Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon
Abstract
:1. Introduction
2. The Effect of the CMB on the Molecular Gas of High-z Galaxies
3. Interstellar Radiation Field
4. The Far-Reaching Effect of Cosmic Rays on Star Formation
4.1. CR Observations at Different Redshifts
4.2. Molecular Signatures of CR-Dominated ISM
- Effects on the gas temperature:Cosmic rays produce ions and excited molecules, which can significantly heat the gas and produce temperature gradients in prestellar cores (see, e.g., [96,110,111,112] and the reviews [113,114]). In a molecular environment, the available energy goes into ionization of H2, vibrational and rotational H2 excitation, and the kinetic energy of the outgoing electron available for secondary ionization. About 50% of the CR energy is lost in gas heating [112,115]. Embedded protoclusters can also accelerate CRs from protostellar surfaces via accretion shocks, producing CR ionization rates (and gas heating) higher than the average value of the host galaxy [116]. Due to the importance of the molecular gas temperature on the reaction rates of chemical reactions, CR heating cannot be neglected when modeling the physical environment of a chemical network [112,113].
- H2 dissociation and H abundance in molecular clouds:As discussed in [97], secondary electrons from primary CR ionization contribute to H2 dissociation, increasing the fractional abundance of atomic H and resulting in the only source of atomic H in dense clouds ( cm−2). This can severely alter the HCO abundance, the composition of grain mantles, and the formation of complex organic molecules [117].
- Enhancement of C/CO in dense clouds:Ref. [118] showed that CR penetration in dense molecular clouds can induce electronic excitation of the absorbing gas, particularly H2, resulting in the emission of a chemically significant UV flux. The latter can photodissociate the CO reservoir, adding to the CO destruction process by He+ and recovering atomic neutral C, thus enhancing the abundance ratio C/CO in dense gas [119,120].
- Effects on dust grains:CR-induced UV photons can significantly alter the net electric charge distribution in submicron grains [121] and regulate the photodesorption process on dust [122,123]. During the lifetimes of about 4–6 yr of interstellar ices on dust mantles within dense molecular clouds, the long exposure to ionizing radiation (CRs or CR-induced UV photons) can modify the pristine ices, favoring the formation of complex organic molecules [124,125,126,127].
- Ionization of H2:The most remarkable effect is the ionization of molecular hydrogen, which, through the formation of the trihydrogen cation , initiates a chain of ion-neutral reactions that produce a large variety of chemical species. This pivotal ion is destroyed in diffuse clouds by dissociative recombination, and in dense clouds by a proton-hop reaction with the CO molecule. A more direct estimate of can be obtained by measuring the column density (e.g., [128]) and either the CO abundance (in dense clouds) or the ionization fraction and the H2 fraction (for diffuse clouds), together with an estimate of the depth L of the cloud along the line of sight.
- CR effects on oxygen chemistry:In diffuse clouds and at the edges of dark clouds, where there is still a non-negligible fraction of atomic H, CRs can ionize H, starting the oxygen chemistry. In dense clouds, the oxygen chemistry follows the route, where the oxygen network is triggered by the CR ionization of H2. In both cases, through a number of charge-transfer and abstraction reactions, this culminates with the dissociative recombination of H3O+ into water and the hydroxyl radical, OH. The latter can then be used as a tracer of the CR ionization rate whenever CRs dominate over UV ionization. Intermediate ions of this reaction chain are the hydride cations OH+, H3O+, and H2O+: their use as CR tracers began following their detection by the Herschel Space Observatory [99,129,130].
- Hydrogen deuteride, HD:In CR-dominated clouds, CR determines H+ formation, which defines the D+ abundance through charge-exchange reactions. HD is then produced by the fast ion–molecule reaction H2+D+ → HD+H+ [131,132]. HD is the main deuterium reservoir in molecular clouds. The HD abundance can then be used to infer the CR ionization rate of atomic hydrogen, which is slightly different than that for H2 [133].
- Deuterium fractionation:Deuterium fractionation starts with the formation of the protonated molecular hydrogen and its isotopic exchange with the HD molecule, which leads to H2D+. In low-temperature (<100 K) dense clouds, the endothermicity of the reverse reaction unbalances the number density ratio n(H2D+)/n() towards much larger values with respect to the cosmic elemental ratio n(D)/ n(H) ∼ . H2D+ is mainly destroyed by proton-hop reactions with CO, producing DCO+, and by dissociative recombination. Similarly, protonates CO to form HCO+. It is possible to relate the deuterium fractionation of HCO+, i.e., the ratio between the number densities n(DCO+)/n(HCO+), to , making these two species important tracers of the CR effect on dense clouds [134,135,136].
5. Dust and Metallicity Environment of DSFGs’ Molecular Clouds
Impact on Molecular Chemistry
- Regulator of chemical drivers: the dust-to-gas ratio and the chemical composition and size of dust grains results in the visual attenuation AV against the FUV interstellar field, thus determining the “thickness” of the PDR regions, layers of neutral gas separating photon-dominated chemistry from CR-dominated chemistry, as discussed in Section 3 (see also [59,95,178]). For AV, carbon is mainly in the neutral form, and increasingly incorporated into CO molecules for increasing depths in the cloud. While the chemistry in PDR regions is limited to the formation of few simple molecular species, the transition to dense cores comes together with a very rich molecular scenario [83]. For this reason, for a given interstellar FUV field, the dust-to-gas ratio and the grain composition are of paramount importance in regulating the overall filling factor of the PDR regions with respect to dense molecular cores.
- Regulator of atomic-to-molecular transition: in dense clouds, the atomic-to-molecular transition is regulated by the balance between the formation of H2 on grain surfaces and on the H2 destruction by the FUV external radiation field. Increasing the optical depth in the cloud, photodissociation is reduced by dust and by H2 self-shielding (through absorption in the Lyman–Werner bands). The formation rate is proportional to the gas density, thus the primary controllers of the transition from atomic to molecular gas are the dust-to-gas ratio or the metallicity of the gas (which determine the dust absorption opacity), the gas density, and the intensity of the FUV field [18].
- Factory of H2, H2O, O2, and complex organic molecules: with H2 being the most abundant molecule in the ISM, it provides an important contribution to the cooling of collapsing gas, necessary for star formation. The primary route for H2 formation is grain-surface chemistry [179,180,181,182,183,184].Grain-surface chemistry is also required to explain the observed abundances of water in molecular clouds [185,186] because of the inefficiency of the gas-phase routes for its formation. In the cold phase of the collapsing gas, dust grains are covered by thick icy mantles. The prestellar grain surface chemistry is dominated by hydrogenation processes: simple hydrogenated molecules, like H2O [187,188] and CH3OH [189,190], form in this phase by hydrogenation of O, O2, O3, and CO. Molecules formed on icy grain mantles during the prestellar phase remain frozen in the grain mantle until the densest, central core of the collapsing cloud starts to heat up when forming a protostar, a central hot core with temperatures of about 100–300 K. During this protostellar switch-on phase, grain-surface chemistry is thought to be responsible, together with gas-phase processes, for the formation of many complex organic compounds, the so-called “interstellar complex organic molecules” (iCOMS), carbon-bearing molecules with at least six atoms (see [191] for a review). Many common organic compounds are thought to form in this phase, such as methyl formate, HCOOCH3; formic acid, HCOOH; and dimethyl ether, CH3OCH3. The relative importance of grain-surface and gas processes may increase with the duration of the warm-up phase from prestellar to protostellar core [192], although more recent observations found that iCOMS are numerous and relatively abundant (fractional abundance as large as ∼10−10) already in the cold phase, before the switch-on of the protostar [80,193,194]. Finally, the warm-up phase generates ice sublimation, which injects the icy mantle molecules in the gas phase, where they can be detected though their rotational lines. The evolution continues with dissipation of the protostellar envelope, converted into a protoplanetary disk.Although we can expect high-z DSFGs to be huge sources of iCOMS, unfortunately the low scales of hot corinos and hot cores are very compact (size less than 0.1 pc), and the strongest transitions of these large molecules are located between ∼30 and 50 GHz rest-frame frequency, which makes their direct detection in high-z DSFGs out of reach of the current astronomical facilities (but see, e.g., [195] for the observational perspectives of the Square Kilometer Array, SKA). However, it has been estimated by [196] that if the number of hot cores is a factor of ∼1000 larger than in the Milky Way, specific signatures of hot core chemistry may be detectable even at high z.Despite chemical networks for surface reactions still being developed by the astrochemical community, it is now widely accepted that chemistry on dust can have a high impact on the molecular composition of the ISM gas. In particular, the high ionization rates and FUV fluxes of DSFGs are expected to play a role in the non-thermal desorption from grain mantles. This is why, when dealing with high-z DSFGs and with their large dust content and extreme environmental conditions, surface chemistry should always be considered together with the gas routes for molecular formation.
