Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = dusty star-forming galaxies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 685 KiB  
Review
An Updated Repository of Sub-mJy Extragalactic Source-Count Measurements in the Radio Domain
by Vincenzo Galluzzi, Meriem Behiri, Marika Giulietti and Andrea Lapi
Galaxies 2025, 13(2), 34; https://doi.org/10.3390/galaxies13020034 - 2 Apr 2025
Viewed by 541
Abstract
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint [...] Read more.
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint radio-source populations, including Dusty Star-Forming Galaxies (DSFGs) and Radio-Quiet Active Galactic Nuclei (RQAGNs), from intermediate to high redshifts. Our analysis accounts for observational biases, such as resolution effects and Eddington bias, ensuring improved accuracy in flux-density estimations. We also discuss the implications of new-generation radio telescopes, such as the Square-Kilometer Array Observatory (SKAO) and its precursors and pathfinders, to further resolve these populations. Our collection contributes to constraining evolutionary models of radio sources, highlighting the increasing role of polarization studies in distinguishing different classes. This work serves as a key reference for future deep radio surveys targeting the faintest end of the extragalactic radio sky. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

33 pages, 549 KiB  
Review
Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon
by Francesca Perrotta, Martina Torsello, Marika Giulietti and Andrea Lapi
Galaxies 2024, 12(2), 18; https://doi.org/10.3390/galaxies12020018 - 22 Apr 2024
Viewed by 2569
Abstract
Far-infrared and submillimeter observations have established the fundamental role of dust-obscured star formation in the assembly of stellar mass over the past ∼12 billion years. At z = 2–4, the so-called “cosmic noon”, the bulk of star formation is enshrouded in dust, and [...] Read more.
Far-infrared and submillimeter observations have established the fundamental role of dust-obscured star formation in the assembly of stellar mass over the past ∼12 billion years. At z = 2–4, the so-called “cosmic noon”, the bulk of star formation is enshrouded in dust, and dusty star-forming galaxies (DSFGs) contain ∼50% of the total stellar mass density. Star formation occurs in dense molecular clouds, and is regulated by a complex interplay between all the ISM components that contribute to the energy budget of a galaxy: gas, dust, cosmic rays, interstellar electromagnetic fields, gravitational field, and dark matter. Molecular gas is the actual link between star-forming gas and its complex environment: much of what we know about star formation comes from observations of molecular line emissions. They provide by far the richest information about the star formation process. However, their interpretation requires complex modeling of the astrochemical networks which regulate molecular formation and establish molecular abundances in a cloud, and a modeling of the physical conditions of the gas in which molecular energy levels become populated. This paper critically reviews the main astrochemical parameters needed to obtain predictions about molecular signals in DSFGs. Molecular lines can be very bright compared to the continuum emission, but radiative transfer models are required to properly interpret the observed brightness. We review the current knowledge and the open questions about the interstellar medium of DSFGs, outlining the key role of molecular gas as a tracer and shaper of the star formation process. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
11 pages, 872 KiB  
Article
Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies
by Meriem Behiri, Marika Giulietti, Vincenzo Galluzzi, Andrea Lapi, Elisabetta Liuzzo and Marcella Massardi
Galaxies 2024, 12(2), 14; https://doi.org/10.3390/galaxies12020014 - 29 Mar 2024
Cited by 1 | Viewed by 1846
Abstract
In this paper, we investigate the benefits of teaming up data from the radio to the far-infrared (FIR) regime for the characterization of dusty star-forming galaxies (DSFGs). These galaxies are thought to be the star-forming progenitors of local massive quiescent galaxies and to [...] Read more.
In this paper, we investigate the benefits of teaming up data from the radio to the far-infrared (FIR) regime for the characterization of dusty star-forming galaxies (DSFGs). These galaxies are thought to be the star-forming progenitors of local massive quiescent galaxies and to play a pivotal role in the reconstruction of the cosmic star formation rate density up to high redshift. Due to their dust-enshrouded nature, DSFGs are often invisible in the near-infrared/optical/UV bands. Therefore, they necessitate observations at longer wavelengths, primarily the FIR band, where dust emission occurs, and the radio band, which is not affected by dust absorption. Combining data from these two spectral windows makes it possible to characterize even the dustiest objects, enabling the retrieval of information about their age, dust temperature, and star-formation status, and facilitates the differentiation between various galaxy populations that evolve throughout cosmic history. Despite the detection of faint radio sources being a challenging task, this study demonstrates that an effective strategy to build statistically relevant samples of DSFGs would be reaching deep sensitivities in the radio band, even restricted to smaller areas, and then combining these radio observations with FIR/submm data. Additionally, this paper quantifies the improvement in the spectral energy distribution (SED) reconstruction of DSFGs by incorporating ALMA band measurements, in particular, in its upgraded status thanks to the anticipated Wideband Sensitivity Upgrade. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

