Revealing the Binarity of HD 36030—One of the Hottest Flare Stars
Abstract
:1. Introduction
2. Spectroscopy of HD 36030
2.1. Observations
2.2. Spectral Analysis
2.3. Spectral Analysis with XTgrid
3. Photometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IDL | Interactive data language |
LBV | Luminous blue variable |
LTE | Local thermodynamic equilibrium |
OES | Ondřejov echelle epectrograph |
RV | Radial velocity |
SB1 | single-lined spectroscopic binary |
TESS | Transiting Exoplanet Survey Satellite |
1 | RA ; Dec . |
2 | Up to date table of colors and effective temperatures of stars from Pecaut and Mamajek [41] is available at https://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt accessed on 10 March 2023. |
3 | https://archive.stsci.edu accessed on 10 March 2023. |
4 | http://survey.favor2.info/ accessed on 10 March 2023. |
5 | We must note that our estimation of flare energies is a conservative one, as it assumes their temperatures to be 9000 K, which may not be a good approximation, as the effective temperature of the star itself is above that. Moreover, there are signatures that the temperatures of superflares even on cool stars may be significantly larger than that [62]. Thus, the actual energies of the flares we detected may also be significantly larger. |
6 | The same argument also holds against any other similar source in the field of HD 36030 that may occasionally pollute the large aperture of TESS. |
References
- McNamara, B.J.; Jackiewicz, J.; McKeever, J. The Classification of Kepler B-star Variables. Astron. J. 2012, 143, 101. [Google Scholar] [CrossRef] [Green Version]
- Waelkens, C. Slowly pulsating B stars. Astron. Astrophys. 1991, 246, 453. [Google Scholar] [CrossRef] [Green Version]
- Waelkens, C. Slowly Pulsating B Stars. In International Astronomical Union Colloquium; Cambridge University Press: Cambridge, UK, 1993; p. 180. [Google Scholar]
- Stankov, A.; Handler, G. Catalog of Galactic β Cephei Stars. Astrophys. J. Suppl. Ser. 2005, 158, 193–216. [Google Scholar] [CrossRef]
- Saio, H.; Georgy, C.; Meynet, G. Evolution of blue supergiants and α Cygni variables: Puzzling CNO surface abundances. Mon. Not. R. Astron. Soc. 2013, 433, 1246–1257. [Google Scholar] [CrossRef] [Green Version]
- Rivinius, T.; Carciofi, A.C.; Martayan, C. Classical Be stars. Rapidly rotating B stars with viscous Keplerian decretion disks. Astron. Astrophys. Rev. 2013, 21, 69. [Google Scholar] [CrossRef] [Green Version]
- Krtičková, I.; Krtička, J. An ultraviolet study of B[e] stars: Evidence for pulsations, luminous blue variable type variations and processes in envelopes. Mon. Not. R. Astron. Soc. 2018, 477, 236–253. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M. A Census of B[e] Supergiants. Galaxies 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Lobel, A.; Groh, J.H.; Martayan, C.; Frémat, Y.; Torres Dozinel, K.; Raskin, G.; Van Winckel, H.; Prins, S.; Pessemier, W.; Waelkens, C.; et al. Modelling the asymmetric wind of the luminous blue variable binary MWC 314. Astron. Astrophys. 2013, 559, A16. [Google Scholar] [CrossRef]
