Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters
Abstract
1. Overview
1.1. Jet Feedback in Galaxy Clusters: Observations and Theoretical Motivation
1.2. Simulating Jets in Idealized Hydrodynamic Simulations
1.3. AGN Feedback in Cosmological Simulations
1.4. The Importance of Macrophysics and Microphysics
2. Modeling the Macrophysics
2.1. Bubbles, Shocks, and Waves
2.1.1. Morphology, Direction, and Energetics
2.1.2. The Lobe–ICM Interaction
2.2. The Role of Environment and Cluster Weather
2.3. Open Questions and Future Opportunities
3. Modeling the Microphysics
3.1. Roles of Cosmic Rays
3.1.1. Motivations for Considering Cosmic Rays
3.1.2. Impact of Cosmic Rays on AGN Feedback Processes
3.1.3. Observational Signatures and Constraints
3.2. Roles of Plasma Physics of the Intracluster Medium
3.2.1. Influence of Thermal Conduction on AGN Feedback
3.2.2. Influence of Viscosity on AGN Feedback
3.2.3. Heating by Sound-Wave Dissipation
3.3. Open Questions and Future Opportunities
4. Concluding Remarks
- What are the next steps for improving sub-grid AGN models in numerical simulations? Do we require other feedback channels in addition to radio jets to regulate galaxy clusters?;
- How exactly is the SMBH feeding and feedback cycle established across such a huge dynamical range? What is the best way to model the evolution of black hole spins and couple them to jet feedback?;
- How does environment (e.g., cluster weather, magnetic fields) impact the effectiveness and mechanisms through which jet feedback couples to the ICM, and how does it impact lobes distributions, lifetimes, and morphologies?;
- What is the composition of AGN jets and bubbles? Are the jets light or heavy? Are they energetically dominated by ultra-hot thermal gas, CRp, CRe, or magnetic fields? How does the composition vary (e.g., with morphological types, environment, launching mechanisms)? How does the jet composition impact the AGN feeding and feedback processes?;
- How important are CRs in the process of AGN feedback and how can they be constrained by using observations of the non-thermal emission they produce? What is the best way to model CR transport in the turbulent, magnetized ICM?;
- What is the valid prescription for modeling the weakly collisional, magnetized ICM plasma? What are the levels of thermal conductivity and viscosity in the ICM?;
- Can we extrapolate our knowledge about cluster feedback down to scales of galaxy groups and elliptical galaxies? Does AGN feedback operate in the same way across different mass scales?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fabian, A.C. Cooling Flows in Clusters of Galaxies. Annu. Rev. Astron. Astrophys. 1994, 32, 277–318. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Best, P.N.; von der Linden, A.; Kauffmann, G.; Heckman, T.M.; Kaiser, C.R. On the prevalence of radio-loud active galactic nuclei in brightest cluster galaxies: Implications for AGN heating of cooling flows. Mon. Not. R. Astron. Soc. 2007, 379, 894–908. [Google Scholar] [CrossRef]
- Mittal, R.; Hudson, D.S.; Reiprich, T.H.; Clarke, T. AGN heating and ICM cooling in the HIFLUGCS sample of galaxy clusters. Astron. Astrophys. 2009, 501, 835–850. [Google Scholar] [CrossRef]
- Bîrzan, L.; Rafferty, D.A.; Nulsen, P.E.J.; McNamara, B.R.; Röttgering, H.J.A.; Wise, M.W.; Mittal, R. The duty cycle of radio-mode feedback in complete samples of clusters. Mon. Not. R. Astron. Soc. 2012, 427, 3468–3488. [Google Scholar] [CrossRef]
- Bîrzan, L.; Rafferty, D.A.; McNamara, B.R.; Wise, M.W.; Nulsen, P.E.J. A Systematic Study of Radio-induced X-ray Cavities in Clusters, Groups, and Galaxies. Astrophys. J. 2004, 607, 800–809. [Google Scholar] [CrossRef]
- David, L.P.; O’Sullivan, E.; Jones, C.; Giacintucci, S.; Vrtilek, J.; Raychaudhury, S.; Nulsen, P.E.J.; Forman, W.; Sun, M.; Donahue, M. Active-galactic-nucleus-driven Weather and Multiphase Gas in the Core of the NGC 5044 Galaxy Group. Astrophys. J. 2011, 728, 162. [Google Scholar] [CrossRef]
- Randall, S.W.; Forman, W.R.; Giacintucci, S.; Nulsen, P.E.J.; Sun, M.; Jones, C.; Churazov, E.; David, L.P.; Kraft, R.; Donahue, M.; et al. Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback. Astrophys. J. 2011, 726, 86. [Google Scholar] [CrossRef]
- Randall, S.W.; Nulsen, P.E.J.; Jones, C.; Forman, W.R.; Bulbul, E.; Clarke, T.E.; Kraft, R.; Blanton, E.L.; David, L.; Werner, N.; et al. A Very Deep Chandra Observation of the Galaxy Group NGC 5813: AGN Shocks, Feedback, and Outburst History. Astrophys. J. 2015, 805, 112. [Google Scholar] [CrossRef]
- Best, P.N. The environmental dependence of radio-loud AGN activity and star formation in the 2dFGRS. Mon. Not. R. Astron. Soc. 2004, 351, 70–82. [Google Scholar] [CrossRef]
- Croston, J.H.; Hardcastle, M.J.; Birkinshaw, M.; Worrall, D.M.; Laing, R.A. An XMM-Newton study of the environments, particle content and impact of low-power radio galaxies. Mon. Not. R. Astron. Soc. 2008, 386, 1709–1728. [Google Scholar] [CrossRef]
- Ching, J.H.Y.; Croom, S.M.; Sadler, E.M.; Robotham, A.S.G.; Brough, S.; Baldry, I.K.; Bland-Hawthorn, J.; Colless, M.; Driver, S.P.; Holwerda, B.W.; et al. Galaxy And Mass Assembly (GAMA): The environments of high- and low-excitation radio galaxies. Mon. Not. R. Astron. Soc. 2017, 469, 4584–4599. [Google Scholar] [CrossRef]
- Rafferty, D.A.; McNamara, B.R.; Nulsen, P.E.J.; Wise, M.W. The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies. Astrophys. J. 2006, 652, 216–231. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C. Investigating heating and cooling in the BCS and B55 cluster samples. Mon. Not. R. Astron. Soc. 2008, 385, 757–768. [Google Scholar] [CrossRef]
- Hlavacek-Larrondo, J.; Fabian, A.C.; Edge, A.C.; Ebeling, H.; Sanders, J.S.; Hogan, M.T.; Taylor, G.B. Extreme AGN feedback in the MAssive Cluster Survey: A detailed study of X-ray cavities at z > 0.3. Mon. Not. R. Astron. Soc. 2012, 421, 1360–1384. [Google Scholar] [CrossRef]
- Hlavacek-Larrondo, J.; Li, Y.; Churazov, E. AGN Feedback in Groups and Clusters of Galaxies. In Handbook of X-ray and Gamma-ray Astrophysics. Edited by Cosimo Bambi and Andrea Santangelo; Springer: Singapore, 2022; p. 5. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef]
- Gaspari, M.; Tombesi, F.; Cappi, M. Linking macro-, meso- and microscales in multiphase AGN feeding and feedback. Nat. Astron. 2020, 4, 10–13. [Google Scholar] [CrossRef]
- Kravtsov, A.V.; Borgani, S. Formation of Galaxy Clusters. Annu. Rev. Astron. Astrophys. 2012, 50, 353–409. [Google Scholar] [CrossRef]
- Allen, S.W.; Evrard, A.E.; Mantz, A.B. Cosmological Parameters from Observations of Galaxy Clusters. Annu. Rev. Astron. Astrophys. 2011, 49, 409–470. [Google Scholar] [CrossRef]
- King, A.; Pounds, K. Powerful Outflows and Feedback from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 115–154. [Google Scholar] [CrossRef]
- Morganti, R. The many routes to AGN feedback. Front. Astron. Space Sci. 2017, 4, 42. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Let. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- McConnell, N.J.; Ma, C.P. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties. Astrophys. J. 2013, 764, 184. [Google Scholar] [CrossRef]
- Sahu, N.; Graham, A.W.; Davis, B.L. Black Hole Mass Scaling Relations for Early-type Galaxies. I. M BH-M*,sph and M BH-M*,gal. Astrophys. J. 2019, 876, 155. [Google Scholar] [CrossRef]
- Reines, A.E.; Greene, J.E.; Geha, M. Dwarf Galaxies with Optical Signatures of Active Massive Black Holes. Astrophys. J. 2013, 775, 116. [Google Scholar] [CrossRef]
- Manzano-King, C.M.; Canalizo, G.; Sales, L.V. AGN-Driven Outflows in Dwarf Galaxies. Astrophys. J. 2019, 884, 54. [Google Scholar] [CrossRef]
- Mezcua, M. Feeding and feedback from little monsters: AGN in dwarf galaxies. In Galaxy Evolution and Feedback across Different Environments; Storchi Bergmann, T., Forman, W., Overzier, R., Riffel, R., Eds.; Cambridge University Press: Cambridge, UK, 2021; Volume 359, pp. 238–242. [Google Scholar] [CrossRef]
- Koudmani, S.; Sijacki, D.; Smith, M.C. Two can play at that game: Constraining the role of supernova and AGN feedback in dwarf galaxies with cosmological zoom-in simulations. Mon. Not. R. Astron. Soc. 2022, 516, 2112–2141. [Google Scholar] [CrossRef]
- Sharma, R.S.; Brooks, A.M.; Tremmel, M.; Bellovary, J.; Ricarte, A.; Quinn, T.R. A Hidden Population of Massive Black Holes in Simulated Dwarf Galaxies. Astrophys. J. 2022, 936, 82. [Google Scholar] [CrossRef]
- Harrison, C.M. Impact of supermassive black hole growth on star formation. Nat. Astron. 2017, 1, 0165. [Google Scholar] [CrossRef]
- Harrison, C.M.; Costa, T.; Tadhunter, C.N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G. AGN outflows and feedback twenty years on. Nat. Astron. 2018, 2, 198–205. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Veilleux, S.; Maiolino, R.; Bolatto, A.D.; Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 2020, 28, 2. [Google Scholar] [CrossRef]
- Burns, J.O.; Norman, M.L.; Clarke, D.A. Numerical Models of Extragalactic Radio Sources. Science 1991, 253, 522–530. [Google Scholar] [CrossRef]
- Rayburn, D.R. A numerical study of the continuous beam model of extragalactic radio sources. Mon. Not. R. Astron. Soc. 1977, 179, 603–617. [Google Scholar] [CrossRef]
- Norman, M.L.; Winkler, K.H.A.; Smarr, L.; Smith, M.D. Structure and dynamics of supersonic jets. Astron. Astrophys. 1982, 113, 285–302. [Google Scholar]
- Clarke, D.A.; Norman, M.L.; Burns, J.O. Numerical Observations of a Simulated Jet with a Passive Helical Magnetic Field. Astrophys. J. 1989, 342, 700. [Google Scholar] [CrossRef]
- Clarke, D.A.; Bridle, A.H.; Burns, J.O.; Perley, R.A.; Norman, M.L. Origin of the Structures and Polarization in the Classical Double 3C 219. Astrophys. J. 1992, 385, 173. [Google Scholar] [CrossRef]
- Falle, S.A.E.G.; Wilson, M.J. A theoretical model of the M 87 jet. Mon. Not. R. Astron. Soc. 1985, 216, 79–84. [Google Scholar] [CrossRef]
- Smith, M.D.; Norman, M.L.; Winkler, K.H.A.; Smarr, L. Hotspots in radio galaxies: A comparison with hydrodynamic simulations. Mon. Not. R. Astron. Soc. 1985, 214, 67–85. [Google Scholar] [CrossRef]
- Wilson, M.J.; Scheuer, P.A.G. The anisotropy of emission from hotspots in extragalactic radio sources. Mon. Not. R. Astron. Soc. 1983, 205, 449–463. [Google Scholar] [CrossRef]
- Koessl, D.; Mueller, E. Numerical simulations of astrophysical jets: The influence of boundary conditions and grid resolution. Astron. Astrophys. 1988, 206, 204–218. [Google Scholar]
- Clarke, D.A.; Norman, M.L.; Burns, J.O. Numerical Simulations of a Magnetically Confined Jet. Astrophys. J. Let. 1986, 311, L63. [Google Scholar] [CrossRef]
- Lind, K.R.; Payne, D.G.; Meier, D.L.; Blandford, R.D. Numerical Simulations of Magnetized Jets. Astrophys. J. 1989, 344, 89. [Google Scholar] [CrossRef]
- Arnold, C.N.; Arnett, W.D. Three-dimensional Structure and Dynamics of a Supersonic Jet. Astrophys. J. Let. 1986, 305, L57. [Google Scholar] [CrossRef]
- Clarke, D.A.; Stone, J.M.; Norman, M.L. MHD Jet Simulations in Three Dimensions. Proc. Bull. Am. Astron. Soc. 1990, 22, 801. [Google Scholar]
- Komissarov, S.; Porth, O. Numerical simulations of jets. New Astron. Rev. 2021, 92, 101610. [Google Scholar] [CrossRef]
