The Seeding of Cosmic Ray Electrons by Cluster Radio Galaxies: A Review
Abstract
:1. Introduction
2. Observations
2.1. Radio Phoenixes
2.2. Disturbed Radio Tails
2.3. Evidence of Interaction with the ICM and Connection with Large-Scale Diffuse Radio Emission
3. Theoretical and Numerical Models
Numerical Simulations
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active galactic nucleus |
AMR | Adaptive mesh refinement |
ASKAP | Australian Square Kilometre Array Pathfinder |
BCG | Brightest central galaxy |
DSA | Diffusive shock acceleration |
GReET | Gently re-energized tail |
HBA | High-band antenna |
HT | Head–tail |
ICM | Intracluster medium |
LBA | Low-band antenna |
LLS | Largest linear scale |
LOFAR | Low Frequency Array |
MHD | Magnetohydro dynamics |
MWA | Murchison Widefield Array |
NAT | Narrow-angle tail |
SMBH | Super massive black hole |
SPH | Smoothed-particle Hydrodynamics |
WAT | Wide-angle tail |
CDM | Lambda cold dark matter |
References
- Croston, J.H.; Hardcastle, M.J.; Birkinshaw, M.; Worrall, D.M.; Laing, R.A. An XMM-Newton study of the environments, particle content and impact of low-power radio galaxies. Mon. Not. R. Astron. Soc. 2008, 386, 1709–1728. [Google Scholar] [CrossRef]
- Croston, J.H.; Ineson, J.; Hardcastle, M.J. Particle content, radio-galaxy morphology, and jet power: All radio-loud AGN are not equal. Mon. Not. R. Astron. Soc. 2018, 476, 1614–1623. [Google Scholar] [CrossRef]
- Norman, M.L.; Bryan, G.L. Cluster Turbulence. In Proceedings of the Radio Galaxy Messier 87,Tegernsee, Germany, 15–19 September 1997; Röser, H.-J., Meisenheimer, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 530, pp. 106–115. [Google Scholar] [CrossRef]
- Dolag, K.; Vazza, F.; Brunetti, G.; Tormen, G. Turbulent gas motions in galaxy cluster simulations: The role of smoothed particle hydrodynamics viscosity. Mon. Not. R. Astron. Soc. 2005, 364, 753–772. [Google Scholar] [CrossRef]
- Vazza, F.; Brunetti, G.; Gheller, C.; Brunino, R.; Brüggen, M. Massive and refined. II. The statistical properties of turbulent motions in massive galaxy clusters with high spatial resolution. Astron. Astrophys. 2011, 529, A17. [Google Scholar] [CrossRef]
- Schmidt, W.; Byrohl, C.; Engels, J.F.; Behrens, C.; Niemeyer, J.C. Viscosity, pressure and support of the gas in simulations of merging cool-core clusters. Mon. Not. R. Astron. Soc. 2017, 470, 142–156. [Google Scholar] [CrossRef]
- Ayromlou, M.; Nelson, D.; Pillepich, A.; Rohr, E.; Truong, N.; Li, Y.; Simionescu, A.; Lehle, K.; Lee, W. An Atlas of Gas Motions in the TNG-Cluster Simulation: From Cluster Cores to the Outskirts. arXiv 2023, arXiv:2311.06339. [Google Scholar]
- Churazov, E.; Forman, W.; Jones, C.; Sunyaev, R.; Böhringer, H. XMM-Newton observations of the Perseus cluster-II. Evidence for gas motions in the core. Mon. Not. R. Astron. Soc. 2004, 347, 29–35. [Google Scholar] [CrossRef]
- Heinz, S.; Brüggen, M.; Young, A.; Levesque, E. The answer is blowing in the wind: Simulating the interaction of jets with dynamic cluster atmospheres. Mon. Not. R. Astron. Soc. 2006, 373, L65–L69. [Google Scholar] [CrossRef]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef]
- Li, Y.; Bryan, G.L. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Balance between Heating and Cooling. Astrophys. J. 2014, 789, 54. [Google Scholar] [CrossRef]
- Bourne, M.A.; Yang, H.Y.K. Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies 2023, 11, 73. [Google Scholar] [CrossRef]
- Völk, H.J.; Atoyan, A.M. Early Starbursts and Magnetic Field Generation in Galaxy Clusters. Astrophys. J. 2000, 541, 88–94. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- de Gasperin, F.; Intema, H.T.; Shimwell, T.W.; Brunetti, G.; Brüggen, M.; Enßlin, T.A.; van Weeren, R.J.; Bonafede, A.; Röttgering, H.J.A. Gentle reenergization of electrons in merging galaxy clusters. Sci. Adv. 2017, 3, e1701634. [Google Scholar] [CrossRef]
- Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R.J.; Rafferty, D.; Mechev, A.P.; Intema, H.; Andrade-Santos, F.; et al. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132. Mon. Not. R. Astron. Soc. 2018, 473, 3536–3546. [Google Scholar] [CrossRef]