- Clark, J.S.; Najarro, F.; Negueruela, I.; Ritchie, B.W.; Urbaneja, M.A.; Howarth, I.D. On the nature of the galactic early-B hypergiants. Astron. Astrophys. 2012, 541, A145. [Google Scholar] [CrossRef] [Green Version]
- Maryeva, O.; Bicz, K.; Xia, C.; Baratella, M.; Čechvala, P.; Vida, K. Flare stars in nearby Galactic open clusters based on TESS data. Contrib. Astron. Obs. Skaln. Pleso 2021, 51, 78–97. [Google Scholar] [CrossRef]
- Priest, E.; Forbes, T. Magnetic Reconnection; Cambridge University Press: Cambridge, UK, 2000; p. 612. [Google Scholar]
- Benz, A.O.; Güdel, M. Physical Processes in Magnetically Driven Flares on the Sun, Stars, and Young Stellar Objects. Annu. Rev. Astron. Astrophys. 2010, 48, 241–287. [Google Scholar] [CrossRef]
- Gershberg, R.E. Time scales and energy of flares on red dwarf stars (a review). Mem. Della Soc. Astron. Ital. 1989, 60, 263–287. [Google Scholar]
- Günther, M.N.; Zhan, Z.; Seager, S.; Rimmer, P.B.; Ranjan, S.; Stassun, K.G.; Oelkers, R.J.; Daylan, T.; Newton, E.; Kristiansen, M.H.; et al. Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs. Astron. J. 2020, 159, 60. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, B.E. Flashes from Normal Stars. Astrophys. J. 1989, 337, 927. [Google Scholar] [CrossRef]
- Balona, L.A. Kepler observations of flaring in A-F type stars. Mon. Not. R. Astron. Soc. 2012, 423, 3420–3429. [Google Scholar] [CrossRef] [Green Version]
- Balona, L.A. Spots and flares in hot main sequence stars observed by Kepler, K2 and TESS. Front. Astron. Space Sci. 2021, 8, 32. [Google Scholar] [CrossRef]
- Schmitt, J.H.M.M.; Guedel, M.; Predehl, P. Spatially resolved X-ray and radio observations of Castor A+B+C. Astron. Astrophys. 1994, 287, 843–851. [Google Scholar]
- Yanagida, T.; Ezoe, Y.; Kawaharada, M.; Kokubun, M.; Makishima, K. Large X-ray Flares from B-Type Stars, HD261902 and HD47777, in NGC2264 Observed with CHANDRA. In Proceedings of the Active OB-Stars: Laboratories for Stellar and Circumstellar Physics, ASP Conference Series, Sapporo, Japan, 29 August–2 September 2005; Okazaki, A.T., Owocki, S.P., Stefl, S., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 361, p. 533. [Google Scholar]
- Rosner, R.; Vaiana, G.S. Stellar Coronae from Einstein: Observations and Theory. In X-ray Astronomy; Giacconi, R., Setti, G., Eds.; NATO Advanced Study Institutes Series; Springer: Dordrecht, The Netherlands, 1980; Volume 60, p. 129. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Antoci, V.; Korhonen, H.; White, T.R.; Jessen-Hansen, J.; Lehtinen, J.; Nikbakhsh, S.; Viuho, J. Do A-type stars flare? Mon. Not. R. Astron. Soc. 2017, 466, 3060–3076. [Google Scholar] [CrossRef] [Green Version]
- Švanda, M.; Karlický, M. Flares on A-type Stars: Evidence for Heating of Solar Corona by Nanoflares? Astrophys. J. 2016, 831, 9. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.Y.; Esamdin, A. Flare Properties of A-type Stars in Kepler Data. Astrophys. J. 2020, 905, 110. [Google Scholar] [CrossRef]
- Van Doorsselaere, T.; Shariati, H.; Debosscher, J. Stellar Flares Observed in Long-cadence Data from the Kepler Mission. Astrophys. J. Suppl. Ser. 2017, 232, 26. [Google Scholar] [CrossRef] [Green Version]