20 pages, 479 KiB  
Review
Observing Dusty Star-Forming Galaxies at the Cosmic Noon through Gravitational Lensing: Perspectives from New-Generation Telescopes
by Marika Giulietti, Giovanni Gandolfi, Marcella Massardi, Meriem Behiri and Andrea Lapi
Galaxies 2024, 12(2), 9; https://doi.org/10.3390/galaxies12020009 - 8 Mar 2024
Viewed by 2974
Abstract
Gravitational lensing, a compelling physical phenomenon, offers a unique avenue to investigate the morphology and physical properties of distant and faint celestial objects. This paper seeks to provide a comprehensive overview of the current state of observations concerning strongly lensed Dusty Star-Forming Galaxies. [...] Read more.
Gravitational lensing, a compelling physical phenomenon, offers a unique avenue to investigate the morphology and physical properties of distant and faint celestial objects. This paper seeks to provide a comprehensive overview of the current state of observations concerning strongly lensed Dusty Star-Forming Galaxies. Emphasis is placed on the pivotal role played by cutting-edge facilities like the James Webb Space Telescope and the Square Kilometer Array Observatory. These advanced instruments operating at the two opposite ends of the electromagnetic spectrum, in conjunction with the amplifying effect of gravitational lensing, promise significant steps in our understanding of these sources. The synergy between these observatories is poised to unlock crucial insights into the evolutionary path of high-redshift, dust-obscured systems and unravel the intricate interplay between Active Galactic Nuclei and their host galaxies. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

15 pages, 6046 KiB  
Review
The Role of Radio Observations in Studies of Infrared-Bright Galaxies: Prospects for a Next-Generation Very Large Array
by Eric Joseph Murphy
Universe 2022, 8(6), 329; https://doi.org/10.3390/universe8060329 - 14 Jun 2022
Cited by 4 | Viewed by 2422
Abstract
The bulk of the present-day stellar mass was formed in galaxies when the universe was less than half its current age (i.e., 1z3). While this likely marks one of the most critical time periods for galaxy evolution, we [...] Read more.
The bulk of the present-day stellar mass was formed in galaxies when the universe was less than half its current age (i.e., 1z3). While this likely marks one of the most critical time periods for galaxy evolution, we currently do not have a clear picture on the radial extent and distribution of cold molecular gas and associated star formation within the disks of galaxies during this epoch. Such observations are essential to properly estimate the efficiency at which such galaxies convert their gas into stars, as well as to account for the various energetic processes that govern this efficiency. Long-wavelength (i.e., far-infrared–to–radio) observations are critical to penetrate the high-levels of extinction associated with dusty, infrared-bright galaxies that are driving the stellar mass assembly at such epochs. In this article, we discuss how the next-generation Very Large Array will take a transformative step in our understanding of galaxy formation and evolution by delivering the ability to simultaneously study the relative distributions molecular gas and star formation on sub-kpc scales unbiased by dust for large populations of typical galaxies in the early universe detected by future far-infrared space missions. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Galaxies and AGN)
Show Figures

Figure 1

36 pages, 1317 KiB  
Review
A Census of B[e] Supergiants
by Michaela Kraus
Galaxies 2019, 7(4), 83; https://doi.org/10.3390/galaxies7040083 - 29 Sep 2019
Cited by 47 | Viewed by 5536
Abstract
Stellar evolution theory is most uncertain for massive stars. For reliable predictions of the evolution of massive stars and their final fate, solid constraints on the physical parameters, and their changes along the evolution and in different environments, are required. Massive stars evolve [...] Read more.
Stellar evolution theory is most uncertain for massive stars. For reliable predictions of the evolution of massive stars and their final fate, solid constraints on the physical parameters, and their changes along the evolution and in different environments, are required. Massive stars evolve through a variety of short transition phases, in which they can experience large mass-loss either in the form of dense winds or via sudden eruptions. The B[e] supergiants comprise one such group of massive transition objects. They are characterized by dense, dusty disks of yet unknown origin. In the Milky Way, identification and classification of B[e] supergiants is usually hampered by their uncertain distances, hence luminosities, and by the confusion of low-luminosity candidates with massive pre-main sequence objects. The extragalactic objects are often mistaken as quiescent or candidate luminous blue variables, with whom B[e] supergiants share a number of spectroscopic characteristics. In this review, proper criteria are provided, based on which B[e] supergiants can be unambiguously classified and separated from other high luminosity post-main sequence stars and pre-main sequence stars. Using these criteria, the B[e] supergiant samples in diverse galaxies are critically inspected, to achieve a reliable census of the current population. Full article
(This article belongs to the Special Issue Luminous Stars in Nearby Galaxies)
Show Figures

Figure 1

Back to TopTop