- Mandal, S.; Intema, H.T.; van Weeren, R.J.; Shimwell, T.W.; Botteon, A.; Brunetti, G.; de Gasperin, F.; Brüggen, M.; Di Gennaro, G.; Kraft, R.; et al. Revived fossil plasma sources in galaxy clusters. Astron. Astrophys. 2020, 634, A4. [Google Scholar] [CrossRef]
- Quici, B.; Turner, R.J.; Seymour, N.; Hurley-Walker, N.; Shabala, S.S.; Ishwara-Chandra, C.H. Selecting and modelling remnant AGNs with limited spectral coverage. Mon. Not. R. Astron. Soc. 2022, 514, 3466–3484. [Google Scholar] [CrossRef]
- Brienza, M.; Lovisari, L.; Rajpurohit, K.; Bonafede, A.; Gastaldello, F.; Murgia, M.; Vazza, F.; Bonnassieux, E.; Botteon, A.; Brunetti, G.; et al. The galaxy group NGC 507: Newly detected AGN remnant plasma transported by sloshing. Astron. Astrophys. 2022, 661, A92. [Google Scholar] [CrossRef]
- van Weeren, R.J.; de Gasperin, F.; Akamatsu, H.; Brüggen, M.; Feretti, L.; Kang, H.; Stroe, A.; Zandanel, F. Diffuse Radio Emission from Galaxy Clusters. Sci. Space Rev. 2019, 215, 16. [Google Scholar] [CrossRef]
- Kang, H.; Ryu, D.; Jones, T.W. Diffusive Shock Acceleration Simulations of Radio Relics. Astrophys. J. 2012, 756, 97. [Google Scholar] [CrossRef]
- Pinzke, A.; Oh, S.P.; Pfrommer, C. Giant radio relics in galaxy clusters: Reacceleration of fossil relativistic electrons? Mon. Not. R. Astron. Soc. 2013, 435, 1061–1082. [Google Scholar] [CrossRef]
- Botteon, A.; Brunetti, G.; Ryu, D.; Roh, S. Shock acceleration efficiency in radio relics. Astron. Astrophys. 2020, 634, A64. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Markevitch, M.; Weinberger, R.; Nulsen, P.; Ehlert, K. How Merger-driven Gas Motions in Galaxy Clusters Can Turn AGN Bubbles into Radio Relics. Astrophys. J. 2021, 914, 73. [Google Scholar] [CrossRef]
- Brunetti, G.; Jones, T.W. Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. Int. J. Mod. Phys. D 2014, 23, 1430007. [Google Scholar] [CrossRef]
- Cassano, R.; Gitti, M.; Brunetti, G. A morphological comparison between giant radio halos and radio mini-halos in galaxy clusters. Astron. Astrophys. 2008, 486, L31–L34. [Google Scholar] [CrossRef]
- Richard-Laferrière, A.; Hlavacek-Larrondo, J.; Nemmen, R.S.; Rhea, C.L.; Taylor, G.B.; Prasow-Émond, M.; Gendron-Marsolais, M.; Latulippe, M.; Edge, A.C.; Fabian, A.C.; et al. On the relation between mini-halos and AGN feedback in clusters of galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 2934–2958. [Google Scholar] [CrossRef]
- Govoni, F.; Orrù, E.; Bonafede, A.; Iacobelli, M.; Paladino, R.; Vazza, F.; Murgia, M.; Vacca, V.; Giovannini, G.; Feretti, L.; et al. A radio ridge connecting two galaxy clusters in a filament of the cosmic web. Science 2019, 364, 981–984. [Google Scholar] [CrossRef]
- Brunetti, G.; Vazza, F. Second-order Fermi Reacceleration Mechanisms and Large-Scale Synchrotron Radio Emission in Intracluster Bridges. Phys. Rev. Lett. 2020, 124, 051101. [Google Scholar] [CrossRef]
- de Jong, J.; van Weeren, R.J.; Botteon, A.; Oonk, J.; Brunetti, G.; Shimwell, T.W.; Cassano, R.; Röttgering, H.J.; Tasse, C. Deep study of A399-401: Application of a wide-field facet calibration. Astron. Astrophys. 2022, 668, A107. [Google Scholar] [CrossRef]
- Shweta, A.; Athreya, R.M.; Sekhar, S. Reenergization of Radio Halo Electrons in the Merging Galaxy Cluster A2163. Astrophys. J. 2020, 897, 115. [Google Scholar] [CrossRef]
- Botteon, A.; van Weeren, R.J.; Brunetti, G.; Vazza, F.; Shimwell, T.W.; Brüggen, M.; Röttgering, H.J.; de Gasperin, F.; Akamatsu, H.; Bonafede, A.; et al. Magnetic fields and relativistic electrons fill entire galaxy cluster. Sci. Adv. 2022, 8, eabq7623. [Google Scholar] [CrossRef] [PubMed]
- Cuciti, V.; de Gasperin, F.; Brüggen, M.; Vazza, F.; Brunetti, G.; Shimwell, T.W.; Edler, H.W.; van Weeren, R.J.; Botteon, A.; Cassano, R.; et al. Galaxy clusters enveloped by vast volumes of relativistic electrons. Nature 2022, 609, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.; Botteon, A.; Shimwell, T.W.; Cuciti, V.; de Gasperin, F.; Brunetti, G.; Dallacasa, D.; Gastaldello, F.; Rossetti, M.; van Weeren, R.J.; et al. A three-component giant radio halo: The puzzling case of the galaxy cluster Abell 2142. Astron. Astrophys. 2023, 678, A133. [Google Scholar] [CrossRef]
- Beduzzi, L.; Vazza, F.; Brunetti, G.; Cuciti, V.; Wittor, D.; Corsini, E. Exploring the origins of mega radio halos. Astron. Astrophys. 2023, 678, L8. [Google Scholar] [CrossRef]