6. The Molecular Gas Reservoir: H2 as Traced by CO
Other CO Rotational Lines
7. H2O: The Beacon of Star Formation
8. Dense Gas Tracers
AGN Tracers
9. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | G0 is the FUV radiation field in Habing units; G0 corresponds to a flux of erg cm−2 s−1. As an example, the median value in the Milky Way is G0 = 1.7, corresponding to a flux of erg cm−2 s−1. |
References
- Smail, I.; Ivison, R.J.; Blain, A.W. A Deep Sub-millimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution. Astrophys. J. Part 2-Lett. 1997, 490, L5–L8. [Google Scholar] [CrossRef]
- Smail, I.; Ivison, R.; Blain, A.; Kneib, J.P. A Deep Sub-mm Survey of the Distant Universe. In Proceedings of the American Astronomical Society Meeting Abstracts #192; Bulletin of the American Astronomical Society: Washington, DC, USA, 1998; Volume 192, p. 48.13. [Google Scholar]
- Blain, A.W.; Smail, I.; Ivison, R.J.; Kneib, J.P.; Frayer, D.T. Submillimeter galaxies. Phys. Rep. 2002, 369, 111–176. [Google Scholar] [CrossRef]
- Hodge, J.A.; Karim, A.; Smail, I.; Swinbank, A.M.; Walter, F.; Biggs, A.D.; Ivison, R.J.; Weiss, A.; Alexander, D.M.; Bertoldi, F.; et al. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Source Catalog and Multiplicity. Astrophys. J. 2013, 768, 91. [Google Scholar] [CrossRef]
- Simpson, J.M.; Smail, I.; Swinbank, A.M.; Almaini, O.; Blain, A.W.; Bremer, M.N.; Chapman, S.C.; Chen, C.C.; Conselice, C.; Coppin, K.E.K.; et al. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Rest-frame Far-infrared Emission of Sub-millimeter Galaxies. Astrophys. J. 2015, 799, 81. [Google Scholar] [CrossRef]
- Simpson, J.M.; Smail, I.; Swinbank, A.M.; Chapman, S.C.; Geach, J.E.; Ivison, R.J.; Thomson, A.P.; Aretxaga, I.; Blain, A.W.; Cowley, W.I.; et al. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Bright-end of the Sub-millimeter Number Counts. Astrophys. J. 2015, 807, 128. [Google Scholar] [CrossRef]
- da Cunha, E.; Walter, F.; Smail, I.R.; Swinbank, A.M.; Simpson, J.M.; Decarli, R.; Hodge, J.A.; Weiss, A.; van der Werf, P.P.; Bertoldi, F.; et al. An ALMA Survey of Sub-millimeter Galaxies in the Extended Chandra Deep Field South: Physical Properties Derived from Ultraviolet-to-radio Modeling. Astrophys. J. 2015, 806, 110. [Google Scholar] [CrossRef]
- Oteo, I.; Ivison, R.J.; Dunne, L.; Smail, I.; Swinbank, A.M.; Zhang, Z.Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; et al. Witnessing the Birth of the Red Sequence: ALMA High-resolution Imaging of [C II] and Dust in Two Interacting Ultra-red Starbursts at z = 4.425. Astrophys. J. 2016, 827, 34. [Google Scholar] [CrossRef]
- Casey, C.M.; Narayanan, D.; Cooray, A. Dusty star-forming galaxies at high redshift. Phys. Rep. 2014, 541, 45–161. [Google Scholar] [CrossRef]
- Greve, T.R.; Vieira, J.D.; Weiß, A.; Aguirre, J.E.; Aird, K.A.; Ashby, M.L.N.; Benson, B.A.; Bleem, L.E.; Bradford, C.M.; Brodwin, M.; et al. Submillimeter Observations of Millimeter Bright Galaxies Discovered by the South Pole Telescope. Astrophys. J. 2012, 756, 101. [Google Scholar] [CrossRef]
- Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Delvecchio, I.; Berta, S.; Pozzetti, L.; Zamorani, G.; Andreani, P.; Cimatti, A.; Ilbert, O.; et al. The Herschel PEP/HerMES luminosity function-I. Probing the evolution of PACS selected Galaxies to z 4. Mon. Not. R. Astron. Soc. 2013, 432, 23–52. [Google Scholar] [CrossRef]
- Béthermin, M.; Daddi, E.; Magdis, G.; Lagos, C.; Sargent, M.; Albrecht, M.; Aussel, H.; Bertoldi, F.; Buat, V.; Galametz, M.; et al. Evolution of the dust emission of massive galaxies up to z = 4 and constraints on their dominant mode of star formation. Astron. Astrophys. 2015, 573, A113. [Google Scholar] [CrossRef]
- Förster Schreiber, N.M.; Wuyts, S. Star-Forming Galaxies at Cosmic Noon. Ann. Rev. Astron. Astrophys. 2020, 58, 661–725. [Google Scholar] [CrossRef]
- Zavala, J.A.; Casey, C.M.; Manning, S.M.; Aravena, M.; Bethermin, M.; Caputi, K.I.; Clements, D.L.; Cunha, E.d.; Drew, P.; Finkelstein, S.L.; et al. The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years. Astrophys. J. 2021, 909, 165. [Google Scholar] [CrossRef]
- Swinbank, A.M.; Simpson, J.M.; Smail, I.; Harrison, C.M.; Hodge, J.A.; Karim, A.; Walter, F.; Alexander, D.M.; Brandt, W.N.; de Breuck, C.; et al. An ALMA survey of sub-millimetre Galaxies in the Extended Chandra Deep Field South: The far-infrared properties of SMGs. Mon. Not. R. Astron. Soc. 2014, 438, 1267–1287. [Google Scholar] [CrossRef]
- Pantoni, L.; Lapi, A.; Massardi, M.; Donevski, D.; Bressan, A.; Silva, L.; Pozzi, F.; Vignali, C.; Talia, M.; Cimatti, A.; et al. Unveiling the nature of 11 dusty star-forming galaxies at the peak of cosmic star formation history. Mon. Not. R. Astron. Soc. 2021, 504, 928–950. [Google Scholar] [CrossRef]
- Pantoni, L.; Massardi, M.; Lapi, A.; Donevski, D.; D’Amato, Q.; Giulietti, M.; Pozzi, F.; Talia, M.; Vignali, C.; Cimatti, A.; et al. An ALMA view of 11 dusty star-forming galaxies at the peak of cosmic star formation history. Mon. Not. R. Astron. Soc. 2021, 507, 3998–4015. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. Ann. Rev. Astron. Astrophys. 2020, 58, 157–203. [Google Scholar] [CrossRef]
- Krumholz, M.R. Star Formation in Molecular Clouds. In Proceedings of the XV Special Courses at the National Observatory of Rio de Janeiro; American Institute of Physics Conference Series; Telles, E., Dupke, R., Lazzaro, D., Eds.; Springer: New York, NY, USA, 2012; Volume 1386, pp. 9–57. [Google Scholar] [CrossRef]
- Kim, J.G.; Ostriker, E.C.; Filippova, N. Star Formation Efficiency and Dispersal of Giant Molecular Clouds with UV Radiation Feedback: Dependence on Gravitational Boundedness and Magnetic Fields. Astrophys. J. 2021, 911, 128. [Google Scholar] [CrossRef]
- Granato, G.L.; De Zotti, G.; Silva, L.; Bressan, A.; Danese, L. A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts. Astrophys. J. 2004, 600, 580–594. [Google Scholar] [CrossRef]
- Putman, M.E. An Introduction to Gas Accretion onto Galaxies. In Proceedings of the Gas Accretion onto Galaxies; Astrophysics and Space Science Library; Fox, A., Davé, R., Eds.; Springer: New York, NY, USA, 2017; Volume 430, p. 1. [Google Scholar] [CrossRef]
- Pantoni, L.; Lapi, A.; Massardi, M.; Goswami, S.; Danese, L. New Analytic Solutions for Galaxy Evolution: Gas, Stars, Metals, and Dust in Local ETGs and Their High-z Star-forming Progenitors. Astrophys. J. 2019, 880, 129. [Google Scholar] [CrossRef]
- Suzuki, T.L.; Onodera, M.; Kodama, T.; Daddi, E.; Hayashi, M.; Koyama, Y.; Shimakawa, R.; Smail, I.; Sobral, D.; Tacchella, S.; et al. Dust, Gas, and Metal Content in Star-forming Galaxies at z ∼ 3.3 Revealed with ALMA and Near-IR Spectroscopy. Astrophys. J. 2021, 908, 15. [Google Scholar] [CrossRef]
- Chevance, M.; Kruijssen, J.M.D.; Vazquez-Semadeni, E.; Nakamura, F.; Klessen, R.; Ballesteros-Paredes, J.; Inutsuka, S.i.; Adamo, A.; Hennebelle, P. The Molecular Cloud Lifecycle. Space Sci. Rev. 2020, 216, 50. [Google Scholar] [CrossRef] [PubMed]
- García-Burillo, S.; Usero, A.; Alonso-Herrero, A.; Graciá-Carpio, J.; Pereira-Santaella, M.; Colina, L.; Planesas, P.; Arribas, S. Star-formation laws in luminous infrared galaxies. New observational constraints on models. Astron. Astrophys. 2012, 539, A8. [Google Scholar] [CrossRef]
- Rybak, M.; Hodge, J.A.; Greve, T.R.; Riechers, D.; Lamperti, I.; van Marrewijk, J.; Walter, F.; Wagg, J.; van der Werf, P.P. PRUSSIC. I. A JVLA survey of HCN, HCO+, and HNC (1-0) emission in z ∼ 3 dusty galaxies: Low dense-gas fractions in high-redshift star-forming galaxies. Astron. Astrophys. 2022, 667, A70. [Google Scholar] [CrossRef]
- Swings, P.; Rosenfeld, L. Considerations Regarding Interstellar Molecules. Astrophys. J. 1937, 86, 483–486. [Google Scholar] [CrossRef]
- McKellar, A. Evidence for the Molecular Origin of Some Hitherto Unidentified Interstellar Lines. Publ. Astron. Soc. Pac. 1940, 52, 187. [Google Scholar] [CrossRef]
- Douglas, A.E.; Herzberg, G. Note on CH^{+} in Interstellar Space and in the Laboratory. Astrophys. J. 1941, 94, 381. [Google Scholar] [CrossRef]
- Ceccarelli, C.; Maret, S.; Tielens, A.G.G.M.; Castets, A.; Caux, E. Theoretical H2CO emission from protostellar envelopes. Astron. Astrophys. 2003, 410, 587–595. [Google Scholar] [CrossRef]
- Omont, A. Molecules in galaxies. Rep. Prog. Phys. 2007, 70, 1099–1176. [Google Scholar] [CrossRef]
- Millar, T.J. Astrochemistry. Plasma Sources Sci. Technol. 2015, 24, 043001. [Google Scholar] [CrossRef]
- Sewiło, M.; Charnley, S.B.; Schilke, P.; Taquet, V.; Oliveira, J.M.; Shimonishi, T.; Wirström, E.; Indebetouw, R.; Ward, J.L.; van Loon, J.T.; et al. Complex Organic Molecules in Star-Forming Regions of the Magellanic Clouds. ACS Earth Space Chem. 2019, 3, 2088–2109. [Google Scholar] [CrossRef]
- Cernicharo, J.; Agúndez, M.; Cabezas, C.; Tercero, B.; Marcelino, N.; Fuentetaja, R.; Pardo, J.R.; de Vicente, P. Discovery of HCCCO and C5O in TMC-1 with the QUIJOTE line survey. Astron. Astrophys. 2021, 656, L21. [Google Scholar] [CrossRef]
- McGuire, B.A. 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophys. J. Suppl. Ser. 2022, 259, 30. [Google Scholar] [CrossRef]
- Guélin, M.; Cernicharo, J. Organic Molecules in Interstellar Space: Latest Advances. Front. Astron. Space Sci. 2022, 9, 787567. [Google Scholar] [CrossRef]
- Greve, T.R.; Bertoldi, F.; Smail, I.; Neri, R.; Chapman, S.C.; Blain, A.W.; Ivison, R.J.; Genzel, R.; Omont, A.; Cox, P.; et al. An interferometric CO survey of luminous submillimetre galaxies. Mon. Not. R. Astron. Soc. 2005, 359, 1165–1183. [Google Scholar] [CrossRef]
- Solomon, P.M.; Vanden Bout, P.A. Molecular Gas at High Redshift. Ann. Rev. Astron. Astrophys. 2005, 43, 677–725. [Google Scholar] [CrossRef]
- Carilli, C.L.; Walter, F. Cool Gas in High-Redshift Galaxies. Ann. Rev. Astron. Astrophys. 2013, 51, 105–161. [Google Scholar] [CrossRef]
- Bothwell, M.S.; Aguirre, J.E.; Chapman, S.C.; Marrone, D.P.; Vieira, J.D.; Ashby, M.L.N.; Aravena, M.; Benson, B.A.; Bock, J.J.; Bradford, C.M.; et al. SPT 0538-50: Physical Conditions in the Interstellar Medium of a Strongly Lensed Dusty Star-forming Galaxy at z = 2.8. Astrophys. J. 2013, 779, 67. [Google Scholar] [CrossRef]
- Frias Castillo, M.; Rybak, M.; Hodge, J.; van derWerf, P.; Riechers, D.A.; Vieira, D.; Calistro Rivera, G.; Martínez-Ramírez, L.N.; Walter, F.; de Blok, E.; et al. Kiloparsec-scale Imaging of the CO(1–0)-traced Cold Molecular Gas Reservoir in a z 3.4 Submillimeter Galaxy. Astrophys. J. 2022, 930, 35. [Google Scholar] [CrossRef]
- Giulietti, M.; Lapi, A.; Massardi, M.; Behiri, M.; Torsello, M.; D’Amato, Q.; Ronconi, T.; Perrotta, F.; Bressan, A. ALMA Resolves the First Strongly Lensed Optical/Near-IR-dark Galaxy. Astrophys. J. 2023, 943, 151. [Google Scholar] [CrossRef]
- Ivison, R.J.; Swinbank, A.M.; Swinyard, B.; Smail, I.; Pearson, C.P.; Rigopoulou, D.; Polehampton, E.; Baluteau, J.P.; Barlow, M.J.; Blain, A.W.; et al. Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3. Astron. Astrophys. 2010, 518, L35. [Google Scholar] [CrossRef]
- Danielson, A.; Swinbank, M. The properties of the interstellar medium in a star-forming galaxy at z = 2.3. In Proceedings of the Galaxy Formation:An International Conference. 2011. Available online: http://astro.dur.ac.uk/Gal2011 (accessed on 14 April 2024).