- Martí, J.M. Numerical Simulations of Jets from Active Galactic Nuclei. Galaxies 2019, 7, 24. [Google Scholar] [CrossRef]
- Miley, G. The structure of extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1980, 18, 165–218. [Google Scholar] [CrossRef]
- Biretta, J.A.; Owen, F.N.; Hardee, P.E. Observations of the M 87 jet at 15 GHz with 0”.12 resolution. Astrophys. J. Let. 1983, 274, L27–L30. [Google Scholar] [CrossRef]
- Boehringer, H.; Voges, W.; Fabian, A.C.; Edge, A.C.; Neumann, D.M. A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 1993, 264, L25–L28. [Google Scholar] [CrossRef]
- Carilli, C.L.; Perley, R.A.; Harris, D.E. Observations of interaction between cluster gas and the radio lobes of Cygnus A. Mon. Not. R. Astron. Soc. 1994, 270, 173–177. [Google Scholar] [CrossRef]
- Huang, Z.; Sarazin, C.L. A High-Resolution ROSAT X-ray Study of Abell 4059. Astrophys. J. 1998, 496, 728–736. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Ettori, S.; Taylor, G.B.; Allen, S.W.; Crawford, C.S.; Iwasawa, K.; Johnstone, R.M.; Ogle, P.M. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 2000, 318, L65–L68. [Google Scholar] [CrossRef]
- McNamara, B.R.; Wise, M.; Nulsen, P.E.J.; David, L.P.; Sarazin, C.L.; Bautz, M.; Markevitch, M.; Vikhlinin, A.; Forman, W.R.; Jones, C.; et al. Chandra X-Ray Observations of the Hydra A Cluster: An Interaction between the Radio Source and the X-ray-emitting Gas. Astrophys. J. Let. 2000, 534, L135–L138. [Google Scholar] [CrossRef]
- Branduardi-Raymont, G.; Fabricant, D.; Feigelson, E.; Gorenstein, P.; Grindlay, J.; Soltan, A.; Zamorani, G. Soft X-ray images of the central region of the Perseus cluster. Astrophys. J. 1981, 248, 55–60. [Google Scholar] [CrossRef]
- Fabian, A.C.; Hu, E.M.; Cowie, L.L.; Grindlay, J. The distribution and morphology of X-ray emitting gas in the core of the Perseus cluster. Astrophys. J. 1981, 248, 47–54. [Google Scholar] [CrossRef]
- Clarke, D.A.; Harris, D.E.; Carilli, C.L. Formation of cavities in the X-ray emitting cluster gas of Cygnus A. Mon. Not. R. Astron. Soc. 1997, 284, 981–993. [Google Scholar] [CrossRef]
- Rizza, E.; Loken, C.; Bliton, M.; Roettiger, K.; Burns, J.O.; Owen, F.N. X-ray and Radio Interactions in the Cores of Cooling Flow Clusters. Astron. J. 2000, 119, 21–31. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Heinz, S.; Begelman, M.C. Shocks and Sonic Booms in the Intracluster Medium: X-ray Shells and Radio Galaxy Activity. Astrophys. J. Let. 2001, 549, L179–L182. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Heinz, S.; Begelman, M.C. The hydrodynamics of dead radio galaxies. Mon. Not. R. Astron. Soc. 2002, 332, 271–282. [Google Scholar] [CrossRef]
- Omma, H.; Binney, J.; Bryan, G.; Slyz, A. Heating cooling flows with jets. Mon. Not. R. Astron. Soc. 2004, 348, 1105–1119. [Google Scholar] [CrossRef]
- Churazov, E.; Brüggen, M.; Kaiser, C.R.; Böhringer, H.; Forman, W. Evolution of Buoyant Bubbles in M87. Astrophys. J. 2001, 554, 261–273. [Google Scholar] [CrossRef]
- Brüggen, M.; Kaiser, C.R. Buoyant radio plasma in clusters of galaxies. Mon. Not. R. Astron. Soc. 2001, 325, 676–684. [Google Scholar] [CrossRef]
- Quilis, V.; Bower, R.G.; Balogh, M.L. Bubbles, feedback and the intracluster medium: Three-dimensional hydrodynamic simulations. Mon. Not. R. Astron. Soc. 2001, 328, 1091–1097. [Google Scholar] [CrossRef]
- Brüggen, M.; Kaiser, C.R.; Churazov, E.; Enßlin, T.A. Simulation of radio plasma in clusters of galaxies. Mon. Not. R. Astron. Soc. 2002, 331, 545–555. [Google Scholar] [CrossRef]
- Huško, F.; Lacey, C.G. Active galactic nuclei jets simulated with smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 2023, 520, 5090–5109. [Google Scholar] [CrossRef]
- Huško, F.; Lacey, C.G. The complex interplay of AGN jet-inflated bubbles and the intracluster medium. Mon. Not. R. Astron. Soc. 2023, 521, 4375–4394. [Google Scholar] [CrossRef]
- Huško, F.; Lacey, C.G.; Schaye, J.; Schaller, M.; Nobels, F.S.J. Spin-driven jet feedback in idealized simulations of galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2022, 516, 3750–3772. [Google Scholar] [CrossRef]
- Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 2010, 401, 791–851. [Google Scholar] [CrossRef]
- Hopkins, P.F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 2015, 450, 53–110. [Google Scholar] [CrossRef]
- Bourne, M.A.; Sijacki, D. AGN jet feedback on a moving mesh: Cocoon inflation, gas flows and turbulence. Mon. Not. R. Astron. Soc. 2017, 472, 4707–4735. [Google Scholar] [CrossRef]
- Weinberger, R.; Ehlert, K.; Pfrommer, C.; Pakmor, R.; Springel, V. Simulating the interaction of jets with the intracluster medium. Mon. Not. R. Astron. Soc. 2017, 470, 4530–4546. [Google Scholar] [CrossRef]
- Su, K.Y.; Hopkins, P.F.; Bryan, G.L.; Somerville, R.S.; Hayward, C.C.; Anglés-Alcázar, D.; Faucher-Giguère, C.A.; Wellons, S.; Stern, J.; Terrazas, B.A.; et al. Which AGN jets quench star formation in massive galaxies? Mon. Not. R. Astron. Soc. 2021, 507, 175–204. [Google Scholar] [CrossRef]
- Krause, M. Very light jets. I. Axisymmetric parameter study and analytic approximation. Astron. Astrophys. 2003, 398, 113–125. [Google Scholar] [CrossRef]
- Krause, M.; Alexander, P.; Riley, J.; Hopton, D. A new connection between the jet opening angle and the large-scale morphology of extragalactic radio sources. Mon. Not. R. Astron. Soc. 2012, 427, 3196–3208. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 2013, 430, 174–196. [Google Scholar] [CrossRef]
- Cattaneo, A.; Teyssier, R. AGN self-regulation in cooling flow clusters. Mon. Not. R. Astron. Soc. 2007, 376, 1547–1556. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Slyz, A.; Teyssier, R. Jet-regulated cooling catastrophe. Mon. Not. R. Astron. Soc. 2010, 409, 985–1001. [Google Scholar] [CrossRef]
- Gaspari, M.; Melioli, C.; Brighenti, F.; D’Ercole, A. The dance of heating and cooling in galaxy clusters: Three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 2011, 411, 349–372. [Google Scholar] [CrossRef]
- Li, Y.; Bryan, G.L. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Balance between Heating and Cooling. Astrophys. J. 2014, 789, 54. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Reynolds, C.S. How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations. Astrophys. J. 2016, 829, 90. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments—II. Magnetic field configuration and observability. Mon. Not. R. Astron. Soc. 2014, 443, 1482–1499. [Google Scholar] [CrossRef]
- Ehlert, K.; Weinberger, R.; Pfrommer, C.; Pakmor, R.; Springel, V. Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Mon. Not. R. Astron. Soc. 2018, 481, 2878–2900. [Google Scholar] [CrossRef]
- Bourne, M.A.; Sijacki, D.; Puchwein, E. AGN jet feedback on a moving mesh: Lobe energetics and X-ray properties in a realistic cluster environment. Mon. Not. R. Astron. Soc. 2019, 490, 343–349. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Gaspari, M.; Marlow, C. The Impact of Radio AGN Bubble Composition on the Dynamics and Thermal Balance of the Intracluster Medium. Astrophys. J. 2019, 871, 6. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Quilis, V. Long-term FRII jet evolution in dense environments. Mon. Not. R. Astron. Soc. 2022, 510, 2084–2096. [Google Scholar] [CrossRef]
- Gaspari, M.; Brighenti, F.; D’Ercole, A.; Melioli, C. AGN feedback in galaxy groups: The delicate touch of self-regulated outflows. Mon. Not. R. Astron. Soc. 2011, 415, 1549–1568. [Google Scholar] [CrossRef]
- Gaspari, M.; Brighenti, F.; Temi, P. Chaotic cold accretion on to black holes in rotating atmospheres. Astron. Astrophys. 2015, 579, A62. [Google Scholar] [CrossRef]
- Prasad, D.; Sharma, P.; Babul, A. Cool Core Cycles: Cold Gas and AGN Jet Feedback in Cluster Cores. Astrophys. J. 2015, 811, 108. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Reynolds, C.S. Interplay Among Cooling, AGN Feedback, and Anisotropic Conduction in the Cool Cores of Galaxy Clusters. Astrophys. J. 2016, 818, 181. [Google Scholar] [CrossRef]
- Li, Y.; Ruszkowski, M.; Bryan, G.L. AGN Heating in Simulated Cool-core Clusters. Astrophys. J. 2017, 847, 106. [Google Scholar] [CrossRef]
- Beckmann, R.S.; Dubois, Y.; Guillard, P.; Salome, P.; Olivares, V.; Polles, F.; Cadiou, C.; Combes, F.; Hamer, S.; Lehnert, M.D.; et al. Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with spin-driven black hole feedback. Astron. Astrophys. 2019, 631, A60. [Google Scholar] [CrossRef]
- Ehlert, K.; Weinberger, R.; Pfrommer, C.; Pakmor, R.; Springel, V. Self-regulated AGN feedback of light jets in cool-core galaxy clusters. Mon. Not. R. Astron. Soc. 2022, 518, 4622–4645. [Google Scholar] [CrossRef]
- Robinson, K.; Dursi, L.J.; Ricker, P.M.; Rosner, R.; Calder, A.C.; Zingale, M.; Truran, J.W.; Linde, T.; Caceres, A.; Fryxell, B.; et al. Morphology of Rising Hydrodynamic and Magnetohydrodynamic Bubbles from Numerical Simulations. Astrophys. J. 2004, 601, 621–643. [Google Scholar] [CrossRef]
- Li, H.; Lapenta, G.; Finn, J.M.; Li, S.; Colgate, S.A. Modeling the Large-Scale Structures of Astrophysical Jets in the Magnetically Dominated Limit. Astrophys. J. 2006, 643, 92–100. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Enßlin, T.A.; Brüggen, M.; Begelman, M.C.; Churazov, E. Cosmic ray confinement in fossil cluster bubbles. Mon. Not. R. Astron. Soc. 2008, 383, 1359–1365. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Slyz, A.; Silk, J. Influence of AGN jets on the magnetized ICM. Mon. Not. R. Astron. Soc. 2009, 399, L49–L53. [Google Scholar] [CrossRef]
- Gaibler, V.; Krause, M.; Camenzind, M. Very light magnetized jets on large scales—I. Evolution and magnetic fields. Mon. Not. R. Astron. Soc. 2009, 400, 1785–1802. [Google Scholar] [CrossRef]
- O’Neill, S.M.; Jones, T.W. Three-Dimensional Simulations of Bi-Directed Magnetohydrodynamic Jets Interacting with Cluster Environments. Astrophys. J. 2010, 710, 180–196. [Google Scholar] [CrossRef]
- Mendygral, P.J.; Jones, T.W.; Dolag, K. MHD Simulations of Active Galactic Nucleus Jets in a Dynamic Galaxy Cluster Medium. Astrophys. J. 2012, 750, 166. [Google Scholar] [CrossRef]
- Sutter, P.M.; Yang, H.Y.K.; Ricker, P.M.; Foreman, G.; Pugmire, D. An examination of magnetized outflows from active galactic nuclei in galaxy clusters. Mon. Not. R. Astron. Soc. 2012, 419, 2293–2314. [Google Scholar] [CrossRef]
- Wang, C.; Ruszkowski, M.; Yang, H.Y.K. Chaotic cold accretion in giant elliptical galaxies heated by AGN cosmic rays. Mon. Not. R. Astron. Soc. 2020, 493, 4065–4076. [Google Scholar] [CrossRef]
- Wang, C.; Ruszkowski, M.; Pfrommer, C.; Oh, S.P.; Yang, H.Y.K. Non-Kolmogorov turbulence in multiphase intracluster medium driven by cold gas precipitation and AGN jets. Mon. Not. R. Astron. Soc. 2021, 504, 898–909. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Quilis, V.; Ricciardelli, E. Large-scale jets from active galactic nuclei as a source of intracluster medium heating: Cavities and shocks. Mon. Not. R. Astron. Soc. 2014, 445, 1462–1481. [Google Scholar] [CrossRef]
- English, W.; Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments—III. Powerful relativistic and non-relativistic jets. Mon. Not. R. Astron. Soc. 2016, 461, 2025–2043. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Quilis, V.; Borja-Lloret, M. Radio mode feedback: Does relativity matter? Mon. Not. R. Astron. Soc. 2017, 471, L120–L124. [Google Scholar] [CrossRef]