- Nishiwaki, K.; Asano, K.; Murase, K. High-energy Neutrino Constraints on Cosmic-Ray Reacceleration in Radio Halos of Massive Galaxy Clusters. Astrophys. J. 2023, 954, 188. [Google Scholar] [CrossRef]
- Lee, W.; ZuHone, J.A.; James Jee, M.; HyeongHan, K.; Kale, R.; Ahn, E. Discovery of A Large-scale Bent Radio Jet in the Merging Cluster A514. Astrophys. J. 2023, 957, L4. [Google Scholar] [CrossRef]
- Raja, R.; Rahaman, M.; Datta, A.; Smirnov, O.M. A Multi-Frequency View of the Radio Phoenix in the Abell 85 Cluster. arXiv 2023, arXiv:2309.14244. [Google Scholar]
- Botteon, A.; Brunetti, G.; van Weeren, R.J.; Shimwell, T.W.; Pizzo, R.F.; Cassano, R.; Iacobelli, M.; Gastaldello, F.; Bîrzan, L.; Bonafede, A.; et al. The Beautiful Mess in Abell 2255. Astrophys. J. 2020, 897, 93. [Google Scholar] [CrossRef]
- Rajpurohit, K.; Osinga, E.; Brienza, M.; Botteon, A.; Brunetti, G.; Forman, W.R.; Riseley, C.J.; Vazza, F.; Bonafede, A.; van Weeren, R.J.; et al. Deep low-frequency radio observations of Abell 2256. II. The ultra-steep spectrum radio halo. Astron. Astrophys. 2023, 669, A1. [Google Scholar] [CrossRef]
- Bonafede, A.; Brunetti, G.; Rudnick, L.; Vazza, F.; Bourdin, H.; Giovannini, G.; Shimwell, T.W.; Zhang, X.; Mazzotta, P.; Simionescu, A.; et al. The Coma Cluster at LOFAR Frequencies. II. The Halo, Relic, and a New Accretion Relic. Astrophys. J. 2022, 933, 218. [Google Scholar] [CrossRef]
- Kempner, J.C.; Blanton, E.L.; Clarke, T.E.; Enßlin, T.A.; Johnston-Hollitt, M.; Rudnick, L. Conference Note: A Taxonomy of Extended Radio Sources in Clusters of Galaxies. In Proceedings of the Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, Charlottesville, VA, USA, 31 May–4 June 2003; Reiprich, T., Kempner, J., Soker, N., Eds.; p. 335. [Google Scholar]
- Slee, O.; Reynolds, J. Steep-spectrum radio sources in clusters of galaxies - the southern sample. Publ. Astron. Soc. Aust. 1984, 5, 516–529. [Google Scholar] [CrossRef]
- Slee, O.; Roy, A. An extreme example of a radio relic in Abell 4038. Mon. Not. R. Astron. Soc. 1998, 297, L86–L92. [Google Scholar] [CrossRef]
- Slee, O.; Roy, A.; Murgia, M.; Andernach, H.; Ehle, M. Four Extreme Relic Radio Sources in Clusters of Galaxies. Astron. J. 2001, 122, 1172–1193. [Google Scholar] [CrossRef]
- Subrahmanyan, R.; Beasley, A.; Goss, W.; Golap, K.; Hunstead, R.W. PKS B1400-33: An Unusual Radio Relic in a Poor Cluster. Astron. J. 2003, 125, 1095–1106. [Google Scholar] [CrossRef]
- Green, D.A.; Lacy, M.; Bhatnagar, S.; Gates, E.; Warner, P. Radio and near-infrared observations of the steep-spectrum Galactic plane radio source WKB 0314+57.8. Mon. Not. R. Astron. Soc. 2004, 354, 1159–1164. [Google Scholar] [CrossRef]
- Duchesne, S.W.; Johnston-Hollitt, M.; Zhu, Z.H.; Wayth, R.; Line, J. Murchison Widefield Array detection of steep-spectrum, diffuse, non-thermal radio emission within Abell 1127. Publ. Astron. Soc. Aust. 2020, 37, e037. [Google Scholar] [CrossRef]
- Botteon, A.; Giacintucci, S.; Gastaldello, F.; Venturi, T.; Brunetti, G.; van Weeren, R.J.; Shimwell, T.W.; Rossetti, M.; Akamatsu, H.; Brüggen, M.; et al. Nonthermal phenomena in the center of Abell 1775. An 800 kpc head-tail, revived fossil plasma and slingshot radio halo. Astron. Astrophys. 2021, 649, A37. [Google Scholar] [CrossRef]
- Hodgson, T.; Bartalucci, I.; Johnston-Hollitt, M.; McKinley, B.; Vazza, F.; Wittor, D. Ultra-steep-spectrum Radio “Jellyfish” Uncovered in A2877. Astrophys. J. 2021, 909, 198. [Google Scholar] [CrossRef]
- Pandge, M.; Sebastian, B.; Seth, R.; Raychaudhury, S. A detailed study of X-ray cavities in the intracluster environment of the cool core cluster Abell 3017. Mon. Not. R. Astron. Soc. 2021, 504, 1644–1656. [Google Scholar] [CrossRef]
- Pandge, M.; Kale, R.; Dabhade, P.; Mahato, M.; Raychaudhury, S. Giant Metrewave Radio Telescope unveils steep-spectrum antique filaments in the galaxy cluster Abell 725. Mon. Not. R. Astron. Soc. 2022, 509, 1837–1847. [Google Scholar] [CrossRef]
- Pasini, T.; Edler, H.; Brüggen, M.; de Gasperin, F.; Botteon, A.; Rajpurohit, K.; van Weeren, R.J.; Gastaldello, F.; Gaspari, M.; Brunetti, G.; et al. Particle re-acceleration and diffuse radio sources in the galaxy cluster Abell 1550. Astron. Astrophys. 2022, 663, A105. [Google Scholar] [CrossRef]