- Kirkpatrick, A.; Sharon, C.; Keller, E.; Pope, A. CO Emission in Infrared-selected Active Galactic Nuclei. Astrophys. J. 2019, 879, 41. [Google Scholar] [CrossRef]
- Yang, C.; Omont, A.; Beelen, A.; Gao, Y.; van der Werf, P.; Gavazzi, R.; Zhang, Z.Y.; Ivison, R.; Lehnert, M.; Liu, D.; et al. Molecular gas in the Herschel-selected strongly lensed submillimeter galaxies at z 2-4 as probed by multi-J CO lines. Astron. Astrophys. 2017, 608, A144. [Google Scholar] [CrossRef]
- Gururajan, G.; Béthermin, M.; Theulé, P.; Spilker, J.S.; Aravena, M.; Archipley, M.A.; Chapman, S.C.; De Breuck, C.; Gonzalez, A.; Hayward, C.C.; et al. High resolution spectral imaging of CO(7–6), [CI](2-1), and continuum of three high-z lensed dusty star-forming galaxies using ALMA. Astron. Astrophys. 2022, 663, A22. [Google Scholar] [CrossRef]
- Weiß, A.; Downes, D.; Walter, F.; Henkel, C. Multiple CO lines in SMM J16359+6612 - further evidence for a merger. Astron. Astrophys. 2005, 440, L45–L49. [Google Scholar] [CrossRef]
- Carilli, C.L.; Riechers, D.; Walter, F.; Maiolino, R.; Wagg, J.; Lentati, L.; McMahon, R.; Wolfe, A. The Anatomy of an Extreme Starburst within 1.3 Gyr of the Big Bang Revealed by ALMA. Astrophys. J. 2013, 763, 120. [Google Scholar] [CrossRef]
- Hodge, J.A.; da Cunha, E. High-redshift star formation in the Atacama large millimetre/submillimetre array era. R. Soc. Open Sci. 2020, 7, 200556. [Google Scholar] [CrossRef] [PubMed]
- Riechers, D.A.; Hodge, J.; Walter, F.; Carilli, C.L.; Bertoldi, F. Extended Cold Molecular Gas Reservoirs in z ~= 3.4 Submillimeter Galaxies. Astrophys. J. Part 2-Lett. 2011, 739, L31. [Google Scholar] [CrossRef]
- Riechers, D.A. Constraints on the Star-Forming Interstellar Medium in Galaxies Back to the First Billion Years of Cosmic Time. In Proceedings of the Galaxy Evolution: Infrared to Millimeter Wavelength Perspective; Astronomical Society of the Pacific Conference Series; Wang, W., Lu, J., Luo, Z., Yang, Z., Hua, H., Chen, Z., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2011; Volume 446, p. 355. [Google Scholar] [CrossRef]
- Dannerbauer, H.; Lehnert, M.D.; Emonts, B.; Ziegler, B.; Altieri, B.; De Breuck, C.; Hatch, N.; Kodama, T.; Koyama, Y.; Kurk, J.D.; et al. The implications of the surprising existence of a large, massive CO disk in a distant protocluster. Astron. Astrophys. 2017, 608, A48. [Google Scholar] [CrossRef]
- Rybak, M.; Calistro Rivera, G.; Hodge, J.A.; Smail, I.; Walter, F.; van der Werf, P.; da Cunha, E.; Chen, C.C.; Dannerbauer, H.; Ivison, R.J.; et al. Strong Far-ultraviolet Fields Drive the [C II]/Far-infrared Deficit in z ∼ 3 Dusty, Star-forming Galaxies. Astrophys. J. 2019, 876, 112. [Google Scholar] [CrossRef]
- Birkin, J.E.; Weiss, A.; Wardlow, J.L.; Smail, I.; Swinbank, A.M.; Dudzevičiūtė, U.; An, F.X.; Ao, Y.; Chapman, S.C.; Chen, C.C.; et al. An ALMA/NOEMA survey of the molecular gas properties of high-redshift star-forming galaxies. Mon. Not. R. Astron. Soc. 2021, 501, 3926–3950. [Google Scholar] [CrossRef]
- Rybak, M.; Hodge, J.A.; Vegetti, S.; van der Werf, P.; Andreani, P.; Graziani, L.; McKean, J.P. Full of Orions: A 200-pc mapping of the interstellar medium in the redshift-3 lensed dusty star-forming galaxy SDP.81. Mon. Not. R. Astron. Soc. 2020, 494, 5542–5567. [Google Scholar] [CrossRef]
- Perrotta, F.; Giulietti, M.; Massardi, M.; Gandolfi, G.; Ronconi, T.; Zanchettin, M.V.; Amato, Q.D.; Behiri, M.; Torsello, M.; Gabrielli, F.; et al. The Way of Water: ALMA Resolves H2O Emission Lines in a Strongly Lensed Dusty Star-forming Galaxy at z 3.1. Astrophys. J. 2023, 952, 90. [Google Scholar] [CrossRef]
- Yang, X.; Li, A. Light from cosmic dawn hints at how interstellar dust is made. Nature 2023, 621, 260–262. [Google Scholar] [CrossRef]
- Spilker, J.S.; Marrone, D.P.; Aguirre, J.E.; Aravena, M.; Ashby, M.L.N.; Béthermin, M.; Bradford, C.M.; Bothwell, M.S.; Brodwin, M.; Carlstrom, J.E.; et al. The Rest-frame Submillimeter Spectrum of High-redshift, Dusty, Star-forming Galaxies. Astrophys. J. 2014, 785, 149. [Google Scholar] [CrossRef]
- Wilson, D.; Cooray, A.; Nayyeri, H.; Bonato, M.; Bradford, C.M.; Clements, D.L.; De Zotti, G.; Díaz-Santos, T.; Farrah, D.; Magdis, G.; et al. Stacked Average Far-infrared Spectrum of Dusty Star-forming Galaxies from the Herschel/SPIRE Fourier Transform Spectrometer. Astrophys. J. 2017, 848, 30. [Google Scholar] [CrossRef]
- Bayet, E.; Viti, S.; Williams, D.A.; Rawlings, J.M.C. Molecular Tracers of High-Mass Star Formation in External Galaxies. Astrophys. J. 2008, 676, 978–990. [Google Scholar] [CrossRef]
- Bayet, E.; Viti, S.; Williams, D.A.; Rawlings, J.M.C.; Bell, T. Molecular Tracers of Pdr-Dominated Galaxies. Astrophys. J. 2009, 696, 1466–1477. [Google Scholar] [CrossRef]
- Fixsen, D.J. The temperature of the cosmic microwave background. Astrophys. J. 2009, 707, 916. [Google Scholar] [CrossRef]
- Meyer, D.M.; Jura, M. A precise measurement of the cosmic microwave background temperature from optical observations of interstellar CN. Astrophys. J. 1985, 297, 119–132. [Google Scholar] [CrossRef]
- Kaiser, M.E.; Wright, E.L. A Precise Measurement of the Cosmic Microwave Background Radiation Temperature from CN Observations toward zeta Persei. Astrophys. J. Part 2-Lett. 1990, 356, L1. [Google Scholar] [CrossRef]
- Roth, K.C.; Meyer, D.M. Cyanogen Excitation Measurements of the Cosmic Microwave Background Temperature at 2.64 mm. In Proceedings of the American Astronomical Society Meeting Abstracts #181; American Astronomical Society: Washington, DC, USA, 1993; Volume 181, p. 118.17. [Google Scholar]
- Silk, J.; Spaans, M. Molecular Lines as Diagnostics of High-Redshift Objects. Astrophys. J. Part 2-Lett. 1997, 488, L79–L82. [Google Scholar] [CrossRef]
- Blain, A.W. Dust temperature and the submillimetre-radio flux density ratio as a redshift indicator for distant galaxies. Mon. Not. R. Astron. Soc. 1999, 309, 955–960. [Google Scholar] [CrossRef]
- Combes, F.; Maoli, R.; Omont, A. CO lines in high redshift galaxies: Perspective for future MM instruments. Astron. Astrophys. 1999, 345, 369–379. [Google Scholar] [CrossRef]
- Righi, M.; Hernández-Monteagudo, C.; Sunyaev, R.A. Carbon monoxide line emission as a CMB foreground: Tomography of the star-forming universe with different spectral resolutions. Astron. Astrophys. 2008, 489, 489–504. [Google Scholar] [CrossRef]
- Papadopoulos, P.P.; Röttgering, H.J.A.; van der Werf, P.P.; Guilloteau, S.; Omont, A.; van Breugel, W.J.M.; Tilanus, R.P.J. CO (4-3) and Dust Emission in Two Powerful High-Z Radio Galaxies, and CO Lines at High Redshifts. Astrophys. J. 2000, 528, 626–636. [Google Scholar] [CrossRef]
- Obreschkow, D.; Heywood, I.; Klöckner, H.R.; Rawlings, S. A Heuristic Prediction of the Cosmic Evolution of the Co-luminosity Functions. Astrophys. J. 2009, 702, 1321–1335. [Google Scholar] [CrossRef]
- Lidz, A.; Furlanetto, S.R.; Oh, S.P.; Aguirre, J.; Chang, T.C.; Doré, O.; Pritchard, J.R. Intensity Mapping with Carbon Monoxide Emission Lines and the Redshifted 21 cm Line. Astrophys. J. 2011, 741, 70. [Google Scholar] [CrossRef]
- Muñoz, J.A.; Furlanetto, S.R. Molecular cloud properties and CO line emission in z ≳ 6 galaxies. Mon. Not. R. Astron. Soc. 2013, 435, 2676–2692. [Google Scholar] [CrossRef]
- da Cunha, E.; Groves, B.; Walter, F.; Decarli, R.; Weiss, A.; Bertoldi, F.; Carilli, C.; Daddi, E.; Elbaz, D.; Ivison, R.; et al. On the Effect of the Cosmic Microwave Background in High-redshift (Sub-)millimeter Observations. Astrophys. J. 2013, 766, 13. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Papadopoulos, P.P.; Ivison, R.J.; Galametz, M.; Smith, M.W.L.; Xilouris, E.M. Gone with the heat: A fundamental constraint on the imaging of dust and molecular gas in the early Universe. R. Soc. Open Sci. 2016, 3, 160025. [Google Scholar] [CrossRef] [PubMed]
- Tunnard, R.; Greve, T.R. The Role of the CMB in Redshift Related Departures from the Gao-Solomon Relation. Astrophys. J. 2017, 849, 37. [Google Scholar] [CrossRef]
- Fraser, H.J.; Collings, M.P.; McCoustra, M.R.S.; Williams, D.A. Thermal desorption of water ice in the interstellar medium. Mon. Not. R. Astron. Soc. 2001, 327, 1165–1172. [Google Scholar] [CrossRef]
- Bacmann, A.; Taquet, V.; Faure, A.; Kahane, C.; Ceccarelli, C. Detection of complex organic molecules in a prestellar core: A new challenge for astrochemical models. Astron. Astrophys. 2012, 541, L12. [Google Scholar] [CrossRef]
- Potapov, A.; Krasnokutski, S.A.; Jäger, C.; Henning, T. A New “Non-energetic” Route to Complex Organic Molecules in Astrophysical Environments: The C + H2O → H2CO Solid-state Reaction. Astrophys. J. 2021, 920, 111. [Google Scholar] [CrossRef]
- Bisbas, T.G.; Bell, T.A.; Viti, S.; Yates, J.; Barlow, M.J. 3D-PDR: A new three-dimensional astrochemistry code for treating photodissociation regions. Mon. Not. R. Astron. Soc. 2012, 427, 2100–2118. [Google Scholar] [CrossRef]
- O’Donoghue, R.; Viti, S.; Padovani, M.; James, T. The Effects of Cosmic Rays on the Chemistry of Dense Cores. Astrophys. J. 2022, 934, 63. [Google Scholar] [CrossRef]
- Wolfire, M.G.; Vallini, L.; Chevance, M. Photodissociation and X-Ray-Dominated Regions. Ann. Rev. Astron. Astrophys. 2022, 60, 247–318. [Google Scholar] [CrossRef]
- Bialy, S. The Far-UV Interstellar Radiation Field in Galactic Disks: Numerical and Analytic Models. Astrophys. J. 2020, 903, 62. [Google Scholar] [CrossRef]
- Bisbas, T.G.; van Dishoeck, E.F.; Hu, C.Y.; Schruba, A. PDFCHEM: A new fast method to determine ISM properties and infer environmental parameters using probability distributions. Mon. Not. R. Astron. Soc. 2023, 519, 729–753. [Google Scholar] [CrossRef]
- Cañameras, R.; Yang, C.; Nesvadba, N.P.H.; Beelen, A.; Kneissl, R.; Koenig, S.; Le Floc’h, E.; Limousin, M.; Malhotra, S.; Omont, A.; et al. Planck’s dusty GEMS. VI. Multi-J CO excitation and interstellar medium conditions in dusty starburst galaxies at z = 2–4. Astron. Astrophys. 2018, 620, A61. [Google Scholar] [CrossRef]
- Draine, B.T. Photoelectric heating of interstellar gas. Astrophys. J. Suppl. Ser. 1978, 36, 595–619. [Google Scholar] [CrossRef]
