Mass-Accreting Pulsating Components of Algols
Abstract
:1. Introduction
2. The Evolutionary Status of oEA Stars and Their Importance for Studies of Short-Term Binary Evolution
- Clearly detect evidence of magnetic activity via direct detection of magnetic fields and their variations or, implicitly, through the cyclic behavior of variations in the orbital period or through the detection of other observational phenomena.
- Obtain (through photometric, spectroscopic, or other observational techniques) clear evidence of variations in mass transfer rates and prove that such variations were caused by magnetic activity cycles.
- Clearly detect corresponding changes in pulsation spectra and prove that variations in mass transfer/accretion rates caused such changes.
3. The Pulsational Parameters of oEA Stars
4. Low- and High-Degree Nonradial Pulsations
5. Effect of Binarity on Pulsations
6. The Active Algol System RZ Cas—A Vital Case Study of the Peculiarities of oEA Stars
6.1. Cyclic Orbital Period Changes in RZ Cas
6.2. The 3D Simulation of the Variable Mass Transfer and the Structure of Gas Flows
6.3. Non-Stationary Mass Transfer and the Variable Asymmetry of the Rossiter–McLaughlin Effect
6.4. Attenuation of Pulsations Due to the Gas Stream and Equatorial Gas Annulus
6.5. Evidence of the 18-Year Magnetic Cycle—The Detection, Variability, and Migration of Opposite Spots on the Gainer
6.6. The Wilson Effect in the L1 Spot as the Possible Mechanism Controlling the Mass-Transfer
6.7. The Time Variability of Pulsation Spectra
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
c/d | Cycles per day |
DFT | Discrete Fourier transform |
EA/D | Eclipsing Algol detached configuration |
EA/SD | Eclipsing Algol semi-detached configuration |
EA/DM | Eclipsing Algol main sequence components |
EB | Eclipsing binaries with Beta Lyrae-type light curve |
EA | Eclipsing binaries with Algol-type light curve |
NRP | Nonradial pulsations |
L1 | First Lagrange point |
MS | Main sequence |
m | Metallic line spectrum in Sp |
mag | Magnitude |
oEA | Oscillating eclipsing Algols |
PSF | Periodic spatial filter |
RMTP | Rapid mass transfer phase |
RME | Rossiter–McLaughlin effect |
SALT | South African Large Telescope |
Sp | Spectral classification |
TESS | Transiting Exoplanet Survey Satellite |
References
- Aerts, C.; Christensen-Dalsgaard, J.; Kurtz, D.W. Asteroseismology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Duquennoy, A.; Mayor, M. Multiplicity among Solar Type Stars in the Solar Neighbourhood—Part Two—Distribution of the Orbital Elements in an Unbiased Sample. Astron. Astrophys. 1991, 248, 485. [Google Scholar]
- Gaulme, P.; Guzik, J.A. Systematic search for stellar pulsators in the eclipsing binaries observed by Kepler. Astron. Astrophys. 2019, 630, A106. [Google Scholar] [CrossRef]
- Andersen, J. Accurate masses and radii of normal stars. Astron. Astrophys. Rev. 1991, 3, 91–126. [Google Scholar] [CrossRef]
- Tempesti, P. The Eclipsing Binary AB Cassiopeiae as a delta Scuti Star. Inf. Bull. Var. Stars 1971, 596, 1. [Google Scholar]
- Broglia, P. A delta Scuti Component in the Binary System Y Camelopardalis. Inf. Bull. Var. Stars 1973, 823, 1. [Google Scholar]
- Mkrtichian, D.E.; Kusakin, A.V.; Gamarova, A.Y.; Nazarenko, V. Pulsating Components of Eclipsing Binaries: New Asteroseismic Methods of Studies and Prospects. In IAU Colloq. 185: Radial and Nonradial Pulsationsn as Probes of Stellar Physics; Aerts, C., Bedding, T.R., Christensen-Dalsgaard, J., Eds.; Astronomical Society of the Pacific Conference Series; Cambridge University Press: Cambridge, UK, 2002; Volume 259, p. 96. [Google Scholar]
- Mkrtichian, D.E.; Kusakin, A.V.; Rodriguez, E.; Gamarova, A.Y.; Kim, C.; Kim, S.L.; Lee, J.W.; Youn, J.H.; Kang, Y.W.; Olson, E.C.; et al. Frequency spectrum of the rapidly oscillating mass-accreting component of the Algol-type system AS Eri. Astron. Astrophys. 2004, 419, 1015–1024. [Google Scholar] [CrossRef]