- English, W.; Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments—IV. Remnant radio galaxies. Mon. Not. R. Astron. Soc. 2019, 490, 5807–5819. [Google Scholar] [CrossRef]
- Yates-Jones, P.M.; Shabala, S.S.; Krause, M.G.H. Dynamics of relativistic radio jets in asymmetric environments. Mon. Not. R. Astron. Soc. 2021, 508, 5239–5250. [Google Scholar] [CrossRef]
- Reynolds, C.S.; McKernan, B.; Fabian, A.C.; Stone, J.M.; Vernaleo, J.C. Buoyant radio lobes in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 2005, 357, 242–250. [Google Scholar] [CrossRef]
- Dong, R.; Stone, J.M. Buoyant Bubbles in Intracluster Gas: Effects of Magnetic Fields and Anisotropic Viscosity. Astrophys. J. 2009, 704, 1309–1320. [Google Scholar] [CrossRef]
- Guo, F. The Shape of X-Ray Cavities in Galaxy Clusters: Probing Jet Properties and Viscosity. Astrophys. J. 2015, 803, 48. [Google Scholar] [CrossRef]
- Kingsland, M.; Yang, H.Y.K.; Reynolds, C.S.; Zuhone, J.A. Effects of Anisotropic Viscosity on the Evolution of Active Galactic Nuclei Bubbles in Galaxy Clusters. Astrophys. J. Let. 2019, 883, L23. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Begelman, M.C. Heating, Conduction, and Minimum Temperatures in Cooling Flows. Astrophys. J. 2002, 581, 223–228. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Narayan, R. Models of Galaxy Clusters with Thermal Conduction. Astrophys. J. 2003, 582, 162–169. [Google Scholar] [CrossRef]
- Voigt, L.M.; Fabian, A.C. Thermal conduction and reduced cooling flows in galaxy clusters. Mon. Not. R. Astron. Soc. 2004, 347, 1130–1149. [Google Scholar] [CrossRef]
- Parrish, I.J.; Quataert, E.; Sharma, P. Anisotropic Thermal Conduction and the Cooling Flow Problem in Galaxy Clusters. Astrophys. J. 2009, 703, 96–108. [Google Scholar] [CrossRef]
- Bogdanović, T.; Reynolds, C.S.; Balbus, S.A.; Parrish, I.J. Simulations of Magnetohydrodynamics Instabilities in Intracluster Medium Including Anisotropic Thermal Conduction. Astrophys. J. 2009, 704, 211–225. [Google Scholar] [CrossRef]
- Avara, M.J.; Reynolds, C.S.; Bogdanović, T. Role of Magnetic Field Strength and Numerical Resolution in Simulations of the Heat-flux-driven Buoyancy Instability. Astrophys. J. 2013, 773, 171. [Google Scholar] [CrossRef]
- Kannan, R.; Vogelsberger, M.; Pfrommer, C.; Weinberger, R.; Springel, V.; Hernquist, L.; Puchwein, E.; Pakmor, R. Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction. Astrophys. J. Let. 2017, 837, L18. [Google Scholar] [CrossRef]
- Beckmann, R.S.; Dubois, Y.; Pellissier, A.; Polles, F.L.; Olivares, V. AGN jets do not prevent the suppression of conduction by the heat buoyancy instability in simulated galaxy clusters. Astron. Astrophys. 2022, 666, A71. [Google Scholar] [CrossRef]
- Guo, F.; Oh, S.P. Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 2008, 384, 251–266. [Google Scholar] [CrossRef]
- Mathews, W.G.; Brighenti, F. Energetics of X-Ray Cavities and Radio Lobes in Galaxy Clusters. Astrophys. J. 2008, 685, 128–137. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Yang, H.Y.K.; Reynolds, C.S. Cosmic-Ray Feedback Heating of the Intracluster Medium. Astrophys. J. 2017, 844, 13. [Google Scholar] [CrossRef]
- Jacob, S.; Pfrommer, C. Cosmic ray heating in cool core clusters—I. Diversity of steady state solutions. Mon. Not. R. Astron. Soc. 2017, 467, 1449–1477. [Google Scholar] [CrossRef]
- Jacob, S.; Pfrommer, C. Cosmic ray heating in cool core clusters—II. Self-regulation cycle and non-thermal emission. Mon. Not. R. Astron. Soc. 2017, 467, 1478–1495. [Google Scholar] [CrossRef]
- Prokhorov, D.A.; Churazov, E.M. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles. Mon. Not. R. Astron. Soc. 2017, 470, 3388–3394. [Google Scholar] [CrossRef]
- Lin, Y.H.; Yang, H.Y.K.; Owen, E.R. Evolution and feedback of AGN jets of different cosmic ray composition. Mon. Not. R. Astron. Soc. 2023, 520, 963–975. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Slyz, A.; Teyssier, R. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: Methods, tests and implications for cosmological simulations. Mon. Not. R. Astron. Soc. 2012, 420, 2662–2683. [Google Scholar] [CrossRef]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Ricker, P.M.; Zweibel, E.; Lee, D. The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion. Astrophys. J. 2012, 761, 185. [Google Scholar] [CrossRef]
- Meece, G.R.; Voit, G.M.; O’Shea, B.W. Triggering and Delivery Algorithms for AGN Feedback. Astrophys. J. 2017, 841, 133. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Bourne, M.A.; Sijacki, D. Blandford-Znajek jets in galaxy formation simulations: Method and implementation. Mon. Not. R. Astron. Soc. 2021, 504, 3619–3650. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Sijacki, D.; Bourne, M.A. Blandford-Znajek jets in galaxy formation simulations: Exploring the diversity of outflows produced by spin-driven AGN jets in Seyfert galaxies. Mon. Not. R. Astron. Soc. 2022, 514, 4535–4559. [Google Scholar] [CrossRef]
- Gaspari, M.; Ruszkowski, M.; Oh, S.P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 2013, 432, 3401–3422. [Google Scholar] [CrossRef]
- Somerville, R.S.; Davé, R. Physical Models of Galaxy Formation in a Cosmological Framework. Annu. Rev. Astron. Astrophys. 2015, 53, 51–113. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Marinacci, F.; Torrey, P.; Puchwein, E. Cosmological simulations of galaxy formation. Nature Reviews Physics 2020, 2, 42–66. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef]
- Le Brun, A.M.C.; McCarthy, I.G.; Schaye, J.; Ponman, T.J. Towards a realistic population of simulated galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2014, 441, 1270–1290. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Sijacki, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Snyder, G.F.; Nelson, D.; Hernquist, L. The Illustris simulation: The evolving population of black holes across cosmic time. Mon. Not. R. Astron. Soc. 2015, 452, 575–596. [Google Scholar] [CrossRef]
- Dubois, Y.; Peirani, S.; Pichon, C.; Devriendt, J.; Gavazzi, R.; Welker, C.; Volonteri, M. The HORIZON-AGN simulation: Morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 2016, 463, 3948–3964. [Google Scholar] [CrossRef]
- Weinberger, R.; Springel, V.; Pakmor, R.; Nelson, D.; Genel, S.; Pillepich, A.; Vogelsberger, M.; Marinacci, F.; Naiman, J.; Torrey, P.; et al. Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc. 2018, 479, 4056–4072. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Teyssier, R.; Slyz, A. How active galactic nucleus feedback and metal cooling shape cluster entropy profiles. Mon. Not. R. Astron. Soc. 2011, 417, 1853–1870. [Google Scholar] [CrossRef]
- Bahé, Y.M.; Barnes, D.J.; Dalla Vecchia, C.; Kay, S.T.; White, S.D.M.; McCarthy, I.G.; Schaye, J.; Bower, R.G.; Crain, R.A.; Theuns, T.; et al. The Hydrangea simulations: Galaxy formation in and around massive clusters. Mon. Not. R. Astron. Soc. 2017, 470, 4186–4208. [Google Scholar] [CrossRef]
- Barnes, D.J.; Kay, S.T.; Henson, M.A.; McCarthy, I.G.; Schaye, J.; Jenkins, A. The redshift evolution of massive galaxy clusters in the MACSIS simulations. Mon. Not. R. Astron. Soc. 2017, 465, 213–233. [Google Scholar] [CrossRef]
- Barnes, D.J.; Kay, S.T.; Bahé, Y.M.; Dalla Vecchia, C.; McCarthy, I.G.; Schaye, J.; Bower, R.G.; Jenkins, A.; Thomas, P.A.; Schaller, M.; et al. The Cluster-EAGLE project: Global properties of simulated clusters with resolved galaxies. Mon. Not. R. Astron. Soc. 2017, 471, 1088–1106. [Google Scholar] [CrossRef]
- Barnes, D.J.; Vogelsberger, M.; Kannan, R.; Marinacci, F.; Weinberger, R.; Springel, V.; Torrey, P.; Pillepich, A.; Nelson, D.; Pakmor, R.; et al. A census of cool-core galaxy clusters in IllustrisTNG. Mon. Not. R. Astron. Soc. 2018, 481, 1809–1831. [Google Scholar] [CrossRef]
- Hahn, O.; Martizzi, D.; Wu, H.Y.; Evrard, A.E.; Teyssier, R.; Wechsler, R.H. rhapsody-g simulations - I. The cool cores, hot gas and stellar content of massive galaxy clusters. Mon. Not. R. Astron. Soc. 2017, 470, 166–186. [Google Scholar] [CrossRef]
- Rasia, E.; Borgani, S.; Murante, G.; Planelles, S.; Beck, A.M.; Biffi, V.; Ragone-Figueroa, C.; Granato, G.L.; Steinborn, L.K.; Dolag, K. Cool Core Clusters from Cosmological Simulations. Astrophys. J. Let. 2015, 813, L17. [Google Scholar] [CrossRef]
- Henden, N.A.; Puchwein, E.; Shen, S.; Sijacki, D. The FABLE simulations: A feedback model for galaxies, groups, and clusters. Mon. Not. R. Astron. Soc. 2018, 479, 5385–5412. [Google Scholar] [CrossRef]
- Tremmel, M.; Quinn, T.R.; Ricarte, A.; Babul, A.; Chadayammuri, U.; Natarajan, P.; Nagai, D.; Pontzen, A.; Volonteri, M. Introducing ROMULUSC: A cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 2019, 483, 3336–3362. [Google Scholar] [CrossRef]
- Pakmor, R.; Springel, V.; Coles, J.P.; Guillet, T.; Pfrommer, C.; Bose, S.; Barrera, M.; Delgado, A.M.; Ferlito, F.; Frenk, C.; et al. The MillenniumTNG Project: The hydrodynamical full physics simulation and a first look at its galaxy clusters. arXiv 2022, arXiv:2210.10060. [Google Scholar] [CrossRef]
- Genel, S.; Vogelsberger, M.; Springel, V.; Sijacki, D.; Nelson, D.; Snyder, G.; Rodriguez-Gomez, V.; Torrey, P.; Hernquist, L. Introducing the Illustris project: The evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 2014, 445, 175–200. [Google Scholar] [CrossRef]
- Springel, V.; Di Matteo, T.; Hernquist, L. Modelling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc. 2005, 361, 776–794. [Google Scholar] [CrossRef]
- Booth, C.M.; Schaye, J. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: Method and tests. Mon. Not. R. Astron. Soc. 2009, 398, 53–74. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Schaye, J.; Bird, S.; Le Brun, A.M.C. The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology. Mon. Not. R. Astron. Soc. 2017, 465, 2936–2965. [Google Scholar] [CrossRef]
- Bourne, M.A.; Zubovas, K.; Nayakshin, S. The resolution bias: Low-resolution feedback simulations are better at destroying galaxies. Mon. Not. R. Astron. Soc. 2015, 453, 1829–1842. [Google Scholar] [CrossRef]
- Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T.R.; Pontzen, A.; Anderson, L.; Bellovary, J. The Romulus cosmological simulations: A physical approach to the formation, dynamics and accretion models of SMBHs. Mon. Not. R. Astron. Soc. 2017, 470, 1121–1139. [Google Scholar] [CrossRef]
- Weinberger, R.; Springel, V.; Hernquist, L.; Pillepich, A.; Marinacci, F.; Pakmor, R.; Nelson, D.; Genel, S.; Vogelsberger, M.; Naiman, J.; et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 2017, 465, 3291–3308. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V.; Di Matteo, T.; Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 2007, 380, 877–900. [Google Scholar] [CrossRef]
- Dalla Vecchia, C.; Bower, R.G.; Theuns, T.; Balogh, M.L.; Mazzotta, P.; Frenk, C.S. Quenching cluster cooling flows with recurrent hot plasma bubbles. Mon. Not. R. Astron. Soc. 2004, 355, 995–1004. [Google Scholar] [CrossRef]
- Dubois, Y.; Beckmann, R.; Bournaud, F.; Choi, H.; Devriendt, J.; Jackson, R.; Kaviraj, S.; Kimm, T.; Kraljic, K.; Laigle, C.; et al. Introducing the NEWHORIZON simulation: Galaxy properties with resolved internal dynamics across cosmic time. Astron. Astrophys. 2021, 651, A109. [Google Scholar] [CrossRef]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef]