- Houk, N.; Swift, C. Michigan catalogue of two-dimensional spectral types for the HD Stars, Vol. 5. Mich. Spectr. Surv. 1999, 5. [Google Scholar]
- Kharchenko, N.V.; Piskunov, A.E.; Röser, S.; Schilbach, E.; Scholz, R.D. 109 new Galactic open clusters. Astron. Astrophys. 2005, 440, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Cantat-Gaudin, T.; Jordi, C.; Vallenari, A.; Bragaglia, A.; Balaguer-Núñez, L.; Soubiran, C.; Bossini, D.; Moitinho, A.; Castro-Ginard, A.; Krone-Martins, A.; et al. A Gaia DR2 view of the open cluster population in the Milky Way. Astron. Astrophys. 2018, 618, A93. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, L.; Meng, G.; Han, X.L.; Misra, P.; Yang, J.; Pi, Q. Properties of flare events based on light curves from the TESS survey. Astron. Astrophys. 2023, 669, A15. [Google Scholar] [CrossRef]
- Evans, P.A.; Page, K.L.; Osborne, J.P.; Beardmore, A.P.; Willingale, R.; Burrows, D.N.; Kennea, J.A.; Perri, M.; Capalbi, M.; Tagliaferri, G.; et al. 2SXPS: An Improved and Expanded Swift X-Ray Telescope Point-source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 54. [Google Scholar] [CrossRef] [Green Version]
- Koubský, P.; Mayer, P.; Čáp, J.; Žďárský, F.; Zeman, J.; Pína, L.; Melich, Z. Ondřejov Echelle Spectrograph—OES. Publ. Astron. Inst. Czechoslov. Acad. Sci. 2004, 92, 37–43. [Google Scholar]
- Kabáth, P.; Skarka, M.; Sabotta, S.; Guenther, E.; Jones, D.; Klocová, T.; Šubjak, J.; Žák, J.; Špoková, M.; Blažek, M.; et al. Ondřejov Echelle Spectrograph, Ground Based Support Facility for Exoplanet Missions. Publ. Astron. Soc. Pac. 2020, 132, 035002. [Google Scholar] [CrossRef] [Green Version]
- Slechta, M.; Skoda, P. 2-meter telescope devices: Coudé slit spectrograph and HEROS. Publ. Astron. Inst. Czechoslov. Acad. Sci. 2002, 90, 1–4. [Google Scholar]
- Maryeva, O.V.; Karpov, S.V.; Kniazev, A.Y.; Gvaramadze, V.V. How long can luminous blue variables sleep? A long-term photometric variability and spectral study of the Galactic candidate luminous blue variable MN 112. Mon. Not. R. Astron. Soc. 2022, 513, 5752–5765. [Google Scholar] [CrossRef]
- Gray, R.O.; Corbally, C.J. Stellar Spectral Classification; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Simón-Díaz, S.; Castro, N.; Garcia, M.; Herrero, A.; Markova, N. The IACOB spectroscopic database of Northern Galactic OB stars. Bull. De La Soc. R. Des Sci. De Liege 2011, 80, 514–518. [Google Scholar]
- Simón-Díaz, S.; Garcia, M.; Herrero, A.; Maíz Apellániz, J.; Negueruela, I. The IACOB Project: Synergies for the Gaia Era. arXiv 2011, arXiv:1109.2665. [Google Scholar]
- Simón-Díaz, S.; Negueruela, I.; Maíz Apellániz, J.; Castro, N.; Herrero, A.; Garcia, M.; Pérez-Prieto, J.A.; Caon, N.; Alacid, J.M.; Camacho, I.; et al. The IACOB spectroscopic database: Recent updates and first data release. arXiv 2015, arXiv:1504.04257. [Google Scholar]
- Prugniel, P.; Soubiran, C. A database of high and medium-resolution stellar spectra. Astron. Astrophys. 2001, 369, 1048–1057. [Google Scholar] [CrossRef]
- Høg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 2000, 355, L27–L30. [Google Scholar]