- Riseley, C.J.; Bonnassieux, E.; Vernstrom, T.; Galvin, T.; Chokshi, A.; Botteon, A.; Rajpurohit, K.; Duchesne, S.W.; Bonafede, A.; Rudnick, L.; et al. Radio fossils, relics, and haloes in Abell 3266: Cluster archaeology with ASKAP-EMU and the ATCA. Mon. Not. R. Astron. Soc. 2022, 515, 1871–1896. [Google Scholar] [CrossRef]
- Groenveld, C.; van Weeren, R.J.; Osinga, E.; Williams, W.L.; Callingham, J.R.; de Gasperin, F.; Botteon, A.; Shimwell, T.; Swejen, F.; de Jong, J.M.G.H.J.; et al. Characterisation of the decameter sky at sub-arcminute resolution. Nat. Astron. 2024; accepted. [Google Scholar]
- Mandal, S.; Intema, H.T.; Shimwell, T.W.; van Weeren, R.J.; Botteon, A.; Röttgering, H.J.; Hoang, D.N.; Brunetti, G.; de Gasperin, F.; Giacintucci, S.; et al. Ultra-steep spectrum emission in the merging galaxy cluster Abell 1914. Astron. Astrophys. 2019, 622, A22. [Google Scholar] [CrossRef]
- Juett, A.; Sarazin, C.L.; Clarke, T.E.; Andernach, H.; Ehle, M.; Fujita, Y.; Kempner, J.C.; Roy, A.; Rudnick, L.; Slee, O. A Chandra Observation of Abell 13: Investigating the Origin of the Radio Relic. Astrophys. J. 2008, 672, 138–145. [Google Scholar] [CrossRef]
- Owen, F.N.; Rudnick, L.; Eilek, J.A.; Rau, U.; Bhatnagar, S.; Kogan, L. Wideband Very Large Array Observations of A2256. I. Continuum, Rotation Measure, and Spectral Imaging. Astrophys. J. 2014, 794, 24. [Google Scholar] [CrossRef]
- Werner, N.; Zhuravleva, I.; Canning, R.E.; Allen, S.W.; King, A.; Sanders, J.S.; Simionescu, A.; Taylor, G.B.; Morris, R.G.; Fabian, A.C. Deep Chandra study of the truncated cool core of the Ophiuchus cluster. Mon. Not. R. Astron. Soc. 2016, 460, 2752–2764. [Google Scholar] [CrossRef]
- van Weeren, R.J.; Shimwell, T.W.; Botteon, A.; Brunetti, G.; Brüggen, M.; Boxelaar, J.M.; Cassano, R.; Di Gennaro, G.; Andrade-Santos, F.; Bonnassieux, E.; et al. LOFAR observations of galaxy clusters in HETDEX. Extraction and self-calibration of individual LOFAR targets. Astron. Astrophys. 2021, 651, A115. [Google Scholar] [CrossRef]
- Duchesne, S.W.; Johnston-Hollitt, M.; Offringa, A.R.; Pratt, G.W.; Zheng, Q.; Dehghan, S. Diffuse galaxy cluster emission at 168 MHz within the Murchison Widefield Array Epoch of Reionization 0-h field. Publ. Astron. Soc. Aust. 2021, 38, e010. [Google Scholar] [CrossRef]
- Duchesne, S.W.; Johnston-Hollitt, M.; Bartalucci, I. Low-frequency integrated radio spectra of diffuse, steep-spectrum sources in galaxy clusters: Palaeontology with the MWA and ASKAP. Publ. Astron. Soc. Aust. 2021, 38, e053. [Google Scholar] [CrossRef]
- Botteon, A.; Shimwell, T.W.; Cassano, R.; Cuciti, V.; Zhang, X.; Bruno, L.; Camillini, L.; Natale, R.; Jones, A.; Gastaldello, F.; et al. The Planck clusters in the LOFAR sky. I. LoTSS-DR2: New detections and sample overview. Astron. Astrophys. 2022, 660, A78. [Google Scholar] [CrossRef]
- Hoang, D.N.; Brüggen, M.; Botteon, A.; Shimwell, T.W.; Zhang, X.; Bonafede, A.; Bruno, L.; Bonnassieux, E.; Cassano, R.; Cuciti, V.; et al. Diffuse radio emission from non-Planck galaxy clusters in the LoTSS-DR2 fields. Astron. Astrophys. 2022, 665, A60. [Google Scholar] [CrossRef]
- Knowles, K.; Cotton, W.; Rudnick, L.; Camilo, F.; Goedhart, S.; Deane, R.; Ramatsoku, M.; Bietenholz, M.; Brüggen, M.; Button, C.; et al. The MeerKAT Galaxy Cluster Legacy Survey. I. Survey Overview and Highlights. Astron. Astrophys. 2022, 657, A56. [Google Scholar] [CrossRef]
- Duchesne, S.W.; Botteon, A.; Koribalski, B.S.; Loi, F.; Rajpurohit, K.; Riseley, C.J.; Rudnick, L.; Vernstrom, T.; Andernach, H.; Hopkins, A.M.; et al. Evolutionary Map of the Universe (EMU): A pilot search for diffuse, non-thermal radio emission in galaxy clusters with the Australian SKA Pathfinder. arXiv 2024, arXiv:2402.06192. [Google Scholar] [CrossRef]
- Miley, G.K. The structure of extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1980, 18, 165–218. [Google Scholar] [CrossRef]
- Sarazin, C.L. The energy spectrum of primary cosmic-ray electrons in clusters of galaxies and inverse compton emission. Astrophys. J. 1999, 520, 529–547. [Google Scholar] [CrossRef]
- Sebastian, B.; Lal, D.V.; Pramesh Rao, A. Giant Metrewave Radio Telescope Observations of Head-Tail Radio Galaxies. Astron. J. 2017, 154, 169. [Google Scholar] [CrossRef]