- Santini, P.; Maiolino, R.; Magnelli, B.; Silva, L.; Grazian, A.; Altieri, B.; Andreani, P.; Aussel, H.; Berta, S.; Bongiovanni, A.; et al. The dust content of high-z submillimeter galaxies revealed by Herschel. Astron. Astrophys. 2010, 518, L154. [Google Scholar] [CrossRef]
- Donevski, D.; Lapi, A.; Małek, K.; Liu, D.; Gómez-Guijarro, C.; Davé, R.; Kraljic, K.; Pantoni, L.; Man, A.; Fujimoto, S.; et al. In pursuit of giants. I. The evolution of the dust-to-stellar mass ratio in distant dusty galaxies. Astron. Astrophys. 2020, 644, A144. [Google Scholar] [CrossRef]
- Indriolo, N.; McCall, B.J. Cosmic-ray astrochemistry. Chem. Soc. Rev. 2013, 42, 7763–7773. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.A.; Krumholz, M.R.; Crocker, R.M.; Celli, S. The diffuse γ-ray background is dominated by star-forming galaxies. Nature 2021, 597, 341–344. [Google Scholar] [CrossRef]
- Gabici, S. Low-energy cosmic rays: Regulators of the dense interstellar medium. Astron. Astrophys. Rev. 2022, 30, 4. [Google Scholar] [CrossRef]
- Padovani, M.; Ivlev, A.V.; Galli, D.; Offner, S.S.R.; Indriolo, N.; Rodgers-Lee, D.; Marcowith, A.; Girichidis, P.; Bykov, A.M.; Kruijssen, J.M.D. Impact of Low-Energy Cosmic Rays on Star Formation. Space Sci. Rev. 2020, 216, 29. [Google Scholar] [CrossRef]
- Viti, S.; Bayet, E.; Hartquist, T.W.; Bell, T.A.; Williams, D.A.; Banerji, M. Cosmic Rays in the Interstellar Medium. In Proceedings of the Cosmic Rays in Star-Forming Environments; Astrophysics and Space Science Proceedings; Torres, D.F., Reimer, O., Eds.; Springer: New York, NY, USA, 2013; Volume 34, p. 7. [Google Scholar] [CrossRef]
- Padovani, M.; Galli, D.; Glassgold, A.E. Cosmic-ray ionization of molecular clouds. Astron. Astrophys. 2009, 501, 619–631. [Google Scholar] [CrossRef]
- Padovani, M.; Galli, D.; Ivlev, A.V.; Caselli, P.; Ferrara, A. Production of atomic hydrogen by cosmic rays in dark clouds. Astron. Astrophys. 2018, 619, A144. [Google Scholar] [CrossRef]
- Padovani, M. On the origin of cosmic-ray ionisation in star-forming regions. In Proceedings of the Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales; Universitäts- und Stadtbibliothek: Köln, Germany, 2023; p. 237. [Google Scholar] [CrossRef]
- Indriolo, N.; Neufeld, D.A.; Gerin, M.; Schilke, P.; Benz, A.O.; Winkel, B.; Menten, K.M.; Chambers, E.T.; Black, J.H.; Bruderer, S.; et al. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate. Astrophys. J. 2015, 800, 40. [Google Scholar] [CrossRef]
- Holdship, J.; Mangum, J.G.; Viti, S.; Behrens, E.; Harada, N.; Martín, S.; Sakamoto, K.; Muller, S.; Tanaka, K.; Nakanishi, K.; et al. Energizing Star Formation: The Cosmic-Ray Ionization Rate in NGC 253 Derived from ALCHEMI Measurements of H3O+ and SO. Astrophys. J. 2022, 931, 89. [Google Scholar] [CrossRef]
- Harada, N.; Martín, S.; Mangum, J.G.; Sakamoto, K.; Muller, S.; Tanaka, K.; Nakanishi, K.; Herrero-Illana, R.; Yoshimura, Y.; Mühle, S.; et al. Starburst Energy Feedback Seen through HCO+/HOC+ Emission in NGC 253 from ALCHEMI. Astrophys. J. 2021, 923, 24. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Fischer, J.; Bruderer, S.; Müller, H.S.P.; Graciá-Carpio, J.; Sturm, E.; Lutz, D.; Poglitsch, A.; Feuchtgruber, H.; Veilleux, S.; et al. Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220. Astron. Astrophys. 2013, 550, A25. [Google Scholar] [CrossRef]
- Rivilla, V.M.; García De La Concepción, J.; Jiménez-Serra, I.; Martín-Pintado, J.; Colzi, L.; Tercero, B.; Megías, A.; López-Gallifa, Á.; Martínez-Henares, A.; Massalkhi, S.; et al. Ionize Hard: Interstellar PO+ Detection. Front. Astron. Space Sci. 2022, 9, 829288. [Google Scholar] [CrossRef]
- Ceccarelli, C.; Dominik, C.; López-Sepulcre, A.; Kama, M.; Padovani, M.; Caux, E.; Caselli, P. Herschel Finds Evidence for Stellar Wind Particles in a Protostellar Envelope: Is This What Happened to the Young Sun? Astrophys. J. Part 2-Lett. 2014, 790, L1. [Google Scholar] [CrossRef]
- Ceccarelli, C.; Hily-Blant, P.; Montmerle, T.; Dubus, G.; Gallant, Y.; Fiasson, A. Supernova-enhanced Cosmic-Ray Ionization and Induced Chemistry in a Molecular Cloud of W51C. Astrophys. J. Part 2-Lett. 2011, 740, L4. [Google Scholar] [CrossRef]
- Vaupré, S.; Hily-Blant, P.; Ceccarelli, C.; Dubus, G.; Gabici, S.; Montmerle, T. Cosmic ray induced ionisation of a molecular cloud shocked by the W28 supernova remnant. Astron. Astrophys. 2014, 568, A50. [Google Scholar] [CrossRef]
- Bell, A.R. Cosmic ray acceleration. Astropart. Phys. 2013, 43, 56–70. [Google Scholar] [CrossRef]
- Phan, V.H.M.; Recchia, S.; Mertsch, P.; Gabici, S. Stochasticity of cosmic rays from supernova remnants and the ionization rates in molecular clouds. Phys. Rev. D 2023, 107, 123006. [Google Scholar] [CrossRef]
- Padovani, M.; Hennebelle, P.; Marcowith, A.; Ferrière, K. Cosmic-ray acceleration in young protostars. Astron. Astrophys. 2015, 582, L13. [Google Scholar] [CrossRef]
- Glassgold, A.E.; Langer, W.D. Heating of Molecular-Hydrogen Clouds by Cosmic Rays and X-rays. Astrophys. J. 1973, 186, 859–888. [Google Scholar] [CrossRef]
- Dalgarno, A.; Yan, M.; Liu, W. Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium. Astrophys. J. Suppl. Ser. 1999, 125, 237–256. [Google Scholar] [CrossRef]
- Glassgold, A.E.; Galli, D.; Padovani, M. Cosmic-Ray and X-Ray Heating of Interstellar Clouds and Protoplanetary Disks. Astrophys. J. 2012, 756, 157. [Google Scholar] [CrossRef]
- Galli, D.; Padovani, M. Cosmic-ray heating of molecular cloud cores. arXiv 2015, arXiv:1502.03380. [Google Scholar] [CrossRef]
- Güdel, M. Ionization and heating by X-rays and cosmic rays. In Proceedings of the European Physical Journal Web of Conferences; EDP Sciences: Les Ulice, France, 2015; Volume 102, p. 00015. [Google Scholar] [CrossRef]
- Jonkheid, B.; Faas, F.G.A.; van Zadelhoff, G.J.; van Dishoeck, E.F. The gas temperature in flaring disks around pre-main sequence stars. Astron. Astrophys. 2004, 428, 511–521. [Google Scholar] [CrossRef]
- Gaches, B.A.L.; Offner, S.S.R. Exploration of Cosmic-ray Acceleration in Protostellar Accretion Shocks and a Model for Ionization Rates in Embedded Protoclusters. Astrophys. J. 2018, 861, 87. [Google Scholar] [CrossRef]
- Tielens, A.G.G.M.; Hagen, W. Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 1982, 114, 245–260. [Google Scholar]
- Prasad, S.S.; Tarafdar, S.P. UV radiation field inside dense clouds - Its possible existence and chemical implications. Astrophys. J. 1983, 267, 603–609. [Google Scholar] [CrossRef]
- Bisbas, T.G.; van Dishoeck, E.F.; Papadopoulos, P.P.; Szűcs, L.; Bialy, S.; Zhang, Z.Y. Cosmic-ray Induced Destruction of CO in Star-forming Galaxies. Astrophys. J. 2017, 839, 90. [Google Scholar] [CrossRef]
- Gaches, B.A.L.; Offner, S.S.R.; Bisbas, T.G. The Astrochemical Impact of Cosmic Rays in Protoclusters. I. Molecular Cloud Chemistry. Astrophys. J. 2019, 878, 105. [Google Scholar] [CrossRef]
- Ivlev, A.V.; Padovani, M.; Galli, D.; Caselli, P. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects. Astrophys. J. 2015, 812, 135. [Google Scholar] [CrossRef]
- Öberg, K.I.; van Dishoeck, E.F.; Linnartz, H. Photodesorption of ices I: CO, N2, and CO2. Astron. Astrophys. 2009, 496, 281–293. [Google Scholar] [CrossRef]
- Öberg, K.I.; Linnartz, H.; Visser, R.; van Dishoeck, E.F. Photodesorption of Ices. II. H2O and D2O. Astrophys. J. 2009, 693, 1209–1218. [Google Scholar] [CrossRef]
- Bennett, C.J.; Kaiser, R.I. On the Formation of Glycolaldehyde (HCOCH2OH) and Methyl Formate (HCOOCH3) in Interstellar Ice Analogs. Astrophys. J. 2007, 661, 899–909. [Google Scholar] [CrossRef]
- Bennett, C.J.; Kaiser, R.I. The Formation of Acetic Acid (CH3COOH) in Interstellar Ice Analogs. Astrophys. J. 2007, 660, 1289–1295. [Google Scholar] [CrossRef]
- Öberg, K.I.; Garrod, R.T.; van Dishoeck, E.F.; Linnartz, H. Formation rates of complex organics in UV irradiated CH_3OH-rich ices. I. Experiments. Astron. Astrophys. 2009, 504, 891–913. [Google Scholar] [CrossRef]
- Öberg, K.I.; van Dishoeck, E.F.; Linnartz, H.; Andersson, S. The Effect of H2O on Ice Photochemistry. Astrophys. J. 2010, 718, 832–840. [Google Scholar] [CrossRef]
- Oka, T. Interstellar Chemistry Special Feature: Interstellar H3+. Proc. Natl. Acad. Sci. USA 2006, 103, 12235–12242. [Google Scholar] [CrossRef]
- Gerin, M.; de Luca, M.; Black, J.; Goicoechea, J.R.; Herbst, E.; Neufeld, D.A.; Falgarone, E.; Godard, B.; Pearson, J.C.; Lis, D.C.; et al. Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4. Astron. Astrophys. 2010, 518, L110. [Google Scholar] [CrossRef]
- Neufeld, D.A.; Goicoechea, J.R.; Sonnentrucker, P.; Black, J.H.; Pearson, J.; Yu, S.; Phillips, T.G.; Lis, D.C.; de Luca, M.; Herbst, E.; et al. Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: A probe of diffuse clouds with a small molecular fraction. Astron. Astrophys. 2010, 521, L10. [Google Scholar] [CrossRef]
- Black, J.H.; Dalgarno, A. The Cosmic Abundance of Deuterium. Astrophys. J. Part 2-Lett. 1973, 184, L101. [Google Scholar] [CrossRef]
- Hartquist, T.W.; Black, J.H.; Dalgarno, A. Cosmic ray ionization and the deuterium abundance. Mon. Not. R. Astron. Soc. 1978, 185, 643–646. [Google Scholar] [CrossRef]
- Glassgold, A.E.; Langer, W.D. Model calculations for diffuse molecular clouds. Astrophys. J. 1974, 193, 73–91. [Google Scholar] [CrossRef]
- Guelin, M.; Langer, W.D.; Snell, R.L.; Wootten, H.A. Observations of DCO+: The electron abundance in dark clouds. Astrophys. J. Part 2-Lett. 1977, 217, L165–L168. [Google Scholar] [CrossRef]
- Caselli, P. Deuterated molecules as a probe of ionization fraction in dense interstellar clouds. Planet. Space Sci. 2002, 50, 1133–1144. [Google Scholar] [CrossRef]
- Ceccarelli, C.; Caselli, P.; Bockelée-Morvan, D.; Mousis, O.; Pizzarello, S.; Robert, F.; Semenov, D. Deuterium Fractionation: The Ariadne’s Thread from the Precollapse Phase to Meteorites and Comets Today. In Proceedings of the Protostars and Planets VI; Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T., Eds.; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 859–882. [Google Scholar]