- Perley, R.A.; Willis, A.G.; Scott, J.S. The structure of the radio jets in 3C 449. Nature 1979, 281, 437–442. [Google Scholar] [CrossRef]
- Komissarov, S.S. Mass-Loaded Relativistic Jets. Mon. Not. R. Astron. Soc. 1994, 269, 394. [Google Scholar] [CrossRef]
- Rossi, P.; Mignone, A.; Bodo, G.; Massaglia, S.; Ferrari, A. Formation of dynamical structures in relativistic jets: The FRI case. Astron. Astrophys. 2008, 488, 795–806. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Cela, J.M.; Hanasz, M.; de La Cruz, R.; Rubio, F. Stability of three-dimensional relativistic jets: Implications for jet collimation. Astron. Astrophys. 2010, 519, A41. [Google Scholar] [CrossRef]
- Laing, R.A.; Bridle, A.H. Systematic properties of decelerating relativistic jets in low-luminosity radio galaxies. Mon. Not. R. Astron. Soc. 2014, 437, 3405–3441. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Bromberg, O. Three-dimensional relativistic MHD simulations of active galactic nuclei jets: Magnetic kink instability and Fanaroff-Riley dichotomy. Mon. Not. R. Astron. Soc. 2016, 461, L46–L50. [Google Scholar] [CrossRef]
- Dehghan, S.; Johnston-Hollitt, M.; Franzen, T.M.O.; Norris, R.P.; Miller, N.A. Bent-tailed Radio Sources in the Australia Telescope Large Area Survey of the Chandra Deep Field South. Astron. J. 2014, 148, 75. [Google Scholar] [CrossRef]
- O’Brien, A.N.; Norris, R.P.; Tothill, N.F.H.; Filipović, M.D. The spatial correlation of bent-tail galaxies and galaxy clusters. Mon. Not. R. Astron. Soc. 2018, 481, 5247–5262. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Wagner, A.Y.; Oosterloo, T.; Guillard, P.; Mukherjee, D.; Bicknell, G. Cold gas removal from the centre of a galaxy by a low-luminosity jet. Nature Astronomy 2022, 6, 488–495. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Carilli, C.L.; Barthel, P.D. Cygnus A. Astron. Astrophys. Rev. 1996, 7, 1–54. [Google Scholar] [CrossRef]
- Wilson, A.S.; Colbert, E.J.M. The Difference between Radio-loud and Radio-quiet Active Galaxies. Astrophys. J. 1995, 438, 62. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. Astrophys. J. 2010, 711, 50–63. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. General Relativistic Modeling of Magnetized Jets from Accreting Black Holes. J. Phys. Conf. Ser.s 2012, 372, 012040. [Google Scholar] [CrossRef]
- Best, P.N.; Heckman, T.M. On the fundamental dichotomy in the local radio-AGN population: Accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 2012, 421, 1569–1582. [Google Scholar] [CrossRef]
- Gendre, M.A.; Best, P.N.; Wall, J.V.; Ker, L.M. The relation between morphology, accretion modes and environmental factors in local radio AGN. Mon. Not. R. Astron. Soc. 2013, 430, 3086–3101. [Google Scholar] [CrossRef]
- Mingo, B.; Hardcastle, M.J.; Croston, J.H.; Dicken, D.; Evans, D.A.; Morganti, R.; Tadhunter, C. An X-ray survey of the 2 Jy sample-I. Is there an accretion mode dichotomy in radio-loud AGN? Mon. Not. R. Astron. Soc. 2014, 440, 269–297. [Google Scholar] [CrossRef]
- Ineson, J.; Croston, J.H.; Hardcastle, M.J.; Kraft, R.P.; Evans, D.A.; Jarvis, M. The link between accretion mode and environment in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 2015, 453, 2682–2706. [Google Scholar] [CrossRef]
- Mingo, B.; Croston, J.H.; Best, P.N.; Duncan, K.J.; Hardcastle, M.J.; Kondapally, R.; Prandoni, I.; Sabater, J.; Shimwell, T.W.; Williams, W.L.; et al. Accretion mode versus radio morphology in the LOFAR Deep Fields. Mon. Not. R. Astron. Soc. 2022, 511, 3250–3271. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A. Making Faranoff-Riley I radio sources. I. Numerical hydrodynamic 3D simulations of low-power jets. Astron. Astrophys. 2016, 596, A12. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A. Making Faranoff-Riley I radio sources. II. The effects of jet magnetization. Astron. Astrophys. 2019, 621, A132. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, A.; Mignone, A. Making Fanaroff-Riley I radio sources. III. The effects of the magnetic field on relativistic jets’ propagation and source morphologies. Astron. Astrophys. 2022, 659, A139. [Google Scholar] [CrossRef]
- Li, Y.; Wiita, P.J.; Schuh, T.; Elghossain, G.; Hu, S. Radio-loud Active Galactic Nucleus Variability from Three-dimensional Propagating Relativistic Jets. Astrophys. J. 2018, 869, 32. [Google Scholar] [CrossRef]
- Mandal, S.; Duffell, P.C.; Li, Y. Numerical Investigation of Dynamical and Morphological Trends in Relativistic Jets. Astrophys. J. 2022, 935, 42. [Google Scholar] [CrossRef]
- Yates-Jones, P.M.; Shabala, S.S.; Power, C.; Krause, M.G.H.; Hardcastle, M.J.; Mohd Noh Velastín, E.A.N.; Stewart, G.S.C. CosmoDRAGoN simulations—I. Dynamics and observable signatures of radio jets in cosmological environments. 2023, 40, e014. [Google Scholar] [CrossRef]
- Ferrari, A. Modeling Extragalactic Jets. Annu. Rev. Astron. Astrophys. 1998, 36, 539–598. [Google Scholar] [CrossRef]
- Falle, S.A.E.G. Self-similar jets. Mon. Not. R. Astron. Soc. 1991, 250, 581–596. [Google Scholar] [CrossRef]
- Krause, M. Very light jets II: Bipolar large scale simulations in King atmospheres. Astron. Astrophys. 2005, 431, 45–64. [Google Scholar] [CrossRef]
- Guo, F. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback. Astrophys. J. 2016, 826, 17. [Google Scholar] [CrossRef]
- Weinberger, R.; Su, K.Y.; Ehlert, K.; Pfrommer, C.; Hernquist, L.; Bryan, G.L.; Springel, V.; Li, Y.; Burkhart, B.; Choi, E.; et al. Active galactic nucleus jet feedback in hydrostatic halos. Mon. Not. R. Astron. Soc. 2023, 523, 1104–1125. [Google Scholar] [CrossRef]
- Kataoka, J.; Stawarz, Ł. X-Ray Emission Properties of Large-Scale Jets, Hot Spots, and Lobes in Active Galactic Nuclei. Astrophys. J. 2005, 622, 797–810. [Google Scholar] [CrossRef]
- Croston, J.H.; Hardcastle, M.J.; Harris, D.E.; Belsole, E.; Birkinshaw, M.; Worrall, D.M. An X-Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources. Astrophys. J. 2005, 626, 733–747. [Google Scholar] [CrossRef]
- Ineson, J.; Croston, J.H.; Hardcastle, M.J.; Mingo, B. A representative survey of the dynamics and energetics of FR II radio galaxies. Mon. Not. R. Astron. Soc. 2017, 467, 1586–1607. [Google Scholar] [CrossRef]
- Harwood, J.J.; Croston, J.H.; Intema, H.T.; Stewart, A.J.; Ineson, J.; Hardcastle, M.J.; Godfrey, L.; Best, P.; Brienza, M.; Heesen, V.; et al. FR II radio galaxies at low frequencies—I. Morphology, magnetic field strength and energetics. Mon. Not. R. Astron. Soc. 2016, 458, 4443–4455. [Google Scholar] [CrossRef] [PubMed]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Sądowski, A.; Narayan, R. Powerful radiative jets in supercritical accretion discs around non-spinning black holes. Mon. Not. R. Astron. Soc. 2015, 453, 3213–3221. [Google Scholar] [CrossRef]
- Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S. Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 2018, 474, L81–L85. [Google Scholar] [CrossRef]
- Liska, M.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M. Bardeen-Petterson alignment, jets, and magnetic truncation in GRMHD simulations of tilted thin accretion discs. Mon. Not. R. Astron. Soc. 2019, 487, 550–561. [Google Scholar] [CrossRef]
- Lu, R.S.; Asada, K.; Krichbaum, T.P.; Park, J.; Tazaki, F.; Pu, H.Y.; Nakamura, M.; Lobanov, A.; Hada, K.; Akiyama, K.; et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 2023, 616, 686–690. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Krause, M.G.H.; Shabala, S.S.; Hardcastle, M.J.; Bicknell, G.V.; Böhringer, H.; Chon, G.; Nawaz, M.A.; Sarzi, M.; Wagner, A.Y. How frequent are close supermassive binary black holes in powerful jet sources? Mon. Not. R. Astron. Soc. 2019, 482, 240–261. [Google Scholar] [CrossRef]
- Falceta-Gonçalves, D.; Caproni, A.; Abraham, Z.; Teixeira, D.M.; de Gouveia Dal Pino, E.M. Precessing Jets and X-ray Bubbles from NGC 1275 (3C 84) in the Perseus Galaxy Cluster: A View from Three-dimensional Numerical Simulations. Astrophys. J. Let. 2010, 713, L74–L78. [Google Scholar] [CrossRef]
- Martizzi, D.; Quataert, E.; Faucher-Giguère, C.A.; Fielding, D. Simulations of jet heating in galaxy clusters: Successes and challenges. Mon. Not. R. Astron. Soc. 2019, 483, 2465–2486. [Google Scholar] [CrossRef]
- Cielo, S.; Babul, A.; Antonuccio-Delogu, V.; Silk, J.; Volonteri, M. Feedback from reorienting AGN jets. I. Jet-ICM coupling, cavity properties and global energetics. Astron. Astrophys. 2018, 617, A58. [Google Scholar] [CrossRef]
- Dubois, Y.; Volonteri, M.; Silk, J.; Devriendt, J.; Slyz, A. Black hole evolution—II. Spinning black holes in a supernova-driven turbulent interstellar medium. Mon. Not. R. Astron. Soc. 2014, 440, 2333–2346. [Google Scholar] [CrossRef]
- Fiacconi, D.; Sijacki, D.; Pringle, J.E. Galactic nuclei evolution with spinning black holes: Method and implementation. Mon. Not. R. Astron. Soc. 2018, 477, 3807–3835. [Google Scholar] [CrossRef]
- Bustamante, S.; Springel, V. Spin evolution and feedback of supermassive black holes in cosmological simulations. Mon. Not. R. Astron. Soc. 2019, 490, 4133–4153. [Google Scholar] [CrossRef]
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 2012, 423, 3083–3117. [Google Scholar] [CrossRef]
- Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 1952, 112, 195. [Google Scholar] [CrossRef]
- Allen, S.W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 2006, 372, 21–30. [Google Scholar] [CrossRef]
- Merloni, A.; Heinz, S. Measuring the kinetic power of active galactic nuclei in the radio mode. Mon. Not. R. Astron. Soc. 2007, 381, 589–601. [Google Scholar] [CrossRef]
- McNamara, B.R.; Rohanizadegan, M.; Nulsen, P.E.J. Are Radio Active Galactic Nuclei Powered by Accretion or Black Hole Spin? Astrophys. J. 2011, 727, 39. [Google Scholar] [CrossRef]
- Russell, H.R.; McNamara, B.R.; Edge, A.C.; Hogan, M.T.; Main, R.A.; Vantyghem, A.N. Radiative efficiency, variability and Bondi accretion on to massive black holes: The transition from radio AGN to quasars in brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2013, 432, 530–553. [Google Scholar] [CrossRef]
- Nemmen, R.S.; Tchekhovskoy, A. On the efficiency of jet production in radio galaxies. Mon. Not. R. Astron. Soc. 2015, 449, 316–327. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Tang, X.; Churazov, E. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 2017, 468, 3516–3532. [Google Scholar] [CrossRef]
- Guo, F.; Duan, X.; Yuan, Y.F. Reversing cooling flows with AGN jets: Shock waves, rarefaction waves and trailing outflows. Mon. Not. R. Astron. Soc. 2018, 473, 1332–1345. [Google Scholar] [CrossRef]
- Bourne, M.A.; Sijacki, D. AGN jet feedback on a moving mesh: Gentle cluster heating by weak shocks and lobe disruption. Mon. Not. R. Astron. Soc. 2021, 506, 488–513. [Google Scholar] [CrossRef]
- Brüggen, M.; Heinz, S.; Roediger, E.; Ruszkowski, M.; Simionescu, A. Shock heating by Fanaroff-Riley type I radio sources in galaxy clusters. Mon. Not. R. Astron. Soc. 2007, 380, L67–L70. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Taylor, G.B.; Allen, S.W.; Crawford, C.S.; Johnstone, R.M.; Iwasawa, K. A very deep Chandra observation of the Perseus cluster: Shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 2006, 366, 417–428. [Google Scholar] [CrossRef]