- Pecaut, M.J.; Mamajek, E.E. Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars. Astrophys. J. Suppl. Ser. 2013, 208, 9. [Google Scholar] [CrossRef]
- Chen, Y.; Girardi, L.; Bressan, A.; Marigo, P.; Barbieri, M.; Kong, X. Improving PARSEC models for very low mass stars. Mon. Not. R. Astron. Soc. 2014, 444, 2525–2543. [Google Scholar] [CrossRef]
- Bossini, D.; Vallenari, A.; Bragaglia, A.; Cantat-Gaudin, T.; Sordo, R.; Balaguer-Núñez, L.; Jordi, C.; Moitinho, A.; Soubiran, C.; Casamiquela, L.; et al. Age determination for 269 Gaia DR2 open clusters. Astron. Astrophys. 2019, 623, A108. [Google Scholar] [CrossRef] [Green Version]
- Hubeny, I.; Lanz, T. Non-LTE Line-blanketed Model Atmospheres of Hot Stars. I. Hybrid Complete Linearization/Accelerated Lambda Iteration Method. Astrophys. J. 1995, 439, 875. [Google Scholar] [CrossRef]
- Lanz, T.; Hubeny, I. A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars. Astrophys. J. Suppl. Ser. 2007, 169, 83–104. [Google Scholar] [CrossRef] [Green Version]
- Hubeny, I.; Lanz, T. TLUSTY User’s Guide III: Operational Manual. arXiv 2017. [Google Scholar] [CrossRef]
- Németh, P.; Kawka, A.; Vennes, S. A selection of hot subluminous stars in the GALEX survey—II. Subdwarf atmospheric parameters. Mon. Not. R. Astron. Soc. 2012, 427, 2180–2211. [Google Scholar] [CrossRef] [Green Version]
- Bohlin, R.C.; Mészáros, S.; Fleming, S.W.; Gordon, K.D.; Koekemoer, A.M.; Kovács, J. A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions. Astron. J. 2017, 153, 234. [Google Scholar] [CrossRef] [Green Version]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instru. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.M.; Twicken, J.D.; McCauliff, S.; Campbell, J.; Sanderfer, D.; Lung, D.; Mansouri-Samani, M.; Girouard, F.; Tenenbaum, P.; Klaus, T.; et al. The TESS science processing operations center. In Proceedings of the Software and Cyberinfrastructure for Astronomy IV, Edinburgh, UK, 26–30 June 2016; Chiozzi, G., Guzman, J.C., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Edinburgh, UK, 2016; Volume 9913, p. 99133E. [Google Scholar] [CrossRef] [Green Version]
- Shibayama, T.; Maehara, H.; Notsu, S.; Notsu, Y.; Nagao, T.; Honda, S.; Ishii, T.T.; Nogami, D.; Shibata, K. Superflares on Solar-type Stars Observed with Kepler. I. Statistical Properties of Superflares. Astrophys. J. Suppl. Ser. 2013, 209, 5. [Google Scholar] [CrossRef] [Green Version]
- Karpov, S. STDPipe: Simple Transient Detection Pipeline. Astrophysics Source Code Library, Record ascl:2112.006. 2021. Available online: https://ascl.net/2112.006 (accessed on 10 March 2023).
- Gaia Collaboration; Montegriffo, P.; Bellazzini, M.; De Angeli, F.; Andrae, R.; Barstow, M.A.; Bossini, D.; Bragaglia, A.; Burgess, P.W.; Cacciari, C.; et al. Gaia Data Release 3: The Galaxy in your preferred colours. Synthetic photometry from Gaia low-resolution spectra. arXiv 2022. [CrossRef]
- Beskin, G.M.; Karpov, S.V.; Biryukov, A.V.; Bondar, S.F.; Ivanov, E.A.; Katkova, E.V.; Orekhova, N.V.; Perkov, A.V.; Sasyuk, V.V. Wide-field optical monitoring with Mini-MegaTORTORA (MMT-9) multichannel high temporal resolution telescope. Astrophys. Bull. 2017, 72, 81–92. [Google Scholar] [CrossRef]
- Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V. Photometric calibration of a wide-field sky survey data from Mini-MegaTORTORA. Astron. Nachrichten 2018, 339, 375–381. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- VanderPlas, J.T.; Ivezić, Ž. Periodograms for Multiband Astronomical Time Series. Astrophys. J. 2015, 812, 18. [Google Scholar] [CrossRef]
- Balona, L.A. Rotational modulation in B stars observed by the Kepler K2 mission. Mon. Not. R. Astron. Soc. 2016, 457, 3724–3731. [Google Scholar] [CrossRef] [Green Version]
- Balona, L.A.; Handler, G.; Chowdhury, S.; Ozuyar, D.; Engelbrecht, C.A.; Mirouh, G.M.; Wade, G.A.; David-Uraz, A.; Cantiello, M. Rotational modulation in TESS B stars. Mon. Not. R. Astron. Soc. 2019, 485, 3457–3469. [Google Scholar] [CrossRef]
- Hattori, S.; Foreman-Mackey, D.; Hogg, D.W.; Montet, B.T.; Angus, R.; Pritchard, T.A.; Curtis, J.L.; Schölkopf, B. The unpopular Package: A Data-driven Approach to Detrending TESS Full-frame Image Light Curves. Astron. J. 2022, 163, 284. [Google Scholar] [CrossRef]
- Howard, W.S.; Corbett, H.; Law, N.M.; Ratzloff, J.K.; Galliher, N.; Glazier, A.L.; Gonzalez, R.; Vasquez Soto, A.; Fors, O.; del Ser, D.; et al. EvryFlare. III. Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS. Astrophys. J. 2020, 902, 115. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef] [Green Version]
Date | Exposure [s] | Sp. Range [ÅÅ] | Instrument |
---|---|---|---|
19 Sep 2020 | 3600 | 6250–6740 | Coudé |
24 Oct 2021 | 5200 | 3750–9200 | OES |
29 Oct 2021 | 5200 | 3750–9200 | OES |
6 Jan 2022 | 5200 | 3750–9200 | OES |
2 Feb 2022 | 3750–9200 | OES | |
10 Mar 2022 | 3750–9200 | OES | |
11 Mar 2022 | 3750–9200 | OES | |
18 Mar 2022 | 5200 | 3750–9200 | OES |
Time, JD-2450000 | ||||||||
---|---|---|---|---|---|---|---|---|
9512.463 | 9517.464 | 9586.371 | 9613.234 | 9628.234 | 9649.242 | 9650.239 | 9657.250 | |
SiII 4128.05 | 21.26 | 7.35 | 44.53 | 45.61 | 42.53 | 37.62 | 27.39 | 35.31 |
SiII 4130.89 | 21.38 | 6.08 | 42.73 | 42.74 | 42.78 | 36.76 | 25.79 | 38.09 |
FeII 4173.45 | 24.71 | 6.17 | 43.38 | 46.39 | 45.07 | 37.99 | 29.35 | —– |
FeII 4233.17 | 19.55 | 5.53 | 43.25 | 45.08 | 43.40 | 36.20 | 27.51 | 30.84 |
H 4340.46 | 20.90 | 4.89 | 41.99 | 42.87 | 43.36 | 38.13 | 27.30 | 22.44 |
MgII 4481.13 | 27.91 | 12.49 | 50.22 | 50.94 | 49.62 | 42.80 | 33.23 | 38.11 |
FeII 4508.29 | 20.93 | 5.05 | 44.73 | 44.03 | 42.33 | 35.62 | 26.79 | —– |
FeII 4515.34 | 21.28 | 5.71 | 44.66 | 42.45 | 44.85 | 36.23 | 26.38 | 32.61 |
FeII 4522.63 | 23.46 | 7.39 | 46.31 | 46.10 | 44.30 | 36.18 | 26.59 | —– |
FeII 4549.47 | 24.81 | 8.55 | 47.36 | 47.38 | 46.01 | 39.46 | 29.39 | 36.36 |
FeII 4555.89 | 22.38 | 5.94 | 43.32 | 45.34 | 43.85 | 37.01 | 26.06 | 31.53 |
FeII 4583.83 | 22.67 | 6.07 | 43.86 | 44.88 | 43.46 | 36.80 | 27.50 | 33.81 |
CrII 4588.20 | 20.39 | 6.64 | 45.12 | 44.18 | 44.73 | 36.67 | 26.42 | 30.59 |
FeII 4629.33 | 20.62 | 5.47 | 44.98 | 43.82 | 42.56 | 36.69 | 26.55 | 29.68 |