- Kewley, L.J.; Ellison, S.L. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies. Astrophys. J. 2008, 681, 1183–1204. [Google Scholar] [CrossRef]
- Sanders, R.L.; Shapley, A.E.; Jones, T.; Reddy, N.A.; Kriek, M.; Siana, B.; Coil, A.L.; Mobasher, B.; Shivaei, I.; Davé, R.; et al. The MOSDEF Survey: The Evolution of the Mass-Metallicity Relation from z = 0 to z 3.3. Astrophys. J. 2021, 914, 19. [Google Scholar] [CrossRef]
- Mannucci, F.; Cresci, G.; Maiolino, R.; Marconi, A.; Gnerucci, A. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 2010, 408, 2115–2127. [Google Scholar] [CrossRef]
- Curti, M.; Mannucci, F.; Cresci, G.; Maiolino, R. The mass-metallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies. Mon. Not. R. Astron. Soc. 2020, 491, 944–964. [Google Scholar] [CrossRef]
- Lilly, S.J.; Carollo, C.M.; Pipino, A.; Renzini, A.; Peng, Y. Gas Regulation of Galaxies: The Evolution of the Cosmic Specific Star Formation Rate, the Metallicity-Mass-Star-formation Rate Relation, and the Stellar Content of Halos. Astrophys. J. 2013, 772, 119. [Google Scholar] [CrossRef]
- Lapi, A.; Pantoni, L.; Boco, L.; Danese, L. New Analytic Solutions for Galaxy Evolution. II. Wind Recycling, Galactic Fountains, and Late-type Galaxies. Astrophys. J. 2020, 897, 81. [Google Scholar] [CrossRef]
- Bassini, L.; Feldmann, R.; Gensior, J.; Faucher-Giguère, C.A.; Cenci, E.; Moreno, J.; Bernardini, M.; Liang, L. Inflow and outflow properties, not total gas fractions, drive the evolution of the mass-metallicity relation. arXiv 2024, arXiv:2401.13824. [Google Scholar] [CrossRef]
- Juarez, Y.; Maiolino, R.; Mujica, R.; Pedani, M.; Marinoni, S.; Nagao, T.; Marconi, A.; Oliva, E. The metallicity of the most distant quasars. Astron. Astrophys. 2009, 494, L25–L28. [Google Scholar] [CrossRef]
- Tan, J.C.; Beltrán, M.T.; Caselli, P.; Fontani, F.; Fuente, A.; Krumholz, M.R.; McKee, C.F.; Stolte, A. Massive Star Formation. In Proceedings of the Protostars and Planets VI; Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T., Eds.; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 149–172. [Google Scholar] [CrossRef]
- Liu, X.; Shapley, A.E.; Coil, A.L.; Brinchmann, J.; Ma, C.P. Metallicities and Physical Conditions in Star-forming Galaxies at z 1.0–1.5. Astrophys. J. 2008, 678, 758–779. [Google Scholar] [CrossRef]
- Nagao, T.; Maiolino, R.; De Breuck, C.; Caselli, P.; Hatsukade, B.; Saigo, K. Chemical Properties of a High-z Dusty Star-forming Galaxy from ALMA Cycle 0 Observations. Messenger 2012, 149, 44–45. [Google Scholar]
- De Breuck, C.; Weiß, A.; Béthermin, M.; Cunningham, D.; Apostolovski, Y.; Aravena, M.; Archipley, M.; Chapman, S.; Chen, C.C.; Fu, J.; et al. A dense, solar metallicity ISM in the z = 4.2 dusty star-forming galaxy SPT 0418-47. Astron. Astrophys. 2019, 631, A167. [Google Scholar] [CrossRef]
- Birkin, J.E.; Hutchison, T.A.; Welch, B.; Spilker, J.S.; Aravena, M.; Bayliss, M.B.; Cathey, J.; Chapman, S.C.; Gonzalez, A.H.; Gururajan, G.; et al. JWST’s TEMPLATES for Star Formation: The First Resolved Gas-phase Metallicity Maps of Dust-obscured Star-forming Galaxies at z 4. Astrophys. J. 2023, 958, 64. [Google Scholar] [CrossRef]
- Torrey, P.; Vogelsberger, M.; Hernquist, L.; McKinnon, R.; Marinacci, F.; Simcoe, R.A.; Springel, V.; Pillepich, A.; Naiman, J.; Pakmor, R.; et al. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Mon. Not. R. Astron. Soc. 2018, 477, L16–L20. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Smail, I.; Neri, R.; Chapman, S.C.; Ivison, R.J.; Blain, A.; Cox, P.; Omont, A.; Bertoldi, F.; et al. Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor. Astrophys. J. 2008, 680, 246–262. [Google Scholar] [CrossRef]
- Leroy, A.K.; Bolatto, A.; Gordon, K.; Sandstrom, K.; Gratier, P.; Rosolowsky, E.; Engelbracht, C.W.; Mizuno, N.; Corbelli, E.; Fukui, Y.; et al. The CO-to-H2 Conversion Factor from Infrared Dust Emission across the Local Group. Astrophys. J. 2011, 737, 12. [Google Scholar] [CrossRef]
- Matsuura, M.; Barlow, M.J.; Zijlstra, A.A.; Whitelock, P.A.; Cioni, M.R.L.; Groenewegen, M.A.T.; Volk, K.; Kemper, F.; Kodama, T.; Lagadec, E.; et al. The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution. Mon. Not. R. Astron. Soc. 2009, 396, 918–934. [Google Scholar] [CrossRef]
- Gall, C.; Hjorth, J. Maximally Dusty Star-forming Galaxies: Supernova Dust Production and Recycling in Local Group and High-redshift Galaxies. Astrophys. J. 2018, 868, 62. [Google Scholar] [CrossRef]
- Morgan, H.L.; Edmunds, M.G. Dust formation in early galaxies. Mon. Not. R. Astron. Soc. 2003, 343, 427–442. [Google Scholar] [CrossRef]
- Williams, D.; Herbst, E. It’s a dusty Universe: Surface science in space. Surf. Sci. 2002, 500, 823–837. [Google Scholar] [CrossRef]
- Draine, B.T. Interstellar Dust Grains. Ann. Rev. Astron. Astrophys. 2003, 41, 241–289. [Google Scholar] [CrossRef]
- Jenkins, E.B. A Unified Representation of Gas-Phase Element Depletions in the Interstellar Medium. Astrophys. J. 2009, 700, 1299–1348. [Google Scholar] [CrossRef]
- Nozawa, T.; Fukugita, M. Properties of dust grains probed with extinction curves. Astrophys. J. 2013, 770, 27. [Google Scholar] [CrossRef]
- Weingartner, J.C.; Draine, B.T. Interstellar Depletion onto Very Small Dust Grains. Astrophys. J. 1999, 517, 292–298. [Google Scholar] [CrossRef]
- Asano, R.S.; Takeuchi, T.T.; Hirashita, H.; Nozawa, T. What determines the grain size distribution in galaxies? Mon. Not. R. Astron. Soc. 2013, 432, 637–652. [Google Scholar] [CrossRef]
- Hirashita, H. Two-size approximation: A simple way of treating the evolution of grain size distribution in galaxies. Mon. Not. R. Astron. Soc. 2015, 447, 2937–2950. [Google Scholar] [CrossRef]
- Granato, G.L.; Ragone-Figueroa, C.; Taverna, A.; Silva, L.; Valentini, M.; Borgani, S.; Monaco, P.; Murante, G.; Tornatore, L. Dust evolution in zoom-in cosmological simulations of galaxy formation. Mon. Not. R. Astron. Soc. 2021, 503, 511–532. [Google Scholar] [CrossRef]
- Parente, M.; Ragone-Figueroa, C.; Granato, G.L.; Borgani, S.; Murante, G.; Valentini, M.; Bressan, A.; Lapi, A. Dust evolution with MUPPI in cosmological volumes. Mon. Not. R. Astron. Soc. 2022, 515, 2053–2071. [Google Scholar] [CrossRef]
- Ferrarotti, A.S.; Gail, H.P. Mineral formation in stellar winds. V. Formation of calcium carbonate. Astron. Astrophys. 2005, 430, 959–965. [Google Scholar] [CrossRef]
- Rimola, A.; Bromley, S.T. Formation of Interstellar Silicate Dust via Nanocluster Aggregation: Insights from Quantum Chemistry simulations. Front. Astron. Space Sci. 2021, 8, 49. [Google Scholar] [CrossRef]
- Ehrenfreund, P.; Charnley, S.B. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Ann. Rev. Astron. Astrophys. 2000, 38, 427–483. [Google Scholar] [CrossRef]
- Tielens, A.G.G.M. Interstellar polycyclic aromatic hydrocarbon molecules. Ann. Rev. Astron. Astrophys. 2008, 46, 289–337. [Google Scholar] [CrossRef]
- Henning, T. Cosmic Silicates. Ann. Rev. Astron. Astrophys. 2010, 48, 21–46. [Google Scholar] [CrossRef]
- Kozasa, T.; Hasegawa, H.; Nomoto, K. Formation of Dust Grains in the Ejecta of SN 1987A. Astrophys. J. 1989, 344, 325. [Google Scholar] [CrossRef]
- Dwek, E. The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy. Astrophys. J. 1998, 501, 643. [Google Scholar] [CrossRef]
- Marigo, P. Chemical yields from low- and intermediate-mass stars: Model predictions and basic observational constraints. Astron. Astrophys. 2001, 370, 194–217. [Google Scholar] [CrossRef]
- Woosley, S.E.; Weaver, T.A. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis. Astrophys. J. Suppl. Ser. 1995, 101, 181. [Google Scholar] [CrossRef]
- Dwek, E. Interstellar dust: What is it, how does it evolve, and what are its observational consequences? In Proceedings of the The Spectral Energy Distributions of Gas-Rich Galaxies: Confronting Models with Data; American Institute of Physics Conference Series; Popescu, C.C., Tuffs, R.J., Eds.; AIP: Melville, NY, USA, 2005; Volume 761, pp. 103–122. [Google Scholar] [CrossRef]
- Bianchi, S.; Schneider, R. Dust formation and survival in supernova ejecta. Mon. Not. R. Astron. Soc. 2007, 378, 973–982. [Google Scholar] [CrossRef]
- Nozawa, T.; Kozasa, T.; Habe, A.; Dwek, E.; Umeda, H.; Tominaga, N.; Maeda, K.; Nomoto, K. Evolution of Dust in Primordial Supernova Remnants: Can Dust Grains Formed in the Ejecta Survive and Be Injected into the Early Interstellar Medium? Astrophys. J. 2007, 666, 955–966. [Google Scholar] [CrossRef]
- Witstok, J.; Shivaei, I.; Smit, R.; Maiolino, R.; Carniani, S.; Curtis-Lake, E.; Ferruit, P.; Arribas, S.; Bunker, A.J.; Cameron, A.J.; et al. Carbonaceous dust grains seen in the first billion years of cosmic time. Nature 2023, 621, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Byrne, L.; Christensen, C.; Tsekitsidis, M.; Brooks, A.; Quinn, T. Implementing Dust Shielding as a Criteria for Star Formation. Astrophys. J. 2019, 871, 213. [Google Scholar] [CrossRef]
- van de Hulst, H.C. The solid particles in interstellar space. In Recherches astronomiques de l’observatoire d’Utrecht; Drukkerij Schotanus and Jens: Utrecht, The Netherlands, 1946; Volume 11, pp. 1–50. [Google Scholar]
- Hollenbach, D.; Salpeter, E.E. Surface Adsorption of Light Gas Atoms. J. Chem. Phys. 1970, 53, 79–86. [Google Scholar] [CrossRef]
- Cazaux, S.; Tielens, A.G.G.M. H2 Formation on Grain Surfaces. Astrophys. J. 2004, 604, 222–237. [Google Scholar] [CrossRef]
- Vidali, G.; Jing, D.; He, J. Hydrogen and water in the interstellar medium. In Proceedings of the First International Conference on Chemical Evolution of Star Forming Region and Origin of Life: Astrochem2012; American Institute of Physics Conference Series; Chakrabarti, S.K., Acharyya, K., Das, A., Eds.; AIP: Melville, NY, USA, 2013; Volume 1543, pp. 31–47. [Google Scholar] [CrossRef]
- Vidali, G. H2 Formation on Interstellar Grains. Chem. Rev. 2013, 113, 8752–8782. [Google Scholar] [CrossRef] [PubMed]
- Vidali, G. Cosmic Low Temperature Physics: Making Molecules on Stardust. J. Low Temp. Phys. 2013, 170, 1–30. [Google Scholar] [CrossRef]
