Advanced Life Peaked Billions of Years Ago According to Black Holes
Abstract
:1. Introduction
2. Black Hole Feedback on Stars across Space and Time
3. The Drake Equation Viewed Broadly
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haqq-Misra, J.; Baum, S.D. The sustainability solution to the Fermi Paradox. JBIS 2009, 62, 47–51. [Google Scholar]
- Savitch, E.; Frank, A.; Carroll-Nellenback, J.; Haqq-Nisra, J. Triggering a climate change dominated “anthropocene”: Is it common among exocivilizations? Astron. J. 2021, 162, 196. [Google Scholar] [CrossRef]
- Prantzos, N. A probabilistic analysis of the Fermi paradox in terms of the Drake formula: The role of the L factor. Mon. Not. R. Astron. Soc. 2020, 493, 3464–3472. [Google Scholar] [CrossRef]
- Drake, F. How can we detect radio transmissions from distant planetary systems? Sky Telesc. 1960, 19, 140. [Google Scholar]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The demography of massive dark objects in galaxy centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. 2000, 539, 13–16. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar] [CrossRef]
- Kalfountzou, E.; Stevens, J.A.; Jarvis, M.J.; Hardcastle, M.J.; Smith, D.J.B.; Bourne, N.; Dunne, L.; Ibar, E.; Eales, S.; Ivison, R.J.; et al. Hertschel-ATLAS: Far-infrared properties of radio-loud and radio-quiet quasars. Mon. Not. R. Astron. Soc. 2014, 442, 1181–1196. [Google Scholar] [CrossRef]
- Comerford, J.M.; Negus, J.; Müller-Sánchez, F.; Eracleous, M.; Wylezalek, D.; Storchi-Bergmann, T.; Greene, J.E.; Barrows, R.S.; Nevin, R.; Roy, N.; et al. A Catalog of 406 AGNs in MaNGA: A Connection between Radio-mode AGNs and Star Formation Quenching. Astrophys. J. 2020, 901, 159. [Google Scholar] [CrossRef]
- Singh, C.B.; Kulasiri, N.; North, M.; Garofalo, D. The Black Hole-star Formation Connection Over Cosmic Time. Publ. Astron. Soc. Pac. 2021, 133, 104101. [Google Scholar] [CrossRef]
- Garofalo, D.; Evans, D.A.; Sambruna, R.M. The evolution of radio-loud active galactic nuclei as a function of black hole spin. Mon. Not. R. Astron. Soc. 2010, 406, 975–986. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Petterson, J.A. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. Astrophys. J. 1975, 195, 65–67. [Google Scholar] [CrossRef]
- Antonuccio-Delogu, V.; Silk, J. Active galactic nuclei activity: Self-regulation from backflow. Mon. Not. R. Astron. Soc. 2010, 405, 1303–1314. [Google Scholar] [CrossRef]
- Neilsen, J.; Lee, J.C. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 2009, 458, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Fender, R.P.; Begelman, M.C.; Dunn, R.J.H.; Neilsen, J.; Coriat, M. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. Lett. 2012, 422, 11–15. [Google Scholar] [CrossRef]
- Garofalo, D.; Moravec, E.; Macconi, D.; Singh, C.B. Is jet re-orientation the elusive trigger for star formation suppression in radio galaxies? Publ. Astron. Soc. Pac. 2022, 134, 1041. [Google Scholar] [CrossRef]
- Whitmire, D.P. The habitability of large elliptical galaxies. Mon. Not. R. Astron. Soc. 2020, 494, 3048–3052. [Google Scholar] [CrossRef]
- Cirasuolo, M.; Magliocchetti, M.; Celotti, A.; Danese, L. The radio-loud/radio-quiet dichotomy: News from the 2dF QSO Redshift Survey. Mon. Not. R. Astron. Soc. 2003, 341, 993–1004. [Google Scholar] [CrossRef]
- Tadhunter, C.; Dicken, D.; Morganti, R.; Könyves, V.; Ysard, N.; Nesvadba, N.; Almeida, C.R. The dust masses of powerful radio galaxies: Clues to the triggering of their activity. Mon. Not. R. Astron. Soc. Lett. 2014, 445, 51–55. [Google Scholar] [CrossRef]
- King, A.R.; Lubow, S.H.; Ogilvie, G.I.; Pringle, J.E. Aligning spinning black holes and accretion discs. Mon. Not. R. Astron. Soc. 2005, 363, 49–56. [Google Scholar] [CrossRef]
- Garofalo, D.; Christian, D.J.; Jones, A.M. The Sub-Eddington Boundary for the Quasar Mass–Luminosity Plane: A Theoretical Perspective. Universe 2019, 5, 145. [Google Scholar] [CrossRef]
- Dayal, P.; Cockell, C.S.; Rice, K.; Mazumdar, A. The quest for cradles of life: Using the fundamental metallicity relation to hunt for the most habitable type of galaxy. Astrophys. J. 2015, 810, L2. [Google Scholar] [CrossRef]
- Stojković, N.; Vukotić, B.; Martinović, N.; Ćirković, M.M.; Micic, M. Galactic habitability re-examined: Indications of bimodality. Mon. Not. R. Astron. Soc. 2019, 490, 408–416. [Google Scholar] [CrossRef]