- Cuciti, V.; Brunetti, G.; van Weeren, R.J.; Bonafede, A.; Dallacasa, D.; Cassano, R.; Venturi, T.; Kale, R. New giant radio sources and underluminous radio halos in two galaxy clusters. Astron. Astrophys. 2018, 609, A61. [Google Scholar] [CrossRef]
- Edler, H.; de Gasperin, F.; Brunetti, G.; Botteon, A.; Cuciti, V.; van Weeren, R.J.; Cassano, R.; Shimwell, T.W.; Brüggen, M.; Drabent, A. Abell 1033: Radio halo and gently reenergized tail at 54 MHz. Astron. Astrophys. 2022, 666, A3. [Google Scholar] [CrossRef]
- van Weeren, R.J.; Röttgering, H.J.; Rafferty, D.; Pizzo, R.F.; Bonafede, A.; Brüggen, M.; Brunetti, G.; Ferrari, C.; Orrù, E.; Heald, G.; et al. First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: The case of Abell 2256. Astron. Astrophys. 2012, 543, A43. [Google Scholar] [CrossRef]
- Srivastava, S.; Singal, A.K. GMRT observations of IC 711-the longest head-tail radio galaxy known. Mon. Not. R. Astron. Soc. 2020, 493, 3811–3824. [Google Scholar] [CrossRef]
- Venturi, T.; Giacintucci, S.; Merluzzi, P.; Bardelli, S.; Busarello, G.; Dallacasa, D.; Sikhosana, S.P.; Marvil, J.; Smirnov, O.M.; Bourdin, H.; et al. Radio footprints of a minor merger in the Shapley Supercluster: From supercluster down to galactic scales. Astron. Astrophys. 2022, 660, A81. [Google Scholar] [CrossRef]
- Ignesti, A.; Brunetti, G.; Shimwell, T.W.; Gitti, M.; Bîrzan, L.; Botteon, A.; Brüggen, M.; de Gasperin, F.; Di Gennaro, G.; Edge, A.C.; et al. A LOFAR view into the stormy environment of the galaxy cluster 2A0335+096. Astron. Astrophys. 2022, 659, A20. [Google Scholar] [CrossRef]
- Lusetti, G.; de Gasperin, F.; Cuciti, V.; Brüggen, M.; Spinelli, C.; Edler, H.; Brunetti, G.; van Weeren, R.J.; Botteon, A.; Di Gennaro, G.; et al. Re-energization of AGN head-tail radio galaxies in the galaxy cluster ZwCl 0634.1+47474. Mon. Not. R. Astron. Soc. 2024, 528, 141–159. [Google Scholar] [CrossRef]
- van Weeren, R.J.; Andrade-Santos, F.; Dawson, W.A.; Golovich, N.R.; Lal, D.V.; Kang, H.; Ryu, D.; Brüggen, M.; Ogrean, G.; Forman, W.R.; et al. The case for electron re-acceleration at galaxy cluster shocks. Nat. Astron. 2017, 1, 5. [Google Scholar] [CrossRef]
- Lal, D.V. NGC 4869 in the Coma Cluster: Twist, Wrap, Overlap, and Bend. Astron. J. 2020, 160, 161. [Google Scholar] [CrossRef]
- Chibueze, J.O.; Sakemi, H.; Ohmura, T.; Machida, M.; Akamatsu, H.; Akahori, T.; Nakanishi, H.; Parekh, V.; van Rooyen, R.; Takeuchi, T.T. Jets from MRC 0600-399 bent by magnetic fields in the cluster Abell 3376. Nature 2021, 593, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Giacintucci, S.; Venturi, T.; Markevitch, M.; Bourdin, H.; Mazzotta, P.; Merluzzi, P.; Dallacasa, D.; Bardelli, S.; Sikhosana, S.P.; Smirnov, O.M.; et al. A Candle in the Wind: A Radio Filament in the Core of the A3562 Galaxy Cluster. Astrophys. J. 2022, 934, 49. [Google Scholar] [CrossRef]
- Pfrommer, C.; Jones, T.W. Radio Galaxy NGC 1265 Unveils the Accretion Shock Onto the Perseus Galaxy Cluster. Astrophys. J. 2011, 730, 22. [Google Scholar] [CrossRef]
- Botteon, A.; Shimwell, T.W.; Bonafede, A.; Dallacasa, D.; Gastaldello, F.; Eckert, D.; Brunetti, G.; Venturi, T.; van Weeren, R.J.; Mandal, S.; et al. The spectacular cluster chain Abell 781 as observed with LOFAR, GMRT, and XMM-Newton. Astron. Astrophys. 2019, 622, A19. [Google Scholar] [CrossRef]
- Wilber, A.G.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Shimwell, T.W.; van Weeren, R.J.; Akamatsu, H.; Botteon, A.; Savini, F.; Intema, H.T.; et al. Evolutionary phases of merging clusters as seen by LOFAR. Astron. Astrophys. 2019, 622, A25. [Google Scholar] [CrossRef]
- Gendron-Marsolais, M.L.; Hull, C.; Perley, R.A.; Rudnick, L.; Kraft, R.P.; Hlavacek-Larrondo, J.; Fabian, A.C.; Roediger, E.; van Weeren, R.J.; Richard-Laferrière, A.; et al. VLA Resolves Unexpected Radio Structures in the Perseus Cluster of Galaxies. Astrophys. J. 2021, 911, 56. [Google Scholar] [CrossRef]
- Enßlin, T.A.; Gopal-Krishna. Reviving fossil radio plasma in clusters of galaxies by adiabatic compression in environmental shock waves. Astron. Astrophys. 2001, 366, 26–34. [Google Scholar] [CrossRef]
- Enßlin, T.A.; Brüggen, M. On the formation of cluster radio relics. Mon. Not. R. Astron. Soc. 2002, 331, 1011–1019. [Google Scholar] [CrossRef]