- Forman, W.; Jones, C.; Churazov, E.; Markevitch, M.; Nulsen, P.; Vikhlinin, A.; Begelman, M.; Böhringer, H.; Eilek, J.; Heinz, S.; et al. Filaments, Bubbles, and Weak Shocks in the Gaseous Atmosphere of M87. Astrophys. J. 2007, 665, 1057–1066. [Google Scholar] [CrossRef]
- Croston, J.H.; Hardcastle, M.J.; Mingo, B.; Evans, D.A.; Dicken, D.; Morganti, R.; Tadhunter, C.N. A Large-scale Shock Surrounding a Powerful Radio Galaxy? Astrophys. J. Let. 2011, 734, L28. [Google Scholar] [CrossRef]
- Sanders, J.S.; Fabian, A.C.; Taylor, G.B.; Russell, H.R.; Blundell, K.M.; Canning, R.E.A.; Hlavacek-Larrondo, J.; Walker, S.A.; Grimes, C.K. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 2016, 457, 82–109. [Google Scholar] [CrossRef]
- Sternberg, A.; Soker, N. Sound waves excitation by jet-inflated bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 2009, 395, 228–233. [Google Scholar] [CrossRef]
- Schaal, K.; Springel, V. Shock finding on a moving mesh - I. Shock statistics in non-radiative cosmological simulations. Mon. Not. R. Astron. Soc. 2015, 446, 3992–4007. [Google Scholar] [CrossRef]
- Schaal, K.; Springel, V.; Pakmor, R.; Pfrommer, C.; Nelson, D.; Vogelsberger, M.; Genel, S.; Pillepich, A.; Sijacki, D.; Hernquist, L. Shock finding on a moving-mesh - II. Hydrodynamic shocks in the Illustris universe. Mon. Not. R. Astron. Soc. 2016, 461, 4441–4465. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Brüggen, M.; Begelman, M.C. Cluster Heating by Viscous Dissipation of Sound Waves. Astrophys. J. 2004, 611, 158–163. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Brüggen, M.; Begelman, M.C. Three-Dimensional Simulations of Viscous Dissipation in the Intracluster Medium. Astrophys. J. 2004, 615, 675–680. [Google Scholar] [CrossRef]
- Bambic, C.J.; Reynolds, C.S. Efficient Production of Sound Waves by AGN Jets in the Intracluster Medium. Astrophys. J. 2019, 886, 78. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V. Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 2006, 371, 1025–1046. [Google Scholar] [CrossRef]
- Zweibel, E.G.; Mirnov, V.V.; Ruszkowski, M.; Reynolds, C.S.; Yang, H.Y.K.; Fabian, A.C. Acoustic Disturbances in Galaxy Clusters. Astrophys. J. 2018, 858, 5. [Google Scholar] [CrossRef]
- Diehl, S.; Li, H.; Fryer, C.L.; Rafferty, D. Constraining the Nature of X-Ray Cavities in Clusters and Galaxies. Astrophys. J. 2008, 687, 173–192. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Allen, S.W.; Canning, R.E.A.; Churazov, E.; Crawford, C.S.; Forman, W.; Gabany, J.; Hlavacek-Larrondo, J.; Johnstone, R.M.; et al. A wide Chandra view of the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 2011, 418, 2154–2164. [Google Scholar] [CrossRef]
- Jones, T.W.; De Young, D.S. Magnetohydrodynamic Simulations of Relic Radio Bubbles in Clusters. Astrophys. J. 2005, 624, 586–605. [Google Scholar] [CrossRef]
- Dursi, L.J. Bubble Wrap for Bullets: The Stability Imparted by a Thin Magnetic Layer. Astrophys. J. 2007, 670, 221–230. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Enßlin, T.A.; Brüggen, M.; Heinz, S.; Pfrommer, C. Impact of tangled magnetic fields on fossil radio bubbles. Mon. Not. R. Astron. Soc. 2007, 378, 662–672. [Google Scholar] [CrossRef]
- Dursi, L.J.; Pfrommer, C. Draping of Cluster Magnetic Fields over Bullets and Bubbles—Morphology and Dynamic Effects. Astrophys. J. 2008, 677, 993–1018. [Google Scholar] [CrossRef]
- O’Neill, S.M.; De Young, D.S.; Jones, T.W. Three-Dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters. Astrophys. J. 2009, 694, 1317–1330. [Google Scholar] [CrossRef]
- Sternberg, A.; Soker, N. Rising jet-inflated bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 2008, 389, L13–L17. [Google Scholar] [CrossRef]
- Gilkis, A.; Soker, N. Heating the intra-cluster medium perpendicular to the jets axis. Mon. Not. R. Astron. Soc. 2012, 427, 1482–1489. [Google Scholar] [CrossRef]
- Hillel, S.; Soker, N. Heating the intracluster medium by jet-inflated bubbles. Mon. Not. R. Astron. Soc. 2016, 455, 2139–2148. [Google Scholar] [CrossRef]
- Hillel, S.; Soker, N. Gentle Heating by Mixing in Cooling Flow Clusters. Astrophys. J. 2017, 845, 91. [Google Scholar] [CrossRef]
- Ogiya, G.; Biernacki, P.; Hahn, O.; Teyssier, R. Physical and numerical stability and instability of AGN bubbles in a hot intracluster medium. arXiv 2018, arXiv:1802.02177. [Google Scholar] [CrossRef]
- Bambic, C.J.; Morsony, B.J.; Reynolds, C.S. Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium. Astrophys. J. 2018, 857, 84. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C.; Sanders, J.S. Precession of the super-massive black hole in NGC 1275 (3C 84)? Mon. Not. R. Astron. Soc. 2006, 366, 758–766. [Google Scholar] [CrossRef]
- Churazov, E.; Sunyaev, R.; Forman, W.; Böhringer, H. Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 2002, 332, 729–734. [Google Scholar] [CrossRef]
- Soker, N.; Hillel, S.; Sternberg, A. Rescuing the intracluster medium of NGC 5813. Res. Astron. Astrophys. 2016, 16, 100. [Google Scholar] [CrossRef]
- Chen, Y.H.; Heinz, S.; Enßlin, T.A. Jets, bubbles, and heat pumps in galaxy clusters. Mon. Not. R. Astron. Soc. 2019, 489, 1939–1949. [Google Scholar] [CrossRef]
- Revaz, Y.; Combes, F.; Salomé, P. Formation of cold filaments in cooling flow clusters. Astron. Astrophys. 2008, 477, L33–L36. [Google Scholar] [CrossRef]
- Brighenti, F.; Mathews, W.G.; Temi, P. Hot Gaseous Atmospheres in Galaxy Groups and Clusters Are Both Heated and Cooled by X-ray Cavities. Astrophys. J. 2015, 802, 118. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Ruszkowski, M. AGN feedback and multiphase gas in giant elliptical galaxies. Mon. Not. R. Astron. Soc. 2019, 482, 3576–3590. [Google Scholar] [CrossRef]
- Zhang, C.; Zhuravleva, I.; Gendron-Marsolais, M.L.; Churazov, E.; Schekochihin, A.A.; Forman, W.R. Bubble-driven gas uplift in galaxy clusters and its velocity features. Mon. Not. R. Astron. Soc. 2022, 517, 616–631. [Google Scholar] [CrossRef]
- Salomé, P.; Combes, F.; Edge, A.C.; Crawford, C.; Erlund, M.; Fabian, A.C.; Hatch, N.A.; Johnstone, R.M.; Sanders, J.S.; Wilman, R.J. Cold molecular gas in the Perseus cluster core. Association with X-ray cavity, Hα filaments and cooling flow. Astron. Astrophys. 2006, 454, 437–445. [Google Scholar] [CrossRef]
- McDonald, M.; Veilleux, S.; Rupke, D.S.N. Optical Spectroscopy of Hα Filaments in Cool Core Clusters: Kinematics, Reddening, and Sources of Ionization. Astrophys. J. 2012, 746, 153. [Google Scholar] [CrossRef]
- Hamer, S.L.; Edge, A.C.; Swinbank, A.M.; Oonk, J.B.R.; Mittal, R.; McNamara, B.R.; Russell, H.R.; Bremer, M.N.; Combes, F.; Fabian, A.C.; et al. Cold gas dynamics in Hydra-A: Evidence for a rotating disc. Mon. Not. R. Astron. Soc. 2014, 437, 862–878. [Google Scholar] [CrossRef]
- Hamer, S.L.; Edge, A.C.; Swinbank, A.M.; Wilman, R.J.; Combes, F.; Salomé, P.; Fabian, A.C.; Crawford, C.S.; Russell, H.R.; Hlavacek-Larrondo, J.; et al. Optical emission line nebulae in galaxy cluster cores 1: The morphological, kinematic and spectral properties of the sample. Mon. Not. R. Astron. Soc. 2016, 460, 1758–1789. [Google Scholar] [CrossRef]
- Fabian, A.C.; Walker, S.A.; Russell, H.R.; Pinto, C.; Canning, R.E.A.; Salome, P.; Sanders, J.S.; Taylor, G.B.; Zweibel, E.G.; Conselice, C.J.; et al. HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster. Mon. Not. R. Astron. Soc. 2016, 461, 922–928. [Google Scholar] [CrossRef]
- Russell, H.R.; McDonald, M.; McNamara, B.R.; Fabian, A.C.; Nulsen, P.E.J.; Bayliss, M.B.; Benson, B.A.; Brodwin, M.; Carlstrom, J.E.; Edge, A.C.; et al. Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster. Astrophys. J. 2017, 836, 130. [Google Scholar] [CrossRef]
- Zhang, C.; Churazov, E.; Schekochihin, A.A. Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. 2018, 478, 4785–4798. [Google Scholar] [CrossRef]
- Zhuravleva, I.; Churazov, E.; Schekochihin, A.A.; Allen, S.W.; Arévalo, P.; Fabian, A.C.; Forman, W.R.; Sanders, J.S.; Simionescu, A.; Sunyaev, R.; et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 2014, 515, 85–87. [Google Scholar] [CrossRef]
- Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A.A.; Forman, W.R.; Allen, S.W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster. Mon. Not. R. Astron. Soc. 2016, 458, 2902–2915. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Balbus, S.A.; Schekochihin, A.A. Inefficient Driving of Bulk Turbulence By Active Galactic Nuclei in a Hydrodynamic Model of the Intracluster Medium. Astrophys. J. 2015, 815, 41. [Google Scholar] [CrossRef]
- Hillel, S.; Soker, N. Hitomi observations of Perseus support heating by mixing. Mon. Not. R. Astron. Soc. 2017, 466, L39–L42. [Google Scholar] [CrossRef]
- Prasad, D.; Sharma, P.; Babul, A. Cool-core Clusters: The Role of BCG, Star Formation, and AGN-driven Turbulence. Astrophys. J. 2018, 863, 62. [Google Scholar] [CrossRef]
- Lau, E.T.; Gaspari, M.; Nagai, D.; Coppi, P. Physical Origins of Gas Motions in Galaxy Cluster Cores: Interpreting Hitomi Observations of the Perseus Cluster. Astrophys. J. 2017, 849, 54. [Google Scholar] [CrossRef]
- Ehlert, K.; Weinberger, R.; Pfrommer, C.; Springel, V. Connecting turbulent velocities and magnetic fields in galaxy cluster simulations with active galactic nuclei jets. Mon. Not. R. Astron. Soc. 2021, 503, 1327–1344. [Google Scholar] [CrossRef]
- Hitomi Collaboration; Aharonian, F.; Akamatsu, H.; Akimoto, F.; Allen, S.W.; Anabuki, N.; Angelini, L.; Arnaud, K.; Audard, M.; Awaki, H.; et al. The quiescent intracluster medium in the core of the Perseus cluster. Nature 2016, 535, 117–121. [Google Scholar] [CrossRef]
- Hitomi Collaboration; Aharonian, F.; Akamatsu, H.; Akimoto, F.; Allen, S.W.; Angelini, L.; Audard, M.; Awaki, H.; Axelsson, M.; Bamba, A.; et al. Atmospheric gas dynamics in the Perseus cluster observed with Hitomi. Pub. Astron. Soc. Jap. 2018, 70, 9. [Google Scholar] [CrossRef]
- Roediger, E.; Brüggen, M.; Rebusco, P.; Böhringer, H.; Churazov, E. Metal mixing by buoyant bubbles in galaxy clusters. Mon. Not. R. Astron. Soc. 2007, 375, 15–28. [Google Scholar] [CrossRef]
- Duan, X.; Guo, F. Metal-rich Trailing Outflows Uplifted by AGN Bubbles in Galaxy Clusters. Astrophys. J. 2018, 861, 106. [Google Scholar] [CrossRef]
- McCourt, M.; Sharma, P.; Quataert, E.; Parrish, I.J. Thermal instability in gravitationally stratified plasmas: Implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 2012, 419, 3319–3337. [Google Scholar] [CrossRef]
- Gaspari, M.; Temi, P.; Brighenti, F. Raining on black holes and massive galaxies: The top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 2017, 466, 677–704. [Google Scholar] [CrossRef]
- Yates, P.M.; Shabala, S.S.; Krause, M.G.H. Observability of intermittent radio sources in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2018, 480, 5286–5306. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V. Relativistic Jet Feedback in Evolving Galaxies. Astrophys. J. 2011, 728, 29. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M. Driving Outflows with Relativistic Jets and the Dependence of Active Galactic Nucleus Feedback Efficiency on Interstellar Medium Inhomogeneity. Astrophys. J. 2012, 757, 136. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y. Resolved simulations of jet–ISM interaction: Implications for gas dynamics and star formation. Astron. Nachrichten 2021, 342, 1140–1145. [Google Scholar] [CrossRef]