- D’Hendecourt, L.B.; Allamandola, L.J.; Greenberg, J.M. Time dependent chemistry in dense molecular clouds. I. Grain surface reactions, gas/grain interactions and infrared spectroscopy. Astron. Astrophys. 1985, 152, 130–150. [Google Scholar]
- Hasegawa, T.I.; Herbst, E.; Leung, C.M. Models of Gas-Grain Chemistry in Dense Interstellar Clouds with Complex Organic Molecules. Astrophys. J. Suppl. Ser. 1992, 82, 167. [Google Scholar] [CrossRef]
- Cazaux, S.; Cobut, V.; Marseille, M.; Spaans, M.; Caselli, P. Water formation on bare grains: When the chemistry on dust impacts interstellar gas. Astron. Astrophys. 2010, 522, A74. [Google Scholar] [CrossRef]
- van Dishoeck, E.F.; Herbst, E.; Neufeld, D.A. Interstellar Water Chemistry: From Laboratory to Observations. Chem. Rev. 2013, 113, 9043–9085. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Kouchi, A. Ice surface reactions: A key to chemical evolution in space. Prog. Surf. Sci. 2008, 83, 439–489. [Google Scholar] [CrossRef]
- Hama, T.; Watanabe, N. Surface Processes on Interstellar Amorphous Solid Water: Adsorption, Diffusion, Tunneling Reactions, and Nuclear-Spin Conversion. Chem. Rev. 2013, 113, 8783–8839. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, C.; Codella, C.; Balucani, N.; Bockelee-Morvan, D.; Herbst, E.; Vastel, C.; Caselli, P.; Favre, C.; Lefloch, B.; Oberg, K. Organic Chemistry in the First Phases of Solar-Type Protostars. In Proceedings of the Astronomical Society of the Pacific Conference Series; Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2023; Volume 534, p. 379. [Google Scholar]
- Garrod, R.T.; Herbst, E. Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 2006, 457, 927–936. [Google Scholar] [CrossRef]
- Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G.M. Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds. Astrophys. J. Part 2-Lett. 2012, 759, L43. [Google Scholar] [CrossRef]
- Walsh, C.; Millar, T.J.; Nomura, H.; Herbst, E.; Widicus Weaver, S.; Aikawa, Y.; Laas, J.C.; Vasyunin, A.I. Complex organic molecules in protoplanetary disks. Astron. Astrophys. 2014, 563, A33. [Google Scholar] [CrossRef]
- Codella, C.; Podio, L.; Fontani, F.; Jimenez-Serra, I.; Caselli, P.; Palumbo, M.E.; López-Sepulcre, A.; Beltrán, M.T.; Lefloch, B.; Brucato, J.R.; et al. Complex Organic Molecules in Protostellar Environments in the SKA Era. In Advancing Astrophysics with the Square Kilometre Array (AASKA14); Proceedings of Science, 2015; p.123. Available online: https://pos.sissa.it/215/123/ (accessed on 14 April 2024). [CrossRef]
- Lintott, C.J.; Viti, S.; Williams, D.A.; Rawlings, J.M.C.; Ferreras, I. Hot cores: Probes of high-redshift galaxies? Mon. Not. R. Astron. Soc. 2005, 360, 1527–1531. [Google Scholar] [CrossRef]
- Schmidt, M. The Rate of Star Formation. Astrophys. J. 1959, 129, 243. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. Star Formation in Galaxies Along the Hubble Sequence. Ann. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef]
- Wong, T.; Blitz, L. The Relationship between Gas Content and Star Formation in Molecule-rich Spiral Galaxies. Astrophys. J. 2002, 569, 157–183. [Google Scholar] [CrossRef]
- Lin, L.; Pan, H.A.; Ellison, S.L.; Belfiore, F.; Shi, Y.; Sánchez, S.F.; Hsieh, B.C.; Rowlands, K.; Ramya, S.; Thorp, M.D.; et al. The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence. Astrophys. J. Part 2-Lett. 2019, 884, L33. [Google Scholar] [CrossRef]
- Brinchmann, J.; Charlot, S.; White, S.D.M.; Tremonti, C.; Kauffmann, G.; Heckman, T.; Brinkmann, J. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 2004, 351, 1151–1179. [Google Scholar] [CrossRef]
- Whitaker, K.E.; van Dokkum, P.G.; Brammer, G.; Franx, M. The Star Formation Mass Sequence Out to z = 2.5. Astrophys. J. Part 2-Lett. 2012, 754, L29. [Google Scholar] [CrossRef]
- Renzini, A.; Peng, Y.j. An Objective Definition for the Main Sequence of Star-forming Galaxies. Astrophys. J. Part 2-Lett. 2015, 801, L29. [Google Scholar] [CrossRef]
- Sandles, L.; Curtis-Lake, E.; Charlot, S.; Chevallard, J.; Maiolino, R. Bayesian hierarchical modelling of the M*-SFR relation from 1 ≲ z ≲ 6 in ASTRODEEP. Mon. Not. R. Astron. Soc. 2022, 515, 2951–2969. [Google Scholar] [CrossRef]
- Daddi, E.; Elbaz, D.; Walter, F.; Bournaud, F.; Salmi, F.; Carilli, C.; Dannerbauer, H.; Dickinson, M.; Monaco, P.; Riechers, D. Different Star Formation Laws for Disks Versus Starbursts at Low and High Redshifts. Astrophys. J. Part 2-Lett. 2010, 714, L118–L122. [Google Scholar] [CrossRef]
- Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; et al. The Lesser Role of Starbursts in Star Formation at z = 2. Astrophys. J. Part 2-Lett. 2011, 739, L40. [Google Scholar] [CrossRef]
- Sargent, M.T.; Daddi, E.; Béthermin, M.; Aussel, H.; Magdis, G.; Hwang, H.S.; Juneau, S.; Elbaz, D.; da Cunha, E. Regularity Underlying Complexity: A Redshift-independent Description of the Continuous Variation of Galaxy-scale Molecular Gas Properties in the Mass-star Formation Rate Plane. Astrophys. J. 2014, 793, 19. [Google Scholar] [CrossRef]
- Scoville, N.; Lee, N.; Vanden Bout, P.; Diaz-Santos, T.; Sanders, D.; Darvish, B.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; et al. Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift. Astrophys. J. 2017, 837, 150. [Google Scholar] [CrossRef]
- Pearson, W.J.; Wang, L.; Hurley, P.D.; Małek, K.; Buat, V.; Burgarella, D.; Farrah, D.; Oliver, S.J.; Smith, D.J.B.; van der Tak, F.F.S. Main sequence of star forming galaxies beyond the Herschel confusion limit. Astron. Astrophys. 2018, 615, A146. [Google Scholar] [CrossRef]
- Silverman, J.D.; Rujopakarn, W.; Daddi, E.; Renzini, A.; Rodighiero, G.; Liu, D.; Puglisi, A.; Sargent, M.; Mancini, C.; Kartaltepe, J.; et al. The Molecular Gas Content and Fuel Efficiency of Starbursts at z ∼ 1.6 with ALMA. Astrophys. J. 2018, 867, 92. [Google Scholar] [CrossRef]
- Paglione, T.A.D.; Jackson, J.M.; Ishizuki, S. The Average Properties of the Dense Molecular Gas in Galaxies. Astrophys. J. 1997, 484, 656–663. [Google Scholar] [CrossRef]
- Gao, Y.; Solomon, P.M. The Star Formation Rate and Dense Molecular Gas in Galaxies. Astrophys. J. 2004, 606, 271–290. [Google Scholar] [CrossRef]
- Genzel, R.; Tacconi, L.J.; Gracia-Carpio, J.; Sternberg, A.; Cooper, M.C.; Shapiro, K.; Bolatto, A.; Bouché, N.; Bournaud, F.; Burkert, A.; et al. A study of the gas-star formation relation over cosmic time. Mon. Not. R. Astron. Soc. 2010, 407, 2091–2108. [Google Scholar] [CrossRef]
- Baker, W.M.; Maiolino, R.; Belfiore, F.; Bluck, A.F.L.; Curti, M.; Wylezalek, D.; Bertemes, C.; Bothwell, M.S.; Lin, L.; Thorp, M.; et al. The molecular gas main sequence and Schmidt-Kennicutt relation are fundamental, the star-forming main sequence is a (useful) byproduct. Mon. Not. R. Astron. Soc. 2023, 518, 4767–4781. [Google Scholar] [CrossRef]
- Sternberg, A. The excitation of molecular hydrogen and its significance. In Proceedings of the Infrared Spectroscopy in Astronomy; Böhm-Vitense, E., Ed.; European Space Agency: Paris, France, 1989; p. 269. [Google Scholar]
- Habart, E.; Walmsley, M.; Verstraete, L.; Cazaux, S.; Maiolino, R.; Cox, P.; Boulanger, F.; Pineau des Forêts, G. Molecular Hydrogen. Space Sci. Rev. 2005, 119, 71–91. [Google Scholar] [CrossRef]
- Bergin, E.A.; Tafalla, M. Cold Dark Clouds: The Initial Conditions for Star Formation. Ann. Rev. Astron. Astrophys. 2007, 45, 339–396. [Google Scholar] [CrossRef]
- Bolatto, A.D.; Wolfire, M.; Leroy, A.K. The CO-to-H2 Conversion Factor. Ann. Rev. Astron. Astrophys. 2013, 51, 207–268. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Ivison, R.; Carilli, C.; Lewis, G. A massive reservoir of low-excitation molecular gas at high redshift. Nature 2001, 409, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Carilli, C.L.; Daddi, E.; Riechers, D.; Walter, F.; Weiss, A.; Dannerbauer, H.; Morrison, G.E.; Wagg, J.; Davé, R.; Elbaz, D.; et al. Imaging the Molecular Gas in a Submillimeter Galaxy at z = 4.05: Cold Mode Accretion or a Major Merger? Astrophys. J. 2010, 714, 1407–1417. [Google Scholar] [CrossRef]
- Ivison, R.J.; Papadopoulos, P.P.; Smail, I.; Greve, T.R.; Thomson, A.P.; Xilouris, E.M.; Chapman, S.C. Tracing the molecular gas in distant submillimetre galaxies via CO(1–0) imaging with the Expanded Very Large Array. Mon. Not. R. Astron. Soc. 2011, 412, 1913–1925. [Google Scholar] [CrossRef]
- Dickman, R.L. The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds. Astrophys. J. Suppl. Ser. 1978, 37, 407–427. [Google Scholar] [CrossRef]
- Sanders, D.B.; Solomon, P.M.; Scoville, N.Z. Giant molecular clouds in the Galaxy. I - The axisymmetric distribution of H2. Astrophys. J. 1984, 276, 182–203. [Google Scholar] [CrossRef]
- Dame, T.M.; Hartmann, D.; Thaddeus, P. The Milky Way in Molecular Clouds: A New Complete CO Survey. Astrophys. J. 2001, 547, 792–813. [Google Scholar] [CrossRef]
- Strong, A.W.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Morris, D.; Schoenfelder, V.; Stacy, J.G.; de Vries, C.; Varendorff, M.; et al. Diffuse continuum gamma rays from the Galaxy observed by COMPTEL. Astron. Astrophys. 1994, 292, 82–91. [Google Scholar]
- Downes, D.; Solomon, P.M. Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies. Astrophys. J. 1998, 507, 615–654. [Google Scholar] [CrossRef]
- Hodge, J.A.; Carilli, C.L.; Walter, F.; de Blok, W.J.G.; Riechers, D.; Daddi, E.; Lentati, L. Evidence for a Clumpy, Rotating Gas Disk in a Submillimeter Galaxy at z = 4. Astrophys. J. 2012, 760, 11. [Google Scholar] [CrossRef]
- Feldmann, R.; Hernandez, J.; Gnedin, N.Y. The Relation between Mid-plane Pressure and Molecular Hydrogen in Galaxies: Environmental Dependence. Astrophys. J. 2012, 761, 167. [Google Scholar] [CrossRef]
- Feldmann, R.; Gnedin, N.Y.; Kravtsov, A.V. The X-factor in Galaxies. II. The Molecular-hydrogen-Star-formation Relation. Astrophys. J. 2012, 758, 127. [Google Scholar] [CrossRef]
- Glover, S. The relationship between H2 and CO abundances in molecular clouds. In Proceedings of the From Stars to Galaxies: Connecting our Understanding of Star and Galaxy Formation; 2010. p. 11. Available online: https://conference.astro.ufl.edu/STARSTOGALAXIES/science_program_files/starstogalaxies_proceedings.pdf, (accessed on 14 April 2024).