- Markevitch, M.; Govoni, F.; Brunetti, G.; Jerius, D. Bow Shock and Radio Halo in the Merging Cluster A520. Astrophys. J. 2005, 627, 733–738. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Markevitch, M.; Lee, D. Sloshing of the Magnetized Cool Gas in the Cores of Galaxy Clusters. Astrophys. J. 2011, 743, 16. [Google Scholar] [CrossRef]
- Botteon, A.; Gastaldello, F.; ZuHone, J.A.; Balboni, M.; Bartalucci, I.; Brunetti, G.; Bonafede, A.; Brüggen, M.; Shimwell, T.W.; van Weeren, R.J. A radio bubble shredded by gas sloshing? Mon. Not. R. Astron. Soc. 2024, 527, 919–930. [Google Scholar] [CrossRef]
- Pacholczyk, A.; Scott, J. In situ particle acceleration and physical conditions in radio tail galaxies. Astrophys. J. 1976, 203, 313–322. [Google Scholar] [CrossRef]
- Wilson, A.; Vallée, J.P. The structures of the head-tail radio galaxies IC 708 and IC 711 at 1.4 GHz. Astron. Astrophys. 1977, 58, 79–91. [Google Scholar]
- Jones, T.W.; Owen, F.N. Hot gas in elliptical galaxies and the formation of head-tail radio sources. Astrophys. J. 1979, 234, 818–824. [Google Scholar] [CrossRef]
- Brunetti, G.; Setti, G.; Feretti, L.; Giovannini, G. Particle reacceleration in the Coma cluster: Radio properties and hard X-ray emission. Mon. Not. R. Astron. Soc. 2001, 320, 365–378. [Google Scholar] [CrossRef]
- Petrosian, V. On the Nonthermal Emission and Acceleration of Electrons in Coma and Other Clusters of Galaxies. Astrophys. J. 2001, 557, 560–572. [Google Scholar] [CrossRef]
- Clarke, T.E.; Randall, S.W.; Sarazin, C.L.; Blanton, E.L.; Giacintucci, S. Chandra View of the Ultra-steep Spectrum Radio Source in A2443: Merger Shock-induced Compression of Fossil Radio Plasma? Astrophys. J. 2013, 772, 84. [Google Scholar] [CrossRef]
- Ogrean, G.; Brüggen, M.; van Weeren, R.J.; Simionescu, A.; Röttgering, H.J.; Croston, J. Evidence for a merger-revived radio phoenix in MaxBCG J217.95869+13.53470. Mon. Not. R. Astron. Soc. 2011, 414, 1175–1182. [Google Scholar] [CrossRef]
- Schellenberger, G.; Giacintucci, S.; Lovisari, L.; O’Sullivan, E.; Vrtilek, J.M.; David, L.P.; Melin, J.B.; Lal, D.V.; Ettori, S.; Kolokythas, K.; et al. The Unusually Weak and Exceptionally Steep Radio Relic in A2108. Astrophys. J. 2022, 925, 91. [Google Scholar] [CrossRef]
- Rahaman, M.; Raja, R.; Datta, A.; Burns, J.O.; Rapetti, D. On the origin of diffuse radio emission in Abell 85-insights from new GMRT observations. Mon. Not. R. Astron. Soc. 2022, 515, 2245–2255. [Google Scholar] [CrossRef]
- Whyley, A.; Randall, S.W.; Clarke, T.E.; van Weeren, R.J.; Rajpurohit, K.; Forman, W.R.; Edge, A.C.; Blanton, E.L.; Lovisari, L.; Intema, H.T. Understanding the Nature of the Ultra-Steep Spectrum Diffuse Radio Source in the Galaxy Cluster Abell 272. arXiv 2024, arXiv:2402.04876. [Google Scholar]
- Bonafede, A.; Intema, H.T.; Brüggen, M.; Girardi, M.; Nonino, M.; Kantharia, N.G.; van Weeren, R.J.; Röttgering, H.J. Evidence for Particle Re-acceleration in the Radio Relic in the Galaxy Cluster PLCKG287.0+32.9. Astrophys. J. 2014, 785, 1. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Markevitch, M.; Brown, S.; Feretti, L.; Gaensler, B.M.; Johnston-Hollitt, M.; Lage, C.; Srinivasan, R. Another shock for the Bullet cluster, and the source of seed electrons for radio relics. Mon. Not. R. Astron. Soc. 2015, 449, 1486–1494. [Google Scholar] [CrossRef]
- Botteon, A.; Gastaldello, F.; Brunetti, G.; Dallacasa, D. A shock at the radio relic position in Abell 115. Mon. Not. R. Astron. Soc. 2016, 460, L84–L88. [Google Scholar] [CrossRef]
- Di Gennaro, G.; van Weeren, R.J.; Hoeft, M.; Kang, H.; Ryu, D.; Rudnick, L.; Forman, W.R.; Röttgering, H.J.; Brüggen, M.; Dawson, W.A.; et al. Deep Very Large Array Observations of the Merging Cluster CIZA J2242.8+5301: Continuum and Spectral Imaging. Astrophys. J. 2018, 865, 24. [Google Scholar] [CrossRef]
- Stuardi, C.; Bonafede, A.; Wittor, D.; Vazza, F.; Botteon, A.; Locatelli, N.; Dallacasa, D.; Golovich, N.R.; Hoeft, M.; van Weeren, R.J.; et al. Particle re-acceleration and Faraday-complex structures in the RXC J1314.4-2515 galaxy cluster. Mon. Not. R. Astron. Soc. 2019, 489, 3905–3926. [Google Scholar] [CrossRef]
- Button, C.; Marchegiani, P. The application of the adiabatic compression scenario to the radio relic in the galaxy cluster Abell 3411–3412. Mon. Not. R. Astron. Soc. 2020, 499, 864–872. [Google Scholar] [CrossRef]