- Schuecker, P.; Finoguenov, A.; Miniati, F.; Böhringer, H.; Briel, U.G. Probing turbulence in the Coma galaxy cluster. Astron. Astrophys. 2004, 426, 387–397. [Google Scholar] [CrossRef]
- Sanders, J.S.; Fabian, A.C.; Smith, R.K. Constraints on turbulent velocity broadening for a sample of clusters, groups and elliptical galaxies using XMM-Newton. Mon. Not. R. Astron. Soc. 2011, 410, 1797–1812. [Google Scholar] [CrossRef]
- Zhuravleva, I.; Churazov, E.; Kravtsov, A.; Sunyaev, R. Constraints on the ICM velocity power spectrum from the X-ray lines width and shift. Mon. Not. R. Astron. Soc. 2012, 422, 2712–2724. [Google Scholar] [CrossRef]
- Pinto, C.; Sanders, J.S.; Werner, N.; de Plaa, J.; Fabian, A.C.; Zhang, Y.Y.; Kaastra, J.S.; Finoguenov, A.; Ahoranta, J. Chemical Enrichment RGS cluster Sample (CHEERS): Constraints on turbulence. Astron. Astrophys. 2015, 575, A38. [Google Scholar] [CrossRef]
- Walker, S.A.; Sanders, J.S.; Fabian, A.C. Constraining gas motions in the Centaurus cluster using X-ray surface brightness fluctuations and metal diffusion. Mon. Not. R. Astron. Soc. 2015, 453, 3699–3705. [Google Scholar] [CrossRef]
- Hofmann, F.; Sanders, J.S.; Nandra, K.; Clerc, N.; Gaspari, M. Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS. Astron. Astrophys. 2016, 585, A130. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Oh, S.P. Galaxy motions, turbulence and conduction in clusters of galaxies. Mon. Not. R. Astron. Soc. 2011, 414, 1493–1507. [Google Scholar] [CrossRef]
- Vazza, F.; Roediger, E.; Brüggen, M. Turbulence in the ICM from mergers, cool-core sloshing, and jets: Results from a new multi-scale filtering approach. Astron. Astrophys. 2012, 544, A103. [Google Scholar] [CrossRef]
- Vazza, F.; Jones, T.W.; Brüggen, M.; Brunetti, G.; Gheller, C.; Porter, D.; Ryu, D. Turbulence and vorticity in Galaxy clusters generated by structure formation. Mon. Not. R. Astron. Soc. 2017, 464, 210–230. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Markevitch, M.; Brunetti, G.; Giacintucci, S. Turbulence and Radio Mini-halos in the Sloshing Cores of Galaxy Clusters. Astrophys. J. 2013, 762, 78. [Google Scholar] [CrossRef]
- Valdarnini, R. A Multifiltering Study of Turbulence in a Large Sample of Simulated Galaxy Clusters. Astrophys. J. 2019, 874, 42. [Google Scholar] [CrossRef]
- Bennett, J.S.; Sijacki, D. A disturbing FABLE of mergers, feedback, turbulence, and mass biases in simulated galaxy clusters. Mon. Not. R. Astron. Soc. 2022, 514, 313–328. [Google Scholar] [CrossRef]
- Ehlert, K.; Pfrommer, C.; Weinberger, R.; Pakmor, R.; Springel, V. The Sunyaev-Zel’dovich Effect of Simulated Jet-inflated Bubbles in Clusters. Astrophys. J. Let. 2019, 872, L8. [Google Scholar] [CrossRef]
- Chon, G.; Böhringer, H.; Krause, M.; Trümper, J. Discovery of an X-ray cavity near the radio lobes of Cygnus A indicating previous AGN activity. Astron. Astrophys. 2012, 545, L3. [Google Scholar] [CrossRef]
- Ubertosi, F.; Gitti, M.; Brighenti, F.; Brunetti, G.; McDonald, M.; Nulsen, P.; McNamara, B.; Randall, S.; Forman, W.; Donahue, M.; et al. The Deepest Chandra View of RBS 797: Evidence for Two Pairs of Equidistant X-ray Cavities. Astrophys. J. Let. 2021, 923, L25. [Google Scholar] [CrossRef]
- Heinz, S.; Brüggen, M.; Young, A.; Levesque, E. The answer is blowing in the wind: Simulating the interaction of jets with dynamic cluster atmospheres. Mon. Not. R. Astron. Soc. 2006, 373, L65–L69. [Google Scholar] [CrossRef]
- Morsony, B.J.; Heinz, S.; Brüggen, M.; Ruszkowski, M. Swimming against the current: Simulations of central AGN evolution in dynamic galaxy clusters. Mon. Not. R. Astron. Soc. 2010, 407, 1277–1289. [Google Scholar] [CrossRef]
- Patnaik, A.R.; Malkan, M.A.; Salter, C.J. Multifrequency observations of the wide-angle tail radio source 1313+073. Mon. Not. R. Astron. Soc. 1986, 220, 351–362. [Google Scholar] [CrossRef]
- Morsony, B.J.; Miller, J.J.; Heinz, S.; Freeland, E.; Wilcots, E.; Brüggen, M.; Ruszkowski, M. Simulations of bent-double radio sources in galaxy groups. Mon. Not. R. Astron. Soc. 2013, 431, 781–792. [Google Scholar] [CrossRef]
- Gan, Z.; Li, H.; Li, S.; Yuan, F. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head-Tail Radio Galaxies Based on the Magnetic Tower Jet Model. Astrophys. J. 2017, 839, 14. [Google Scholar] [CrossRef]
- Jones, T.W.; Nolting, C.; O’Neill, B.J.; Mendygral, P.J. Using collisions of AGN outflows with ICM shocks as dynamical probes. Physics of Plasmas 2017, 24, 041402. [Google Scholar] [CrossRef]
- O’Neill, B.J.; Jones, T.W.; Nolting, C.; Mendygral, P.J. A Fresh Look at Narrow-angle Tail Radio Galaxy Dynamics, Evolution, and Emissions. Astrophys. J. 2019, 884, 12. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Baum, S.A. Wide-Angle-Tail (WAT) Radio Sources. Galaxies 2023, 11, 67. [Google Scholar] [CrossRef]
- O’Neill, B.J.; Jones, T.W.; Nolting, C.; Mendygral, P.J. Shocked Narrow-angle Tail Radio Galaxies: Simulations and Emissions. Astrophys. J. 2019, 887, 26. [Google Scholar] [CrossRef]
- Nolting, C.; Jones, T.W.; O’Neill, B.J.; Mendygral, P.J. Interactions between Radio Galaxies and Cluster Shocks. I. Jet Axes Aligned with Shock Normals. Astrophys. J. 2019, 876, 154. [Google Scholar] [CrossRef]
- Nolting, C.; Jones, T.W.; O’Neill, B.J.; Mendygral, P.J. Simulated Interactions between Radio Galaxies and Cluster Shocks. II. Jet Axes Orthogonal to Shock Normals. Astrophys. J. 2019, 885, 80. [Google Scholar] [CrossRef]
- Springel, V.; Pakmor, R.; Pillepich, A.; Weinberger, R.; Nelson, D.; Hernquist, L.; Vogelsberger, M.; Genel, S.; Torrey, P.; Marinacci, F.; et al. First results from the IllustrisTNG simulations: Matter and galaxy clustering. Mon. Not. R. Astron. Soc. 2018, 475, 676–698. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V. Hydrodynamical simulations of cluster formation with central AGN heating. Mon. Not. R. Astron. Soc. 2006, 366, 397–416. [Google Scholar] [CrossRef]
- Sijacki, D.; Pfrommer, C.; Springel, V.; Enßlin, T.A. Simulations of cosmic-ray feedback by active galactic nuclei in galaxy clusters. Mon. Not. R. Astron. Soc. 2008, 387, 1403–1415. [Google Scholar] [CrossRef]
- Vazza, F.; Wittor, D.; Brunetti, G.; Brüggen, M. Simulating the transport of relativistic electrons and magnetic fields injected by radio galaxies in the intracluster medium. Astron. Astrophys. 2021, 653, A23. [Google Scholar] [CrossRef]
- Vazza, F.; Wittor, D.; Di Federico, L.; Brüggen, M.; Brienza, M.; Brunetti, G.; Brighenti, F.; Pasini, T. Life cycle of cosmic-ray electrons in the intracluster medium. Astron. Astrophys. 2023, 669, A50. [Google Scholar] [CrossRef]
- Vazza, F.; Wittor, D.; Brüggen, M.; Brunetti, G. Simulating the Enrichment of Fossil Radio Electrons by Multiple Radio Galaxies. Galaxies 2023, 11, 45. [Google Scholar] [CrossRef]
- Brüggen, M.; Ruszkowski, M.; Hallman, E. Active Galactic Nuclei Heating and Dissipative Processes in Galaxy Clusters. Astrophys. J. 2005, 630, 740–749. [Google Scholar] [CrossRef]
- Springel, V.; White, M.; Hernquist, L. Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s). Astrophys. J. 2001, 549, 681–687. [Google Scholar] [CrossRef]
- Cui, W.; Knebe, A.; Yepes, G.; Pearce, F.; Power, C.; Dave, R.; Arth, A.; Borgani, S.; Dolag, K.; Elahi, P.; et al. The Three Hundred project: A large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Mon. Not. R. Astron. Soc. 2018, 480, 2898–2915. [Google Scholar] [CrossRef]
- Vernaleo, J.C.; Reynolds, C.S. AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models. Astrophys. J. 2006, 645, 83–94. [Google Scholar] [CrossRef]
- Nixon, C.; King, A. Do Jets Precess… or Even Move at All? Astrophys. J. Let. 2013, 765, L7. [Google Scholar] [CrossRef]
- Fabian, A.C.; ZuHone, J.A.; Walker, S.A. The interaction between rising bubbles and cold fronts in cool-core clusters. Mon. Not. R. Astron. Soc. 2022, 510, 4000–4018. [Google Scholar] [CrossRef]
- Carilli, C.L.; Taylor, G.B. Cluster Magnetic Fields. Annu. Rev. Astron. Astrophys. 2002, 40, 319–348. [Google Scholar] [CrossRef]
- Feretti, L.; Giovannini, G.; Govoni, F.; Murgia, M. Clusters of galaxies: Observational properties of the diffuse radio emission. A&A Rev. 2012, 20, 54. [Google Scholar] [CrossRef]
- Pfrommer, C.; Jonathan Dursi, L. Detecting the orientation of magnetic fields in galaxy clusters. Nat. Phys. 2010, 6, 520–526. [Google Scholar] [CrossRef]
- Shin, J.; Woo, J.H.; Mulchaey, J.S. A Systematic Search for X-Ray Cavities in Galaxy Clusters, Groups, and Elliptical Galaxies. Astrophys. J. Suppl. 2016, 227, 31. [Google Scholar] [CrossRef]
- Mushotzky, R.; Aird, J.; Barger, A.J.; Cappelluti, N.; Chartas, G.; Corrales, L.; Eufrasio, R.; Fabian, A.C.; Falcone, A.D.; Gallo, E.; et al. The Advanced X-ray Imaging Satellite. Bull. Am. Astron. Soc. 2019, 51, 107. [Google Scholar] [CrossRef]
- Burns, J.O.; Hallman, E.J.; Gantner, B.; Motl, P.M.; Norman, M.L. Why Do Only Some Galaxy Clusters Have Cool Cores? Astrophys. J. 2008, 675, 1125–1140. [Google Scholar] [CrossRef]
- Chadayammuri, U.; Tremmel, M.; Nagai, D.; Babul, A.; Quinn, T. Fountains and storms: The effects of AGN feedback and mergers on the evolution of the intracluster medium in the ROMULUSC simulation. Mon. Not. R. Astron. Soc. 2021, 504, 3922–3937. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C. Investigating AGN heating in a sample of nearby clusters. Mon. Not. R. Astron. Soc. 2006, 373, 959–971. [Google Scholar] [CrossRef]
- Panagoulia, E.K.; Fabian, A.C.; Sanders, J.S.; Hlavacek-Larrondo, J. A volume-limited sample of X-ray galaxy groups and clusters-II. X-ray cavity dynamics. Mon. Not. R. Astron. Soc. 2014, 444, 1236–1259. [Google Scholar] [CrossRef]
- XRISM Science Team. Science with the X-ray Imaging and Spectroscopy Mission (XRISM). arXiv 2020, arXiv:2003.04962. [Google Scholar] [CrossRef]
- Croston, J.H.; Sanders, J.S.; Heinz, S.; Hardcastle, M.J.; Zhuravleva, I.; Bîrzan, L.; Bower, R.G.; Brüggen, M.; Churazov, E.; Edge, A.C.; et al. The Hot and Energetic Universe: AGN feedback in galaxy clusters and groups. arXiv 2013, arXiv:1306.2323. [Google Scholar] [CrossRef]
- Qiu, Y.; Bogdanović, T.; Li, Y.; Park, K.; Wise, J.H. The Interplay of Kinetic and Radiative Feedback in Galaxy Clusters. Astrophys. J. 2019, 877, 47. [Google Scholar] [CrossRef]
- Hine, R.G.; Longair, M.S. Optical spectra of 3CR radio galaxies. Mon. Not. R. Astron. Soc. 1979, 188, 111–130. [Google Scholar] [CrossRef]
- Laing, R.A.; Jenkins, C.R.; Wall, J.V.; Unger, S.W. Spectrophotometry of a Complete Sample of 3CR Radio Sources: Implications for Unified Models. In The Physics of Active Galaxies; Astronomical Society of the Pacific Conference Series; Bicknell, G.V., Dopita, M.A., Quinn, P.J., Eds.; ASP: San Francisco, CA, USA, 1994; Volume 54, p. 201. [Google Scholar]
- Comerford, J.M.; Negus, J.; Müller-Sánchez, F.; Eracleous, M.; Wylezalek, D.; Storchi-Bergmann, T.; Greene, J.E.; Barrows, R.S.; Nevin, R.; Roy, N.; et al. A Catalog of 406 AGNs in MaNGA: A Connection between Radio-mode AGNs and Star Formation Quenching. Astrophys. J. 2020, 901, 159. [Google Scholar] [CrossRef]