- Snow, T.P.; McCall, B.J. Diffuse Atomic and Molecular Clouds. Ann. Rev. Astron. Astrophys. 2006, 44, 367–414. [Google Scholar] [CrossRef]
- van Dishoeck, E.F.; Black, J.H. Interstellar C 2, CH, and CN in Translucent Molecular Clouds. Astrophys. J. 1989, 340, 273. [Google Scholar] [CrossRef]
- Draine, B.T.; Bertoldi, F. Structure of Stationary Photodissociation Fronts. Astrophys. J. 1996, 468, 269. [Google Scholar] [CrossRef]
- Lee, H.H.; Herbst, E.; Pineau des Forets, G.; Roueff, E.; Le Bourlot, J. Photodissociation of H_2_ and CO and time dependent chemistry in inhomogeneous interstellar clouds. Astron. Astrophys. 1996, 311, 690–707. [Google Scholar]
- Glover, S.C.O.; Mac Low, M.M. On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds. Mon. Not. R. Astron. Soc. 2011, 412, 337–350. [Google Scholar] [CrossRef]
- Hu, C.Y.; Sternberg, A.; van Dishoeck, E.F. Metallicity Dependence of the H/H2 and C+/C/CO Distributions in a Resolved Self-regulating Interstellar Medium. Astrophys. J. 2021, 920, 44. [Google Scholar] [CrossRef]
- Clark, P.C.; Glover, S.C.O. Does the CO-to-H2 conversion factor depend on the star formation rate? Mon. Not. R. Astron. Soc. 2015, 452, 2057–2070. [Google Scholar] [CrossRef]
- Feldmann, R.; Gnedin, N.Y.; Kravtsov, A.V. The X-factor in Galaxies. I. Dependence on Environment and Scale. Astrophys. J. 2012, 747, 124. [Google Scholar] [CrossRef]
- Shetty, R.; Glover, S.C.; Dullemond, C.P.; Ostriker, E.C.; Harris, A.I.; Klessen, R.S. Modelling CO emission - II. The physical characteristics that determine the X factor in Galactic molecular clouds. Mon. Not. R. Astron. Soc. 2011, 415, 3253–3274. [Google Scholar] [CrossRef]
- Lombardi, M.; Alves, J.; Lada, C.J. 2MASS wide field extinction maps. I. The Pipe nebula. Astron. Astrophys. 2006, 454, 781–796. [Google Scholar] [CrossRef]
- Pineda, J.E.; Caselli, P.; Goodman, A.A. CO Isotopologues in the Perseus Molecular Cloud Complex: The X-factor and Regional Variations. Astrophys. J. 2008, 679, 481–496. [Google Scholar] [CrossRef]
- Goldsmith, P.F. Collisional Excitation of Carbon Monoxide in Interstellar Clouds. Astrophys. J. 1972, 176, 597. [Google Scholar] [CrossRef]
- van Dishoeck, E.F.; Black, J.H. The abundance of interstellar CO. In Proceedings of the Physical Processes in Interstellar Clouds; NATO Advanced Study Institute (ASI) Series C; Morfill, G.E., Scholer, M., Eds.; Springer: New York, NY, USA, 1987; Volume 210, pp. 241–274. [Google Scholar] [CrossRef]
- Lyu, C.H.; Smith, A.M.; Bruhweiler, F.C. A Statistical Equilibrium Analysis of Interstellar CO toward zeta Ophiuchi as Recorded by the Goddard High Resolution Spectrograph. Astrophys. J. 1994, 426, 254. [Google Scholar] [CrossRef]
- Warin, S.; Benayoun, J.J.; Viala, Y.P. Photodissociation and rotational excitation of interstellar CO. Astron. Astrophys. 1996, 308, 535–564. [Google Scholar]
- Bergin, E.A.; Melnick, G.J.; Neufeld, D.A. The Postshock Chemical Lifetimes of Outflow Tracers and a Possible New Mechanism to Produce Water Ice Mantles. Astrophys. J. 1998, 499, 777–792. [Google Scholar] [CrossRef]
- Bergin, E.A. Chemical Models of Collapsing Envelopes. In Proceedings of the From Molecular Clouds to Planetary; Minh, Y.C., van Dishoeck, E.F., Eds.; Cambridge University press: Cambridge, UK, 2000; Volume 197, p. 51. [Google Scholar] [CrossRef]
- Hollenbach, D.; Kaufman, M.J.; Bergin, E.A.; Melnick, G.J. Water, O2, and Ice in Molecular Clouds. Astrophys. J. 2009, 690, 1497–1521. [Google Scholar] [CrossRef]
- Cernicharo, J.; Goicoechea, J.R.; Pardo, J.R.; Asensio-Ramos, A. Warm Water Vapor around Sagittarius B2. Astrophys. J. 2006, 642, 940–953. [Google Scholar] [CrossRef]
- Caselli, P.; Keto, E.; Pagani, L.; Aikawa, Y.; Yıldız, U.A.; van der Tak, F.F.S.; Tafalla, M.; Bergin, E.A.; Nisini, B.; Codella, C.; et al. Water vapor toward starless cores: The Herschel view. Astron. Astrophys. 2010, 521, L29. [Google Scholar] [CrossRef]
- Takahashi, T.; Silk, J.; Hollenbach, D.J. H2O heating in molecular clouds - Line transfer and thermal balance in a warm dusty medium. Astrophys. J. 1983, 275, 145–162. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Smith, H.A.; Fischer, J.; Cernicharo, J. The Far-Infrared Spectrum of Arp 220. Astrophys. J. 2004, 613, 247–261. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Smith, H.A.; Ashby, M.L.N.; Fischer, J.; Spinoglio, L.; Grundy, T.W. High-excitation OH and H2O Lines in Markarian 231: The Molecular Signatures of Compact Far-infrared Continuum Sources. Astrophys. J. 2008, 675, 303–315. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Fischer, J.; Isaak, K.; Rykala, A.; Savini, G.; Spaans, M.; van der Werf, P.; Meijerink, R.; Israel, F.P.; Loenen, A.F.; et al. Herschel observations of water vapour in Markarian 231. Astron. Astrophys. 2010, 518, L43. [Google Scholar] [CrossRef]
- Weiß, A.; Requena-Torres, M.A.; Güsten, R.; García-Burillo, S.; Harris, A.I.; Israel, F.P.; Klein, T.; Kramer, C.; Lord, S.; Martin-Pintado, J.; et al. HIFI spectroscopy of low-level water transitions in M 82. Astron. Astrophys. 2010, 521, L1. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Fischer, J.; Aalto, S.; Falstad, N. Modeling the H2O submillimeter emission in extragalactic sources. Astron. Astrophys. 2014, 567, A91. [Google Scholar] [CrossRef]
- Pereira-Santaella, M.; González-Alfonso, E.; Usero, A.; García-Burillo, S.; Martín-Pintado, J.; Colina, L.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Rico, F.; et al. First detection of the 448 GHz H2O transition in space. Astron. Astrophys. 2017, 601, L3. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Fischer, J.; Goicoechea, J.R.; Yang, C.; Pereira-Santaella, M.; Stewart, K.P. Importance of radiative pumping for the excitation of the H2O submillimeter lines in galaxies. Astron. Astrophys. 2022, 666, L3. [Google Scholar] [CrossRef]
- Poelman, D.R.; Spaans, M.; Tielens, A.G.G.M. The interpretation of water emission from dense interstellar clouds. Astron. Astrophys. 2007, 464, 1023–1027. [Google Scholar] [CrossRef]
- Liu, L.; Weiß, A.; Perez-Beaupuits, J.P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K.M.; van der Werf, P.; Israel, F.P.; Harris, A.; et al. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies. Astrophys. J. 2017, 846, 5. [Google Scholar] [CrossRef]
- Omont, A.; Neri, R.; Cox, P.; Lupu, R.; Guélin, M.; van der Werf, P.; Weiß, A.; Ivison, R.; Negrello, M.; Leeuw, L.; et al. Observation of H2O in a strongly lensed Herschel-ATLAS source at z = 2.3. Astron. Astrophys. 2011, 530, L3. [Google Scholar] [CrossRef]
- Lis, D.C.; Neufeld, D.A.; Phillips, T.G.; Gerin, M.; Neri, R. Discovery of Water Vapor in the High-redshift Quasar APM 08279+5255 at z = 3.91. Astrophys. J. Part 2-Lett. 2011, 738, L6. [Google Scholar] [CrossRef]
- van der Werf, P.P.; Berciano Alba, A.; Spaans, M.; Loenen, A.F.; Meijerink, R.; Riechers, D.A.; Cox, P.; Weiß, A.; Walter, F. Water Vapor Emission Reveals a Highly Obscured, Star-forming Nuclear Region in the QSO Host Galaxy APM 08279+5255 at z = 3.9. Astrophys. J. Part 2-Lett. 2011, 741, L38. [Google Scholar] [CrossRef]
- Jarugula, S.; Vieira, J.D.; Spilker, J.S.; Apostolovski, Y.; Aravena, M.; Béthermin, M.; de Breuck, C.; Chen, C.C.; Cunningham, D.J.M.; Dong, C.; et al. Spatially Resolved Water Emission from Gravitationally Lensed Dusty Star-forming Galaxies at z ∼ 3. Astrophys. J. 2019, 880, 92. [Google Scholar] [CrossRef]
- Bradford, C.M.; Bolatto, A.D.; Maloney, P.R.; Aguirre, J.E.; Bock, J.J.; Glenn, J.; Kamenetzky, J.; Lupu, R.; Matsuhara, H.; Murphy, E.J.; et al. The Water Vapor Spectrum of APM 08279+5255: X-Ray Heating and Infrared Pumping over Hundreds of Parsecs. Astrophys. J. Part 2-Lett. 2011, 741, L37. [Google Scholar] [CrossRef]
- Combes, F.; Rex, M.; Rawle, T.D.; Egami, E.; Boone, F.; Smail, I.; Richard, J.; Ivison, R.J.; Gurwell, M.; Casey, C.M.; et al. A bright z = 5.2 lensed submillimeter galaxy in the field of Abell 773. HLSJ091828.6+514223. Astron. Astrophys. 2012, 538, L4. [Google Scholar] [CrossRef]
- Lupu, R.E.; Scott, K.S.; Aguirre, J.E.; Aretxaga, I.; Auld, R.; Barton, E.; Beelen, A.; Bertoldi, F.; Bock, J.J.; Bonfield, D.; et al. Measurements of CO Redshifts with Z-Spec for Lensed Submillimeter Galaxies Discovered in the H-ATLAS Survey. Astrophys. J. 2012, 757, 135. [Google Scholar] [CrossRef]
- Omont, A.; Yang, C.; Cox, P.; Neri, R.; Beelen, A.; Bussmann, R.S.; Gavazzi, R.; van derWerf, P.; Riechers, D.; Downes, D.; et al. H2O emission in high-z ultra-luminous infrared galaxies. Astron. Astrophys. 2013, 551, A115. [Google Scholar] [CrossRef]
- Vieira, J.D.; Marrone, D.P.; Chapman, S.C.; De Breuck, C.; Hezaveh, Y.D.; Weiβ, A.; Aguirre, J.E.; Aird, K.A.; Aravena, M.; Ashby, M.L.N.; et al. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 2013, 495, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Weiß, A.; De Breuck, C.; Marrone, D.P.; Vieira, J.D.; Aguirre, J.E.; Aird, K.A.; Aravena, M.; Ashby, M.L.N.; Bayliss, M.; Benson, B.A.; et al. ALMA Redshifts of Millimeter-selected Galaxies from the SPT Survey: The Redshift Distribution of Dusty Star-forming Galaxies. Astrophys. J. 2013, 767, 88. [Google Scholar] [CrossRef]
- Rawle, T.D.; Egami, E.; Bussmann, R.S.; Gurwell, M.; Ivison, R.J.; Boone, F.; Combes, F.; Danielson, A.L.R.; Rex, M.; Richard, J.; et al. [C II] and 12 CO(1–0) Emission Maps in HLSJ091828.6+514223: A Strongly Lensed Interacting System at z = 5.24. Astrophys. J. 2014, 783, 59. [Google Scholar] [CrossRef]
- Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; et al. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2–4. Astron. Astrophys. 2016, 595, A80. [Google Scholar] [CrossRef]
- Jones, G.C.; Maiolino, R.; Caselli, P.; Carniani, S. Detection of a high-redshift molecular outflow in a primeval hyperstarburst galaxy. Astron. Astrophys. 2019, 632, L7. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Y.; Omont, A.; Liu, D.; Isaak, K.G.; Downes, D.; van der Werf, P.P.; Lu, N. Water Vapor in nearby Infrared Galaxies as Probed by Herschel. Astrophys. J. Part 2-Lett. 2013, 771, L24. [Google Scholar] [CrossRef]
- Béthermin, M.; Greve, T.R.; De Breuck, C.; Vieira, J.D.; Aravena, M.; Chapman, S.C.; Chen, C.C.; Dong, C.; Hayward, C.C.; Hezaveh, Y.; et al. Dense-gas tracers and carbon isotopes in five 2.5 < z < 4 lensed dusty star-forming galaxies from the SPT SMG sample. Astron. Astrophys. 2018, 620, A115. [Google Scholar] [CrossRef]
- Evans, N.J. Physical Conditions in Regions of Star Formation. Ann. Rev. Astron. Astrophys. 1999, 37, 311–362. [Google Scholar] [CrossRef]
- Kauffmann, J.; Goldsmith, P.F.; Melnick, G.; Tolls, V.; Guzman, A.; Menten, K.M. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies. Astron. Astrophys. 2017, 605, L5. [Google Scholar] [CrossRef]
- Greve, T.R.; Leonidaki, I.; Xilouris, E.M.; Weiß, A.; Zhang, Z.Y.; van der Werf, P.; Aalto, S.; Armus, L.; Díaz-Santos, T.; Evans, A.S.; et al. Star Formation Relations and CO Spectral Line Energy Distributions across the J-ladder and Redshift. Astrophys. J. 2014, 794, 142. [Google Scholar] [CrossRef]
- Liu, D.; Gao, Y.; Isaak, K.; Daddi, E.; Yang, C.; Lu, N.; van derWerf, P. High-J CO versus Far-infrared Relations in Normal and Starburst Galaxies. Astrophys. J. Part 2-Lett. 2015, 810, L14. [Google Scholar] [CrossRef]
- Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P.R.; Conley, A. LCO/LFIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive. Astrophys. J. 2016, 829, 93. [Google Scholar] [CrossRef]
- Oteo, I.; Zhang, Z.Y.; Yang, C.; Ivison, R.J.; Omont, A.; Bremer, M.; Bussmann, S.; Cooray, A.; Cox, P.; Dannerbauer, H.; et al. High Dense Gas Fraction in Intensely Star-forming Dusty Galaxies. Astrophys. J. 2017, 850, 170. [Google Scholar] [CrossRef]
- Gao, Y.; Carilli, C.L.; Solomon, P.M.; Vanden Bout, P.A. HCN Observations of Dense Star-forming Gas in High-Redshift Galaxies. Astrophys. J. Part 2-Lett. 2007, 660, L93–L96. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Thompson, T.A. The Relationship between Molecular Gas Tracers and Kennicutt-Schmidt Laws. Astrophys. J. 2007, 669, 289–298. [Google Scholar] [CrossRef]
- Narayanan, D.; Cox, T.J.; Hernquist, L. The Star Formation Rate-Dense Gas Relation in the Nuclei of Nearby Galaxies. Astrophys. J. Part 2-Lett. 2008, 681, L77. [Google Scholar] [CrossRef]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Ann. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Mancuso, C.; Lapi, A.; Prandoni, I.; Obi, I.; Gonzalez-Nuevo, J.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei. Astrophys. J. 2017, 842, 95. [Google Scholar] [CrossRef]
- Fathi, K.; Lundgren, A.A.; Kohno, K.; Piñol-Ferrer, N.; Martín, S.; Espada, D.; Hatziminaoglou, E.; Imanishi, M.; Izumi, T.; Krips, M.; et al. ALMA Follows Streaming of Dense Gas Down to 40 pc from the Supermassive Black Hole in NGC 1097. Astrophys. J. Part 2-Lett. 2013, 770, L27. [Google Scholar] [CrossRef]
- Jackson, J.M.; Paglione, T.A.D.; Ishizuki, S.; Nguyen-Q-Rieu. Dense Molecular Gas toward the Nucleus of the Seyfert Galaxy NGC 1068. Astrophys. J. Part 2-Lett. 1993, 418, L13. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Blietz, M.; Cameron, M.; Harris, A.I.; Madden, S. The Nature of the Dense Obscuring Material in the Nucleus of NGC 1068. Astrophys. J. Part 2-Lett. 1994, 426, L77. [Google Scholar] [CrossRef]
- Sternberg, A.; Genzel, R.; Tacconi, L. HCN and CO in the Nucleus of NGC 1068. Astrophys. J. Part 2-Lett. 1994, 436, L131. [Google Scholar] [CrossRef]
- Kohno, K.; Matsushita, S.; Vila-Vilaró, B.; Okumura, S.K.; Shibatsuka, T.; Okiura, M.; Ishizuki, S.; Kawabe, R. Dense Molecular Gas and Star Formation in Nearby Seyfert Galaxies. In Proceedings of the The Central Kiloparsec of Starbursts and AGN: The La Palma Connection; Astronomical Society of the Pacific Conference Series; Knapen, J.H., Beckman, J.E., Shlosman, I., Mahoney, T.J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2001; Volume 249, p. 672. [Google Scholar] [CrossRef]
- Imanishi, M.; Dudley, C.C.; Maiolino, R.; Maloney, P.R.; Nakagawa, T.; Risaliti, G. A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry between Energy Sources and Dust. Astrophys. J. Suppl. Ser. 2007, 171, 72–100. [Google Scholar] [CrossRef]
- Krips, M.; Neri, R.; García-Burillo, S.; Martín, S.; Combes, F.; Graciá-Carpio, J.; Eckart, A. A Multi-Transition HCN and HCO+ Study of 12 Nearby Active Galaxies: Active Galactic Nucleus versus Starburst Environments. Astrophys. J. 2008, 677, 262–275. [Google Scholar] [CrossRef]
- Davies, R.; Mark, D.; Sternberg, A. Dense molecular gas around AGN: HCN/CO in NGC 3227. Astron. Astrophys. 2012, 537, A133. [Google Scholar] [CrossRef]
- Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G.A.; García-Burillo, S.; van der Werf, P.; Neri, R.; et al. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN. Astron. Astrophys. 2015, 584, A42. [Google Scholar] [CrossRef]
- Imanishi, M.; Nakanishi, K.; Izumi, T. ALMA HCN and HCO+ J =3-2 Observations of Optical Seyfert and Luminous Infrared Galaxies: Confirmation of Elevated HCN-to-HCO+ Flux Ratios in AGNs. Astron. J. 2016, 152, 218. [Google Scholar] [CrossRef]
- Sani, E.; Davies, R.I.; Sternberg, A.; Graciá-Carpio, J.; Hicks, E.K.S.; Krips, M.; Tacconi, L.J.; Genzel, R.; Vollmer, B.; Schinnerer, E.; et al. Physical properties of dense molecular gas in centres of Seyfert galaxies. Mon. Not. R. Astron. Soc. 2012, 424, 1963–1976. [Google Scholar] [CrossRef]
- Costagliola, F.; Aalto, S.; Rodriguez, M.I.; Muller, S.; Spoon, H.W.W.; Martín, S.; Peréz-Torres, M.A.; Alberdi, A.; Lindberg, J.E.; Batejat, F.; et al. Molecules as Tracers of Galaxy Evolution. In Proceedings of the EAS Publications Series; Röllig, M., Simon, R., Ossenkopf, V., Stutzki, J., Eds.; 2011; Volume 52, pp. 285–286. Available online: https://www.eas-journal.org/articles/eas/abs/2011/07/eas1152049/eas1152049.html (accessed on 14 April 2024). [CrossRef]
- Snell, R.L.; Narayanan, G.; Yun, M.S.; Heyer, M.; Chung, A.; Irvine, W.M.; Erickson, N.R.; Liu, G. The Redshift Search Receiver 3 mm Wavelength Spectra of 10 Galaxies. Astron. J. 2011, 141, 38. [Google Scholar] [CrossRef]
- Privon, G.C.; Herrero-Illana, R.; Evans, A.S.; Iwasawa, K.; Perez-Torres, M.A.; Armus, L.; Díaz-Santos, T.; Murphy, E.J.; Stierwalt, S.; Aalto, S.; et al. Excitation Mechanisms for HCN (1-0) and HCO+ (1-0) in Galaxies from the Great Observatories All-sky LIRG Survey. Astrophys. J. 2015, 814, 39. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.Y.; Gao, Y.; Wang, J.; Shi, Y.; Gu, Q.; Yang, C.; Wang, T.; Tan, Q.H. Dense Gas and Star Formation in Nearby Infrared-bright Galaxies: APEX Survey of HCN and HCO+ J = 2 → 1. Astrophys. J. 2022, 936, 58. [Google Scholar] [CrossRef]
- Imanishi, M.; Nakanishi, K.; Yamada, M.; Tamura, Y.; Kohno, K. ASTE Simultaneous HCN (4-3) and HCO+(4-3) Observations of the Two Luminous Infrared Galaxies NGC 4418 and Arp 220. Publ. Astron. Soc. Jpn. 2010, 62, 201. [Google Scholar] [CrossRef]
- Izumi, T.; Kohno, K.; Martín, S.; Espada, D.; Harada, N.; Matsushita, S.; Hsieh, P.Y.; Turner, J.L.; Meier, D.S.; Schinnerer, E.; et al. Submillimeter ALMA Observations of the Dense Gas in the Low-Luminosity Type-1 Active Nucleus of NGC 1097. Publ. Astron. Soc. Jpn. 2013, 65, 100. [Google Scholar] [CrossRef]
- Izumi, T. Submillimeter ALMA Observations of the Dense Gas in the Type-1 Active Nucleus of NGC 1097 and NGC 7469 for a Robust Energy Diagnostic. In Proceedings of the Revolution in Astronomy with ALMA: The Third Year; Astronomical Society of the Pacific Conference Series; Iono, D., Tatematsu, K., Wootten, A., Testi, L., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2015; Volume 499, p. 113. [Google Scholar]
- Izumi, T.; Kohno, K.; Aalto, S.; Espada, D.; Fathi, K.; Harada, N.; Hatsukade, B.; Hsieh, P.Y.; Imanishi, M.; Krips, M.; et al. Submillimeter-HCN Diagram for Energy Diagnostics in the Centers of Galaxies. Astrophys. J. 2016, 818, 42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrotta, F.; Torsello, M.; Giulietti, M.; Lapi, A. Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon. Galaxies 2024, 12, 18. https://doi.org/10.3390/galaxies12020018
Perrotta F, Torsello M, Giulietti M, Lapi A. Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon. Galaxies. 2024; 12(2):18. https://doi.org/10.3390/galaxies12020018
Chicago/Turabian StylePerrotta, Francesca, Martina Torsello, Marika Giulietti, and Andrea Lapi. 2024. "Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon" Galaxies 12, no. 2: 18. https://doi.org/10.3390/galaxies12020018
APA StylePerrotta, F., Torsello, M., Giulietti, M., & Lapi, A. (2024). Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon. Galaxies, 12(2), 18. https://doi.org/10.3390/galaxies12020018