- Velović, V.; Cotton, W.D.; Filipović, M.D.; Norris, R.P.; Barnes, L.A.; Condon, J.J. MeerKAT view of the dancing ghosts-peculiar galaxy pair PKS 2130-538 in Abell 3785. Mon. Not. R. Astron. Soc. 2023, 523, 1933–1945. [Google Scholar] [CrossRef]
- Raja, R.; Rahaman, M.; Datta, A.; Smirnov, O.M. A radio bridge connecting the minihalo and phoenix in the Abell 85 cluster. Mon. Not. R. Astron. Soc. 2023, 526, L70–L76. [Google Scholar] [CrossRef]
- Ramatsoku, M.; Murgia, M.; Vacca, V.; Serra, P.; Makhathini, S.; Govoni, F.; Smirnov, O.; Andati, L.A.L.; de Blok, E.; Józsa, G.I.G.; et al. Collimated synchrotron threads linking the radio lobes of ESO 137-006. Astron. Astrophys. 2020, 636, L1. [Google Scholar] [CrossRef]
- Rudnick, L.; Cotton, W.; Knowles, K.; Kolokythas, K. One Source, Two Source(s): Ribs and Tethers. Galaxies 2021, 9, 81. [Google Scholar] [CrossRef]
- Condon, J.J.; Cotton, W.; White, S.V.; Legodi, S.; Goedhart, S.; McAlpine, K.; Ratcliffe, S.; Camilo, F. Threads, Ribbons, and Rings in the Radio Galaxy IC 4296. Astrophys. J. 2021, 917, 18. [Google Scholar] [CrossRef]
- Brienza, M.; Shimwell, T.W.; de Gasperin, F.; Bikmaev, I.; Bonafede, A.; Botteon, A.; Brüggen, M.; Brunetti, G.; Burenin, R.; Capetti, A.; et al. A snapshot of the oldest active galactic nuclei feedback phases. Nat. Astron. 2021, 5, 1261–1267. [Google Scholar] [CrossRef]
- Rudnick, L.; Brüggen, M.; Brunetti, G.; Cotton, W.D.; Forman, W.; Jones, T.W.; Nolting, C.; Schellenberger, G.; van Weeren, R. Intracluster Magnetic Filaments and an Encounter with a Radio Jet. Astrophys. J. 2022, 935, 168. [Google Scholar] [CrossRef]
- Jaffe, W.J. Origin and transport of electrons in the halo radio source in the Coma cluster. Astrophys. J. 1977, 212, 1–7. [Google Scholar] [CrossRef]
- Venturi, T.; Bardelli, S.; Dallacasa, D.; Brunetti, G.; Giacintucci, S.; Hunstead, R.W.; Morganti, R. The radio halo in the merging cluster A3562. Astron. Astrophys. 2003, 402, 913–920. [Google Scholar] [CrossRef]
- Brunetti, G.; Setti, G.; Comastri, A. Inverse Compton X-rays from strong FRII radio-galaxies. Astron. Astrophys. 1997, 325, 898–910. [Google Scholar] [CrossRef]
- Blasi, P.; Colafrancesco, S. Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies. Astropart. Phys. 1999, 122, 169–183. [Google Scholar] [CrossRef]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. MAGIC Gamma-ray Telescope Observation of the Perseus Cluster of Galaxies: Implications for Cosmic Rays, Dark Matter, and NGC 1275. Astrophys. J. 2010, 710, 634–647. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; et al. Search for Cosmic-Ray-induced Gamma-Ray Emission in Galaxy Clusters. Astrophys. J. 2014, 787, 18. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data. Astrophys. J. 2016, 819, 149. [Google Scholar] [CrossRef]
- Gupta, N.; Saro, A.; Mohr, J.J.; Benson, B.A.; Bocquet, S.; Capasso, R.; Carlstrom, J.E.; Chiu, I.; Crawford, T.M.; de Haan, T.; et al. High-frequency cluster radio galaxies: Luminosity functions and implications for SZE-selected cluster samples. Mon. Not. R. Astron. Soc. 2017, 467, 3737–3750. [Google Scholar] [CrossRef]
- Böckmann, K.; Brüggen, M.; Koribalski, B.; Veronica, A.; Reiprich, T.H.; Bulbul, E.; Bahar, Y.E.; Balzer, F.; Comparat, J.; Garrel, C.; et al. Central radio galaxies in galaxy clusters: Joint surveys by eROSITA and ASKAP. Astron. Astrophys. 2023, 677, A188. [Google Scholar] [CrossRef]
- Stimpson, M.; Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies-Paper V: Universal pressure profile cluster atmospheres. Mon. Not. R. Astron. Soc. 2023, 526, 3421–3440. [Google Scholar] [CrossRef]
- Völk, H.J.; Atoyan, A.M. Clusters of galaxies: Magnetic fields and nonthermal emission. Astropart. Phys. 1999, 11, 73–82. [Google Scholar] [CrossRef]
- Farber, R.; Ruszkowski, M.; Yang, H.Y.K.; Zweibel, E.G. Impact of Cosmic-Ray Transport on Galactic Winds. Astrophys. J. 2018, 856, 112. [Google Scholar] [CrossRef]
- Brüggen, M.; Kaiser, C.R.; Churazov, E.; Enßlin, T.A. Simulation of radio plasma in clusters of galaxies. Mon. Not. R. Astron. Soc. 2002, 331, 545–555. [Google Scholar] [CrossRef]
- Mendygral, P.J.; Jones, T.W.; Dolag, K. MHD Simulations of Active Galactic Nucleus Jets in a Dynamic Galaxy Cluster Medium. Astrophys. J. 2012, 750, 166. [Google Scholar] [CrossRef]