- Macconi, D.; Torresi, E.; Grandi, P.; Boccardi, B.; Vignali, C. Radio morphology-accretion mode link in Fanaroff-Riley type II low-excitation radio galaxies. Mon. Not. R. Astron. Soc. 2020, 493, 4355–4366. [Google Scholar] [CrossRef]
- Antonuccio-Delogu, V.; Silk, J. Active galactic nuclei activity: Self-regulation from backflow. Mon. Not. R. Astron. Soc. 2010, 405, 1303–1314. [Google Scholar] [CrossRef]
- The Dark Energy Survey Collaboration. The Dark Energy Survey. arXiv 2005, arXiv:astro–ph/0510346. [Google Scholar] [CrossRef]
- Benson, B.A.; Ade, P.A.R.; Ahmed, Z.; Allen, S.W.; Arnold, K.; Austermann, J.E.; Bender, A.N.; Bleem, L.E.; Carlstrom, J.E.; Chang, C.L.; et al. SPT-3G: A next-generation cosmic microwave background polarization experiment on the South Pole telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings of the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montréal, QC, Canada, 22–27 June 2014; Holland, W.S., Zmuidzinas, J., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9153, pp. 552–572. [Google Scholar] [CrossRef]
- Merloni, A.; Predehl, P.; Becker, W.; Böhringer, H.; Boller, T.; Brunner, H.; Brusa, M.; Dennerl, K.; Freyberg, M.; Friedrich, P.; et al. eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv 2012, arXiv:1209.3114. [Google Scholar] [CrossRef]
- Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J.A.; Becker, D.; De Bernardis, F.; Bond, J.R.; Calabrese, E.; et al. Advanced ACTPol Cryogenic Detector Arrays and Readout. J. Low Temp. Phys. 2016, 184, 772–779. [Google Scholar] [CrossRef]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report. arXiv 2011, arXiv:1110.3193. [Google Scholar] [CrossRef]
- LSST Dark Energy Science Collaboration. Large Synoptic Survey Telescope: Dark Energy Science Collaboration. arXiv 2012, arXiv:1211.0310. [Google Scholar] [CrossRef]
- Braun, R.; Bourke, T.; Green, J.A.; Keane, E.; Wagg, J. Advancing Astrophysics with the Square Kilometre Array. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Sicily, Italy, 8–13 June 2014; p. 174. [Google Scholar] [CrossRef]
- Ade, P.; Aguirre, J.; Ahmed, Z.; Aiola, S.; Ali, A.; Alonso, D.; Alvarez, M.A.; Arnold, K.; Ashton, P.; Austermann, J.; et al. The Simons Observatory: Science goals and forecasts. J. Cosmol. Astron. Astrophys. 2019, 2019, 056. [Google Scholar] [CrossRef]
- Abazajian, K.N.; Adshead, P.; Ahmed, Z.; Allen, S.W.; Alonso, D.; Arnold, K.S.; Baccigalupi, C.; Bartlett, J.G.; Battaglia, N.; Benson, B.A.; et al. CMB-S4 Science Book, First Edition. arXiv 2016, arXiv:1610.02743. [Google Scholar] [CrossRef]
- Sehgal, N.; Aiola, S.; Akrami, Y.; Basu, K.; Boylan-Kolchin, M.; Bryan, S.; Clesse, S.; Cyr-Racine, F.Y.; Di Mascolo, L.; Dicker, S.; et al. CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky. arXiv 2019, arXiv:1906.10134. [Google Scholar] [CrossRef]
- McKinnon, M.; Beasley, A.; Murphy, E.; Selina, R.; Farnsworth, R.; Walter, A. ngVLA: The Next Generation Very Large Array. Bull. Am. Astron. Soc. 2019, 51, 81. [Google Scholar]
- Sunyaev, R.A.; Zeldovich, Y.B. The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies. Comments Astrophys. Space Phys. 1972, 4, 173. [Google Scholar]
- Henden, N.A.; Puchwein, E.; Sijacki, D. The redshift evolution of X-ray and Sunyaev-Zel’dovich scaling relations in the FABLE simulations. Mon. Not. R. Astron. Soc. 2019, 489, 2439–2470. [Google Scholar] [CrossRef]
- Chisari, N.E.; Mead, A.J.; Joudaki, S.; Ferreira, P.G.; Schneider, A.; Mohr, J.; Tröster, T.; Alonso, D.; McCarthy, I.G.; Martin-Alvarez, S.; et al. Modelling baryonic feedback for survey cosmology. Open J. Astrophys. 2019, 2, 4. [Google Scholar] [CrossRef]
- van Daalen, M.P.; McCarthy, I.G.; Schaye, J. Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. Mon. Not. R. Astron. Soc. 2020, 491, 2424–2446. [Google Scholar] [CrossRef]
- Amon, A.; Efstathiou, G. A non-linear solution to the S8 tension? Mon. Not. R. Astron. Soc. 2022, 516, 5355–5366. [Google Scholar] [CrossRef]
- van Daalen, M.P.; Schaye, J.; Booth, C.M.; Dalla Vecchia, C. The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology. Mon. Not. R. Astron. Soc. 2011, 415, 3649–3665. [Google Scholar] [CrossRef]
- Chisari, N.E.; Richardson, M.L.A.; Devriendt, J.; Dubois, Y.; Schneider, A.; Le Brun, A.M.C.; Beckmann, R.S.; Peirani, S.; Slyz, A.; Pichon, C. The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 2018, 480, 3962–3977. [Google Scholar] [CrossRef]
- Dubois, Y.; Teyssier, R. Magnetised winds in dwarf galaxies. Astron. Astrophys. 2010, 523, A72. [Google Scholar] [CrossRef]
- Stinson, G.S.; Bovy, J.; Rix, H.W.; Brook, C.; Roškar, R.; Dalcanton, J.J.; Macciò, A.V.; Wadsley, J.; Couchman, H.M.P.; Quinn, T.R. MaGICC thick disc - I. Comparing a simulated disc formed with stellar feedback to the Milky Way. Mon. Not. R. Astron. Soc. 2013, 436, 625–634. [Google Scholar] [CrossRef]
- Martin-Alvarez, S.; Sijacki, D.; Haehnelt, M.G.; Farcy, M.; Dubois, Y.; Belokurov, V.; Rosdahl, J.; Lopez-Rodriguez, E. The Pandora project. I: The impact of radiation and cosmic rays on baryonic and dark matter properties of dwarf galaxies. arXiv 2022, arXiv:2211.09139. [Google Scholar] [CrossRef]
- Booth, C.M.; Agertz, O.; Kravtsov, A.V.; Gnedin, N.Y. Simulations of Disk Galaxies with Cosmic Ray Driven Galactic Winds. Astrophys. J. Let. 2013, 777, L16. [Google Scholar] [CrossRef]
- Salem, M.; Bryan, G.L. Cosmic ray driven outflows in global galaxy disc models. Mon. Not. R. Astron. Soc. 2014, 437, 3312–3330. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Yang, H.Y.K.; Zweibel, E. Global Simulations of Galactic Winds Including Cosmic-ray Streaming. Astrophys. J. 2017, 834, 208. [Google Scholar] [CrossRef]
- Butsky, I.S.; Quinn, T.R. The Role of Cosmic-ray Transport in Shaping the Simulated Circumgalactic Medium. Astrophys. J. 2018, 868, 108. [Google Scholar] [CrossRef]
- Ji, S.; Chan, T.K.; Hummels, C.B.; Hopkins, P.F.; Stern, J.; Kereš, D.; Quataert, E.; Faucher-Giguère, C.A.; Murray, N. Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Mon. Not. R. Astron. Soc. 2020, 496, 4221–4238. [Google Scholar] [CrossRef]
- Buck, T.; Pfrommer, C.; Pakmor, R.; Grand, R.J.J.; Springel, V. The effects of cosmic rays on the formation of Milky Way-mass galaxies in a cosmological context. Mon. Not. R. Astron. Soc. 2020, 497, 1712–1737. [Google Scholar] [CrossRef]
- Jubelgas, M.; Springel, V.; Enßlin, T.; Pfrommer, C. Cosmic ray feedback in hydrodynamical simulations of galaxy formation. Astron. Astrophys. 2008, 481, 33–63. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; et al. GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies. Astrophys. J. Let. 2010, 717, L71–L78. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Deep observation of the NGC 1275 region with MAGIC: Search of diffuse γ-ray emission from cosmic rays in the Perseus cluster. Astron. Astrophys. 2016, 589, A33. [Google Scholar] [CrossRef]
- Brunetti, G.; Zimmer, S.; Zandanel, F. Relativistic protons in the Coma galaxy cluster: First gamma-ray constraints ever on turbulent reacceleration. Mon. Not. R. Astron. Soc. 2017, 472, 1506–1525. [Google Scholar] [CrossRef]
- Morganti, R.; Fanti, R.; Gioia, I.M.; Harris, D.E.; Parma, P.; de Ruiter, H. Low luminosity radio galaxies: Effects of gaseous environment. Astron. Astrophys. 1988, 189, 11–26. [Google Scholar]
- Hardcastle, M.J.; Worrall, D.M.; Birkinshaw, M. Dynamics of the radio galaxy 3C449. Mon. Not. R. Astron. Soc. 1998, 296, 1098–1104. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C. Particle energies and filling fractions of radio bubbles in cluster cores. Mon. Not. R. Astron. Soc. 2004, 355, 862–873. [Google Scholar] [CrossRef]
- Bîrzan, L.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Wise, M.W. Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. Astrophys. J. 2008, 686, 859–880. [Google Scholar] [CrossRef]
- Nulsen, P.E.J.; David, L.P.; McNamara, B.R.; Jones, C.; Forman, W.R.; Wise, M. Interaction of Radio Lobes with the Hot Intracluster Medium: Driving Convective Outflow in Hydra A. Astrophys. J. 2002, 568, 163–173. [Google Scholar] [CrossRef]
- Enßlin, T.A.; Pfrommer, C.; Springel, V.; Jubelgas, M. Cosmic ray physics in calculations of cosmological structure formation. Astron. Astrophys. 2007, 473, 41–57. [Google Scholar] [CrossRef]
- Zweibel, E.G. The microphysics and macrophysics of cosmic rays. Phys. Plasmas 2013, 20, 055501. [Google Scholar] [CrossRef]
- Zweibel, E.G. The basis for cosmic ray feedback: Written on the wind. Phys. Plasmas 2017, 24, 055402. [Google Scholar] [CrossRef] [PubMed]
- Kulsrud, R.; Pearce, W.P. The Effect of Wave-Particle Interactions on the Propagation of Cosmic Rays. Astrophys. J. 1969, 156, 445. [Google Scholar] [CrossRef]
- Wentzel, D.G. Cosmic-ray propagation in the Galaxy—Collective effects. Annu. Rev. Astron. Astrophys. 1974, 12, 71–96. [Google Scholar] [CrossRef]
- Sharma, P.; Colella, P.; Martin, D.F. Numerical Implementation of Streaming Down the Gradient: Application to Fluid Modeling of Cosmic Rays and Saturated Conduction. SIAM J. Sci. Comput. 2010, 32, 3564–3583. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Oh, S.P. A New Numerical Scheme for Cosmic-Ray Transport. Astrophys. J. 2018, 854, 5. [Google Scholar] [CrossRef]
- Thomas, T.; Pfrommer, C. Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays. Mon. Not. R. Astron. Soc. 2019, 485, 2977–3008. [Google Scholar] [CrossRef]
- Boehringer, H.; Morfill, G.E. On the Dynamical Role of Cosmic Rays in Cooling Flows in Clusters of Galaxies. Astrophys. J. 1988, 330, 609. [Google Scholar] [CrossRef]
- Loewenstein, M.; Zweibel, E.G.; Begelman, M.C. Cosmic-Ray Heating of Cooling Flows: A Critical Analysis. Astrophys. J. 1991, 377, 392. [Google Scholar] [CrossRef]
- Rephaeli, Y.; Silk, J. Energetic Proton Heating of Gas in the Core of the Perseus Cluster. Astrophys. J. 1995, 442, 91. [Google Scholar] [CrossRef]
- Colafrancesco, S.; Dar, A.; De Rújula, A. Cooling flows or warming rays? Astron. Astrophys. 2004, 413, 441–452. [Google Scholar] [CrossRef]
- Pfrommer, C.; Enßlin, T.A.; Springel, V.; Jubelgas, M.; Dolag, K. Simulating cosmic rays in clusters of galaxies - I. Effects on the Sunyaev-Zel’dovich effect and the X-ray emission. Mon. Not. R. Astron. Soc. 2007, 378, 385–408. [Google Scholar] [CrossRef]
- Enßlin, T.; Pfrommer, C.; Miniati, F.; Subramanian, K. Cosmic ray transport in galaxy clusters: Implications for radio halos, gamma-ray signatures, and cool core heating. Astron. Astrophys. 2011, 527, A99. [Google Scholar] [CrossRef]
- Fujita, Y.; Ohira, Y. Stable Heating of Cluster Cooling Flows by Cosmic-Ray Streaming. Astrophys. J. 2011, 738, 182. [Google Scholar] [CrossRef]
- Fujita, Y.; Ohira, Y. Radio mini-halo emission from cosmic rays in galaxy clusters and heating of the cool cores. Mon. Not. R. Astron. Soc. 2013, 428, 599–608. [Google Scholar] [CrossRef]
- Guo, F.; Mathews, W.G. Cosmic-ray-dominated AGN Jets and the Formation of X-ray Cavities in Galaxy Clusters. Astrophys. J. 2011, 728, 121. [Google Scholar] [CrossRef]
- Croston, J.H.; Ineson, J.; Hardcastle, M.J. Particle content, radio-galaxy morphology, and jet power: All radio-loud AGN are not equal. Mon. Not. R. Astron. Soc. 2018, 476, 1614–1623. [Google Scholar] [CrossRef]
