-Nuevo J, Bonavera L, Lapi A. Cosmic Magnification of High-Redshift Submillimeter Galaxies. Galaxies. 2025; 13(4):89. https://doi.org/10.3390/galaxies13040089
Chicago/Turabian StyleCueli, Marcos M., Joaquín González-Nuevo, Laura Bonavera, and Andrea Lapi. 2025. "Cosmic Magnification of High-Redshift Submillimeter Galaxies" Galaxies 13, no. 4: 89. https://doi.org/10.3390/galaxies13040089
APA StyleCueli, M. M., González-Nuevo, J., Bonavera, L., & Lapi, A. (2025). Cosmic Magnification of High-Redshift Submillimeter Galaxies. Galaxies, 13(4), 89. https://doi.org/10.3390/galaxies13040089