- Turner, R.J.; Shabala, S.S. Dynamics of Powerful Radio Galaxies. Galaxies 2023, 11, 87. [Google Scholar] [CrossRef]
- Yates-Jones, P.M.; Shabala, S.S.; Power, C.; Krause, M.G.H.; Hardcastle, M.J.; Mohd Noh Velastín, E.A.N.; Stewart, G.S.C. CosmoDRAGoN simulations—I. Dynamics and observable signatures of radio jets in cosmological environments. Publ. Astron. Soc. Aust. 2023, 40, e014. [Google Scholar] [CrossRef]
- Shabala, S.; Yates-Jones, P.; Jerrim, L.; Turner, R.; Krause, M.; Norris, R.; Koribalski, B.; Filipovic, M.; Rudnick, L.; Power, C.; et al. Are Odd Radio Circles phoenixes of powerful radio galaxies? arXiv 2024, arXiv:2402.09708. [Google Scholar] [CrossRef]
- Kang, H. Re-Acceleration of Fossil Electrons by Shocks Encountering Hot Bubbles in the Outskirts of Galaxy Clusters. J. Korean Astron. Soc. 2018, 51, 185–195. [Google Scholar] [CrossRef]
- Kang, H.; Ryu, D. Curved Radio Spectra of Weak Cluster Shocks. Astrophys. J. 2015, 809, 186. [Google Scholar] [CrossRef]
- Jones, T.W.; Nolting, C.; O’Neill, B.J.; Mendygral, P.J. Using collisions of AGN outflows with ICM shocks as dynamical probes. Phys. Plasmas 2017, 24, 041402. [Google Scholar] [CrossRef]
- Nolting, C.; Jones, T.W.; O’Neill, B.J.; Mendygral, P. Interactions between Radio Galaxies and Cluster Shocks. I. Jet Axes Aligned with Shock Normals. Astrophys. J. 2019, 876, 154. [Google Scholar] [CrossRef]
- Nolting, C.; Jones, T.W.; O’Neill, B.J.; Mendygral, P. Simulated Interactions between Radio Galaxies and Cluster Shocks. II. Jet Axes Orthogonal to Shock Normals. Astrophys. J. 2019, 885, 80. [Google Scholar] [CrossRef]
- Nolting, C.; Ball, J.; Nguyen, T.M. Simulations of Precessing Jets and the Formation of X-shaped Radio Galaxies. Astrophys. J. 2023, 948, 25. [Google Scholar] [CrossRef]
- ZuHone, J.; Ehlert, K.; Weinberger, R.; Pfrommer, C. Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics. Galaxies 2021, 9, 91. [Google Scholar] [CrossRef]
- Vazza, F.; Wittor, D.; Brunetti, G.; Brüggen, M. Simulating the transport of relativistic electrons and magnetic fields injected by radio galaxies in the intracluster medium. Astron. Astrophys. 2021, 653, A23. [Google Scholar] [CrossRef]
- Vazza, F.; Wittor, D.; Di Federico, L.; Brüggen, M.; Brienza, M.; Brunetti, G.; Brighenti, F.; Pasini, T. Life cycle of cosmic-ray electrons in the intracluster medium. Astron. Astrophys. 2023, 669, A50. [Google Scholar] [CrossRef]
- Vazza, F.; Wittor, D.; Brüggen, M.; Brunetti, G. Simulating the Enrichment of Fossil Radio Electrons by Multiple Radio Galaxies. Galaxies 2023, 11, 45. [Google Scholar] [CrossRef]
- Inchingolo, G.; Wittor, D.; Rajpurohit, K.; Vazza, F. Radio relics radio emission from multishock scenario. Mon. Not. R. Astron. Soc. 2022, 509, 1160–1174. [Google Scholar] [CrossRef]
- Smolinski, D.C.; Wittor, D.; Vazza, F.; Brüggen, M. A multishock scenario for the formation of radio relics. Mon. Not. R. Astron. Soc. 2023, 526, 4234–4244. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; van Weeren, R.; Bonafede, A.; Dolag, K.; Brunetti, G. Why are central radio relics so rare? Mon. Not. R. Astron. Soc. 2012, 421, 1868–1873. [Google Scholar] [CrossRef]
- Nuza, S.E.; Gelszinnis, J.; Hoeft, M.; Yepes, G. Can cluster merger shocks reproduce the luminosity and shape distribution of radio relics? Mon. Not. R. Astron. Soc. 2017, 470, 240–263. [Google Scholar] [CrossRef]
- Hitomi Collaboration. The quiescent intracluster medium in the core of the Perseus cluster. Nature 2016, 535, 117–121. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazza, F.; Botteon, A. The Seeding of Cosmic Ray Electrons by Cluster Radio Galaxies: A Review. Galaxies 2024, 12, 19. https://doi.org/10.3390/galaxies12020019
Vazza F, Botteon A. The Seeding of Cosmic Ray Electrons by Cluster Radio Galaxies: A Review. Galaxies. 2024; 12(2):19. https://doi.org/10.3390/galaxies12020019
Chicago/Turabian StyleVazza, Franco, and Andrea Botteon. 2024. "The Seeding of Cosmic Ray Electrons by Cluster Radio Galaxies: A Review" Galaxies 12, no. 2: 19. https://doi.org/10.3390/galaxies12020019
APA StyleVazza, F., & Botteon, A. (2024). The Seeding of Cosmic Ray Electrons by Cluster Radio Galaxies: A Review. Galaxies, 12(2), 19. https://doi.org/10.3390/galaxies12020019