- Su, K.Y.; Hopkins, P.F.; Hayward, C.C.; Faucher-Giguère, C.A.; Kereš, D.; Ma, X.; Orr, M.E.; Chan, T.K.; Robles, V.H. Cosmic rays or turbulence can suppress cooling flows (where thermal heating or momentum injection fail). Mon. Not. R. Astron. Soc. 2020, 491, 1190–1212. [Google Scholar] [CrossRef]
- Butsky, I.S.; Fielding, D.B.; Hayward, C.C.; Hummels, C.B.; Quinn, T.R.; Werk, J.K. The Impact of Cosmic Rays on Thermal Instability in the Circumgalactic Medium. Astrophys. J. 2020, 903, 77. [Google Scholar] [CrossRef]
- Gitti, M.; Ferrari, C.; Domainko, W.; Feretti, L.; Schindler, S. Discovery of diffuse radio emission at the center of the most X-ray-luminous cluster RX J1347.5-1145. Astron. Astrophys. 2007, 470, L25–L28. [Google Scholar] [CrossRef]
- Giacintucci, S.; Markevitch, M.; Venturi, T.; Clarke, T.E.; Cassano, R.; Mazzotta, P. New Detections of Radio Minihalos in Cool Cores of Galaxy Clusters. Astrophys. J. 2014, 781, 9. [Google Scholar] [CrossRef]
- Richard-Laferrière, A.; Hlavacek-Larrondo, J.; Nemmen, R.S.; Rhea, C.L.; Taylor, G.B.; Prasow-Émond, M.; Gendron-Marsolais, M.; Latulippe, M.; Edge, A.C.; Fabian, A.C.; et al. On the relation between mini-halos and AGN feedback in clusters of galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 2934–2958. [Google Scholar] [CrossRef]
- Pfrommer, C.; Enßlin, T.A. Constraining the population of cosmic ray protons in cooling flow clusters with γ-ray and radio observations: Are radio mini-halos of hadronic origin? Astron. Astrophys. 2004, 413, 17–36. [Google Scholar] [CrossRef]
- Fujita, Y.; Kohri, K.; Yamazaki, R.; Kino, M. Nonthermal Emission Associated with Strong AGN Outbursts at the Centers of Galaxy Clusters. Astrophys. J. Let. 2007, 663, L61–L64. [Google Scholar] [CrossRef]
- Zandanel, F.; Pfrommer, C.; Prada, F. On the physics of radio haloes in galaxy clusters: Scaling relations and luminosity functions. Mon. Not. R. Astron. Soc. 2014, 438, 124–144. [Google Scholar] [CrossRef]
- Giacintucci, S.; Markevitch, M.; Brunetti, G.; Cassano, R.; Venturi, T. A radio minihalo in the extreme cool-core galaxy cluster RXC J1504.1-0248. Astron. Astrophys. 2011, 525, L10. [Google Scholar] [CrossRef]
- Bravi, L.; Gitti, M.; Brunetti, G. Do radio mini-halos and gas heating in cool-core clusters have a common origin? Mon. Not. R. Astron. Soc. 2016, 455, L41–L45. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Markevitch, M.; Weinberger, R.; Nulsen, P.; Ehlert, K. How Merger-driven Gas Motions in Galaxy Clusters Can Turn AGN Bubbles into Radio Relics. Astrophys. J. 2021, 914, 73. [Google Scholar] [CrossRef]
- ZuHone, J.; Ehlert, K.; Weinberger, R.; Pfrommer, C. Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics. Galaxies 2021, 9, 91. [Google Scholar] [CrossRef]
- Brienza, M.; Shimwell, T.W.; de Gasperin, F.; Bikmaev, I.; Bonafede, A.; Botteon, A.; Brüggen, M.; Brunetti, G.; Burenin, R.; Capetti, A.; et al. A snapshot of the oldest active galactic nuclei feedback phases. Nat. Astron. 2021, 5, 1261–1267. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C. Thermal and non-thermal traces of AGN feedback: Results from cosmological AMR simulations. Mon. Not. R. Astron. Soc. 2013, 428, 2366–2388. [Google Scholar] [CrossRef]
- Beckmann, R.S.; Dubois, Y.; Pellissier, A.; Olivares, V.; Polles, F.L.; Hahn, O.; Guillard, P.; Lehnert, M.D. Cosmic rays and thermal instability in self-regulating cooling flows of massive galaxy clusters. Astron. Astrophys. 2022, 665, A129. [Google Scholar] [CrossRef]
- Spitzer, L. Physics of Fully Ionized Gases, 2nd ed.; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Kunz, M.W.; Jones, T.W.; Zhuravleva, I. Plasma Physics of the Intracluster Medium. In Handbook of X-ray and Gamma-ray Astrophysics; Bambi, C., Santangelo, A., Eds.; Springer: Singapore, 2022; p. 56. [Google Scholar] [CrossRef]
- Bregman, J.N.; David, L.P. Heat conduction in cooling flows. Astrophys. J. 1988, 326, 639–644. [Google Scholar] [CrossRef]
- Guo, F.; Oh, S.P. Could AGN outbursts transform cool core clusters? Mon. Not. R. Astron. Soc. 2009, 400, 1992–1999. [Google Scholar] [CrossRef]
- Quataert, E. Buoyancy Instabilities in Weakly Magnetized Low-Collisionality Plasmas. Astrophys. J. 2008, 673, 758–762. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Oh, S.P. Shaken and Stirred: Conduction and Turbulence in Clusters of Galaxies. Astrophys. J. 2010, 713, 1332–1342. [Google Scholar] [CrossRef]
- Roberg-Clark, G.T.; Drake, J.F.; Reynolds, C.S.; Swisdak, M. Suppression of Electron Thermal Conduction in the High β Intracluster Medium of Galaxy Clusters. Astrophys. J. Let. 2016, 830, L9. [Google Scholar] [CrossRef]
- Roberg-Clark, G.T.; Drake, J.F.; Reynolds, C.S.; Swisdak, M. Suppression of Electron Thermal Conduction by Whistler Turbulence in a Sustained Thermal Gradient. Phys. Rev. Lett. 2018, 120, 035101. [Google Scholar] [CrossRef]
- Komarov, S.; Schekochihin, A.A.; Churazov, E.; Spitkovsky, A. Self-inhibiting thermal conduction in a high-, whistler-unstable plasma. J. Plasma Phys. 2018, 84, 905840305. [Google Scholar] [CrossRef]
- Fabian, A.C.; Reynolds, C.S.; Taylor, G.B.; Dunn, R.J.H. On viscosity, conduction and sound waves in the intracluster medium. Mon. Not. R. Astron. Soc. 2005, 363, 891–896. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Allen, S.W.; Crawford, C.S.; Iwasawa, K.; Johnstone, R.M.; Schmidt, R.W.; Taylor, G.B. A deep Chandra observation of the Perseus cluster: Shocks and ripples. Mon. Not. R. Astron. Soc. 2003, 344, L43–L47. [Google Scholar] [CrossRef]
- Chew, G.F.; Goldberger, M.L.; Low, F.E. The Boltzmann Equation and the One-Fluid Hydromagnetic Equations in the Absence of Particle Collisions. Proc. R. Soc. Lond. Ser. A 1956, 236, 112–118. [Google Scholar] [CrossRef]
- Schekochihin, A.A.; Cowley, S.C.; Kulsrud, R.M.; Hammett, G.W.; Sharma, P. Plasma Instabilities and Magnetic Field Growth in Clusters of Galaxies. Astrophys. J. 2005, 629, 139–142. [Google Scholar] [CrossRef]
- Braginskii, S.I. Transport Processes in a Plasma. Rev. Plasma Phys. 1965, 1, 205. [Google Scholar]
- Kunz, M.W.; Schekochihin, A.A.; Cowley, S.C.; Binney, J.J.; Sanders, J.S. A thermally stable heating mechanism for the intracluster medium: Turbulence, magnetic fields and plasma instabilities. Mon. Not. R. Astron. Soc. 2011, 410, 2446–2457. [Google Scholar] [CrossRef]
- Ley, F.; Zweibel, E.G.; Riquelme, M.; Sironi, L.; Miller, D.; Tran, A. A Heating Mechanism via Magnetic Pumping in the Intracluster Medium. Astrophys. J. 2023, 947, 89. [Google Scholar] [CrossRef]
- Sanders, J.S.; Fabian, A.C. A deeper X-ray study of the core of the Perseus galaxy cluster: The power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 2007, 381, 1381–1399. [Google Scholar] [CrossRef]
- Wang, S.C.; Yang, H.Y.K. Production efficiencies of sound waves in the intracluster medium driven by AGN jets. Mon. Not. R. Astron. Soc. 2022, 512, 5100–5109. [Google Scholar] [CrossRef]
- Choudhury, P.P.; Reynolds, C.S. Acoustic waves and g-mode turbulence as energy carriers in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 2022, 514, 3765–3788. [Google Scholar] [CrossRef]
- Kempski, P.; Quataert, E.; Squire, J. Sound-wave instabilities in dilute plasmas with cosmic rays: Implications for cosmic ray confinement and the Perseus X-ray ripples. Mon. Not. R. Astron. Soc. 2020, 493, 5323–5335. [Google Scholar] [CrossRef]
- Kunz, M.W.; Schekochihin, A.A.; Stone, J.M. Firehose and Mirror Instabilities in a Collisionless Shearing Plasma. Phys. Rev. Lett. 2014, 112, 205003. [Google Scholar] [CrossRef]
- Pfrommer, C.; Enßlin, T.A.; Sarazin, C.L. Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect. Astron. Astrophys. 2005, 430, 799–810. [Google Scholar] [CrossRef]
- Abdulla, Z.; Carlstrom, J.E.; Mantz, A.B.; Marrone, D.P.; Greer, C.H.; Lamb, J.W.; Leitch, E.M.; Muchovej, S.; O’Donnell, C.; Plagge, T.J.; et al. Constraints on the Thermal Contents of the X-ray Cavities of Cluster MS 0735.6+7421 with Sunyaev-Zel’dovich Effect Observations. Astrophys. J. 2019, 871, 195. [Google Scholar] [CrossRef]
- Orlowski-Scherer, J.; Haridas, S.K.; Di Mascolo, L.; Sarmiento, K.P.; Romero, C.E.; Dicker, S.; Mroczkowski, T.; Bhandarkar, T.; Churazov, E.; Clarke, T.E.; et al. GBT/MUSTANG-2 9” resolution imaging of the SZ effect in MS0735.6+7421. Confirmation of the SZ cavities through direct imaging. Astron. Astrophys. 2022, 667, L6. [Google Scholar] [CrossRef]
- Wootten, A.; Thompson, A.R. The Atacama Large Millimeter/Submillimeter Array. IEEE Proc. 2009, 97, 1463–1471. [Google Scholar] [CrossRef]
- Dicker, S.R.; Ade, P.A.R.; Aguirre, J.; Brevik, J.A.; Cho, H.M.; Datta, R.; Devlin, M.J.; Dober, B.; Egan, D.; Ford, J.; et al. MUSTANG 2: A Large Focal Plane Array for the 100 m Green Bank Telescope. J. Low Temp. Phys. 2014, 176, 808–814. [Google Scholar] [CrossRef]
- Adam, R.; Adane, A.; Ade, P.A.R.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; et al. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope. Astron. Astrophys. 2018, 609, A115. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Markevitch, M.; Ruszkowski, M.; Lee, D. Cold Fronts and Gas Sloshing in Galaxy Clusters with Anisotropic Thermal Conduction. Astrophys. J. 2013, 762, 69. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Kunz, M.W.; Markevitch, M.; Stone, J.M.; Biffi, V. The Effect of Anisotropic Viscosity on Cold Fronts in Galaxy Clusters. Astrophys. J. 2015, 798, 90. [Google Scholar] [CrossRef]
- Su, Y.; Kraft, R.P.; Roediger, E.; Nulsen, P.; Forman, W.R.; Churazov, E.; Rand all, S.W.; Jones, C.; Machacek, M.E. Deep Chandra Observations of NGC 1404: Cluster Plasma Physics Revealed by an Infalling Early-type Galaxy. Astrophys. J. 2017, 834, 74. [Google Scholar] [CrossRef]
- Wang, Q.H.S.; Markevitch, M. A Deep X-ray Look at Abell 2142-Viscosity Constraints From Kelvin-Helmholtz Eddies, a Displaced Cool Peak That Makes a Warm Core, and A Possible Plasma Depletion Layer. Astrophys. J. 2018, 868, 45. [Google Scholar] [CrossRef]
- Zhuravleva, I.; Churazov, E.; Schekochihin, A.A.; Allen, S.W.; Vikhlinin, A.; Werner, N. Suppressed effective viscosity in the bulk intergalactic plasma. Nat. Astron. 2019, 3, 832–837. [Google Scholar] [CrossRef]
- Kraft, R.; Markevitch, M.; Kilbourne, C.; Adams, J.S.; Akamatsu, H.; Ayromlou, M.; Bandler, S.R.; Barbera, M.; Bennett, D.A.; Bhardwaj, A.; et al. Line Emission Mapper (LEM): Probing the physics of cosmic ecosystems. arXiv 2022, arXiv:2211.09827. [Google Scholar] [CrossRef]
- Gaskin, J.A.; Swartz, D.A.; Vikhlinin, A.; Özel, F.; Gelmis, K.E.; Arenberg, J.W.; Bandler, S.R.; Bautz, M.W.; Civitani, M.M.; Dominguez, A.; et al. Lynx X-Ray Observatory: An overview. J. Astron. Telesc. Instruments Syst. 2019, 5, 021001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourne, M.A.; Yang, H.-Y.K. Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies 2023, 11, 73. https://doi.org/10.3390/galaxies11030073
Bourne MA, Yang H-YK. Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies. 2023; 11(3):73. https://doi.org/10.3390/galaxies11030073
Chicago/Turabian StyleBourne, Martin A., and Hsiang-Yi Karen Yang. 2023. "Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters" Galaxies 11, no. 3: 73. https://doi.org/10.3390/galaxies11030073
APA StyleBourne, M. A., & Yang, H.-Y. K. (2023). Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies, 11(3), 73. https://doi.org/10.3390/galaxies11030073