- Bertone, S.; Conselice, C.J. A comparison of galaxy merger history observations and predictions from semi-analytic models. Mon. Not. R. Astron. Soc. 2009, 396, 2345–2358. [Google Scholar] [CrossRef]
- Cai, X.; Jiang, J.H.; Fahy, K.A.; Yung, Y.L. A Statistical Estimation of the Occurrence of Extraterrestrial Intelligence in the Milky Way Galaxy. Galaxies 2021, 9, 5. [Google Scholar] [CrossRef]
- Lingam, M.; Loeb, A. Colloquium: Physical constraints for the evolution of life on exoplanets. Rev. Mod. Phys. 2019, 91, 021002. [Google Scholar] [CrossRef]
- Mo, H.J.; Miralda-Escude, J. Gaseous galactic halos and quasi-stellar object absorption-line systems. Astrophys. J. 1996, 469, 589–604. [Google Scholar] [CrossRef]
- Garofalo, D.; Joshi, R.; Yang, X.; Singh, C.B.; North, M.; Hopkins, M. A Unified Framework for X-shaped Radio Galaxies. Astrophys. J. 2020, 889, 91–98. [Google Scholar] [CrossRef]
- Joshi, R.; Krishna, G.; Yang, X.; Shi, J.; Yu, S.-Y.; Wiita, P.J.; Ho, L.C.; Wu, X.-B.; An, T.; Wang, R.; et al. X-shaped Radio Galaxies: Optical Properties, Large-scale Environment, and Relationship to Radio Structure. Astrophys. J. 2019, 887, 266. [Google Scholar] [CrossRef]
- Gonzalez, G.; Brownlee, D.; Ward, P. The galactic habitable zone: Galactic chemical evolution. Icarus 2001, 152, 185–200. [Google Scholar] [CrossRef]
- Lineweaver, C.H.; Fenner, Y.; Gibson, B.K. The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way. Science 2004, 303, 59–62. [Google Scholar] [CrossRef]
- Forbes, J.C.; Loeb, A. Evaporation of planetary atmospheres due to XUV illumination by quasars. Mon. Not. R. Astron. Soc. 2018, 479, 171–182. [Google Scholar] [CrossRef]
- Balbi, A.; Tombesi, F. The habitability of the Milky Way during the active phase of its central supermassive black hole. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Forbes, J.C.; Loeb, A. Habitable Evaporated Cores and the Occurrence of Panspermia Near the Galactic Center. Astrophys. J. 2018, 855, L1. [Google Scholar] [CrossRef]
- Wisłocka, A.M.; Kovačević, A.B.; Balbi, A. Comparative analysis of the influence of Sgr A* and nearby active galactic nuclei on the mass loss of known exoplanets. Astron. Astrophys. 2019, 624, A71–A88. [Google Scholar] [CrossRef]
- Liu, C.; Chen, X.; Du, F. Impact of an Active Sgr A* on the Synthesis of Water and Organic Molecules throughout the Milky Way. Astrophys. J. 2020, 899, 92. [Google Scholar] [CrossRef]
- Pacetti, E.; Balbi, A.; Lingam, M.; Tombesi, F.; Perlman, E. The impact of tidal disruption events on galactic habitability. Mon. Not. R. Astron. Soc. 2020, 498, 3153–3157. [Google Scholar] [CrossRef]
- Heinz, S. On the relative importance of AGN winds for the evolution of exoplanet atmospheres. Mon. Not. R. Astron. Soc. 2022, 513, 4669–4672. [Google Scholar] [CrossRef]
- Ambrifi, A.; Balbi, A.; Lingam, M.; Tombesi, F.; Perlman, E. The impact of AGN outflows on the surface habitability of terrestrial planets in the Milky Way. Mon. Not. R. Astron. Soc. 2022, 512, 505–516. [Google Scholar] [CrossRef]
- Jiang, J.H.; Li, H.; Chong, M.; Jin, Q.; Rosen, P.E.; Jiang, X.; Fahy, K.A.; Taylor, S.F.; Kong, Z.; Hah, J.; et al. A Beacon in the Galaxy: Updated Arecibo Message for Potential FAST and SETI Projects. Galaxies 2022, 10, 55. [Google Scholar] [CrossRef]
Type | SFR | R | Dust Mass | μd | FDrake |
---|---|---|---|---|---|
Clusters | 200 | 66.7 | 7 × 104 | 2.2 × 10−3 | 0.15 |
Groups | 40 | 13.3 | 2 × 105 | 6.2 × 10−3 | 0.08 |
Fields | 15 | 5 | 2.6 × 108 | 8.125 | 40.63 |
Milky Way | 3 | 1 | 3.2 × 107 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, D. Advanced Life Peaked Billions of Years Ago According to Black Holes. Galaxies 2023, 11, 66. https://doi.org/10.3390/galaxies11030066
Garofalo D. Advanced Life Peaked Billions of Years Ago According to Black Holes. Galaxies. 2023; 11(3):66. https://doi.org/10.3390/galaxies11030066
Chicago/Turabian StyleGarofalo, David. 2023. "Advanced Life Peaked Billions of Years Ago According to Black Holes" Galaxies 11, no. 3: 66. https://doi.org/10.3390/galaxies11030066
APA StyleGarofalo, D. (2023). Advanced Life Peaked Billions of Years Ago According to Black Holes. Galaxies, 11(3), 66. https://doi.org/10.3390/galaxies11030066