H 4861.32 | 21.70 | 5.63 | 44.51 | 45.16 | 44.30 | 36.38 | 27.23 | 25.98 |
FeII 4923.92 | 22.13 | 5.95 | 45.11 | 45.21 | 43.15 | 36.97 | 27.57 | 30.14 |
FeII 5018.44 | 22.00 | 6.52 | 44.92 | 44.76 | 44.00 | 36.79 | 27.83 | 31.05 |
SiII 5041.03 | 20.91 | 6.32 | 42.70 | 44.29 | 42.67 | 36.25 | 26.98 | 30.38 |
SiII 5055.98 | 26.04 | 10.63 | 47.98 | 50.36 | 47.87 | 41.70: | 32.30 | 35.37 |
FeII 5100.73 | 21.90 | 6.55 | 44.71 | 45.12 | 44.78 | 36.76 | 27.72 | 33.09 |
FeII 5169.03 | 21.08 | 5.51 | 43.81 | 44.09 | 43.33 | 37.20 | 26.70 | 30.81 |
MgI 5172.68 | 21.90 | 7.20 | 45.38 | 45.56 | 44.21 | 36.98 | 28.01 | 31.29 |
MgI 5183.60 | 22.55 | 5.94 | 44.42 | 45.90 | 44.59 | 36.94 | 28.05 | 31.03 |
FeII 5197.57 | 22.46 | 5.67 | 43.52 | 43.66 | 42.24 | 36.93 | 26.73 | 30.18 |
FeII 5275.99 | 23.09 | 6.38 | 42.87 | 46.52: | 42.09 | 34.90 | 26.02 | 32.96 |
FeII 5316.62 | 22.64 | 7.90 | 45.74 | 45.18 | 44.90 | 37.40 | 28.14 | 33.12 |
FeII 5362.87 | 21.55 | 5.46 | 43.33 | 45.05 | 43.59 | 36.20 | 27.05 | 30.11 |
SiII 6347.09 | 20.44 | 5.18 | 42.55 | 42.56 | 42.20 | 35.66 | 25.80 | 29.80 |
SiII 6371.36 | 21.61 | 6.10 | —– | 44.44 | 43.67 | 36.53 | 27.15 | 30.10 |
H 6562.79 | 21.68 | 6.14 | 46.75 | 45.92 | 43.88 | 37.15 | 27.34 | 31.29 |
MgII 7877.13 | —– | 0.89 | 39.54 | —– | 41.64 | 34.30 | 23.38 | 24.77 |
MgII 7896.37 | —– | −2.87 | 43.00 | 44.15 | 41.05 | 35.66 | 24.90 | —— |
OI 8446.35 | 28.33 | 12.08 | 49.48 | 48.55 | 49.32 | 40.71 | 32.85 | 34.61 |
Avg | ||||||||
NaI 5889.95 | 18.60 | 17.03 | 19.38 | 19.47 | 20.10 | 20.36 | 20.03 | 20.51 |
NaI 5895.92 | 19.32 | 18.56 | 20.69 | 19.92 | 20.56 | 20.90 | 20.38 | 19.89 |
Parameter | Value | ||
---|---|---|---|
(K) | 11,900 ± 1100 | ||
(cm s) | 4.69 ± 0.15 | ||
v (km s) | 15.00 ± 0.94 | ||
Abundance | by number | mass fraction | solar fraction |
H (reference) | 1 | 9.16 × 10 | 0 |
He | −1.75 ± 0.32 | 6.49 × 10 | −0.68 |
C | <−2.3 | <4.60 × 10 | <−0.8 |
N | <−1.9 | <1.36 × 10 | <−0.2 |
O | −3.25 ± 0.02 | 8.11 × 10 | 0.06 |
Ne | <−2 | <1.50 × 10 | <−0.03 |
Na | −5.42 ± 73 | 7.89 × 10 | 0.34 |
Mg | −4.39 ± 0.04 | 9.00 × 10 | 0.01 |
Al | −5.89 ± 0.49 | 3.19 × 10 | −0.34 |
Si | −4.21 ± 0.08 | 1.59 × 10 | 0.28 |
Ca | <−5.48 | <7.3 × 10 | <−0.04 |
Ti | −7.00 ± 0.11 | 4.38 × 10 | 0.05 |
Cr | −6.11 ± 0.21 | 3.67 × 10 | 0.25 |
Mn | −6.94 ± 0.88 | 5.73 × 10 | −0.37 |
Fe | <−4.13 | <3.74 × 10 | <0.37 |
Ni | <−5 | <5.34 × 10 | <0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maryeva, O.; Németh, P.; Karpov, S. Revealing the Binarity of HD 36030—One of the Hottest Flare Stars. Galaxies 2023, 11, 55. https://doi.org/10.3390/galaxies11020055
Maryeva O, Németh P, Karpov S. Revealing the Binarity of HD 36030—One of the Hottest Flare Stars. Galaxies. 2023; 11(2):55. https://doi.org/10.3390/galaxies11020055
Chicago/Turabian StyleMaryeva, Olga, Péter Németh, and Sergey Karpov. 2023. "Revealing the Binarity of HD 36030—One of the Hottest Flare Stars" Galaxies 11, no. 2: 55. https://doi.org/10.3390/galaxies11020055
APA StyleMaryeva, O., Németh, P., & Karpov, S. (2023). Revealing the Binarity of HD 36030—One of the Hottest Flare Stars. Galaxies, 11(2), 55. https://doi.org/10.3390/galaxies11020055