- Deschamps, R.; Braun, K.; Jorissen, A.; Siess, L.; Baes, M.; Camps, P. Non-conservative evolution in Algols: Where is the matter? Astron. Astrophys. 2015, 577, A55. [Google Scholar] [CrossRef]
- van Rensbergen, W.; De Greve, J.P.; De Loore, C.; Mennekens, N. Spin-up and hot spots can drive mass out of a binary. Astron. Astrophys. 2008, 487, 1129–1138. [Google Scholar] [CrossRef]
- van Rensbergen, W.; De Greve, J.P.; Mennekens, N.; Jansen, K.; De Loore, C. Mass loss out of close binaries. Case A Roche lobe overflow. Astron. Astrophys. 2010, 510, A13. [Google Scholar] [CrossRef]
- Deschamps, R.; Siess, L.; Davis, P.J.; Jorissen, A. Critically rotating accretors and non-conservative evolution in Algols. Astron. Astrophys. 2013, 557, A40. [Google Scholar] [CrossRef]
- Applegate, J.H. A Mechanism for Orbital Period Modulation in Close Binaries. Astrophys. J. 1992, 385, 621. [Google Scholar] [CrossRef]
- Belotserkovskii, O.M.; Davydov, I.M. The Large-Particle Method in Gas Dynamics—A Computational Experiment; Izdatel’stvo Nauka: Moscow, Russia, 1982. [Google Scholar]
- Nazarenko, V.V.; Glazunova, L.V.; Karetnikov, V.G. Roche-Lobe Overflow in the Vicinity of the Inner Lagrangian Point in Close Binary Systems. Astron. Rep. 2001, 45, 452–460. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for G, F, A, B, and O stars. Astrophys. J. Suppl. Ser. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Mkrtichian, D.E.; Nazarenko, V.; Gamarova, A.Y.; Lehmann, H.; Rodriguez, E.; Olson, E.C.; Kim, S.L.; Kusakin, A.V.; Rovithis-Livaniou, H. Pulsations in Algols. In Interplay of Periodic, Cyclic and Stochastic Variability in Selected Areas of the HR Diagram; Sterken, C., Ed.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 292, p. 113. [Google Scholar]
- Kim, S.L.; Lee, J.W.; Kwon, S.G.; Youn, J.H.; Mkrtichian, D.E.; Kim, C. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems. Astron. Astrophys. 2003, 405, 231–236. [Google Scholar] [CrossRef]
- Mkrtichian, D.E.; Kim, S.L.; Rodríguez, E.; Olson, E.C.; Nazarenko, V.; Gamarova, A.Y.; Kusakin, A.V.; Lehmann, H.; Lee, J.W.; Kang, Y.W. The oEA Stars. In Solar and Stellar Physics Through Eclipses; Demircan, O., Selam, S.O., Albayrak, B., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 370, p. 194. [Google Scholar]
- Liakos, A.; Niarchos, P.; Soydugan, E.; Zasche, P. Survey for δ Sct components in eclipsing binaries and new correlations between pulsation frequency and fundamental stellar characteristics. Mon. Not. R. Astron. Soc. 2012, 422, 1250–1262. [Google Scholar] [CrossRef]
- Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J. Eclipsing binary stars with a δ Scuti component. Mon. Not. R. Astron. Soc. 2017, 470, 915–931. [Google Scholar] [CrossRef]
- Mkrtichian, D.E.; Lehmann, H.; Rodríguez, E.; Olson, E.; Kim, S.L.; Kusakin, A.V.; Lee, J.W.; Youn, J.H.; Kwon, S.G.; López-González, M.J.; et al. The eclipsing binary star RZ Cas: Accretion-driven variability of the multimode oscillation spectrum. Mon. Not. R. Astron. Soc. 2018, 475, 4745–4767. [Google Scholar] [CrossRef]
- Liakos, A.; Niarchos, P. Catalogue and properties of δ Scuti stars in binaries. Mon. Not. R. Astron. Soc. 2017, 465, 1181–1200. [Google Scholar] [CrossRef]
- Shi, X.d.; Qian, S.b.; Li, L.J. New Pulsating Stars Detected in EA-type Eclipsing-binary Systems Based on TESS Data. Astrophys. J. Suppl. Ser. 2022, 259, 50. [Google Scholar] [CrossRef]
- Mkrtichian, D.; Engelbrecht, C.; Lampens, P.; Lehmann, H.; A-thano, N.; Gunsriwiwa, K. A spectroscopic survey of oEA stars. Bull. Soc. R. Des Sci. Liege 2019, 88, 256–261. [Google Scholar] [CrossRef]
- Tkachenko, A.; Tsymbal, V.; Zvyagintsev; Lehmann, H.; Petermann, F.; Mkrtichian, D.E. Pushing Least-Squares Deconvolution to the next level: Application to binary stars. arXiv 2022, arXiv:2208.03072. [Google Scholar]
- Claret, A.; Gimenez, A.; Cunha, N.C.S. Circularization and synchronization times in the main sequence of detached eclipsing binaries.I. Using the formalism by Tassoul. Astron. Astrophys. 1995, 299, 724. [Google Scholar]
- Lurie, J.C.; Vyhmeister, K.; Hawley, S.L.; Adilia, J.; Chen, A.; Davenport, J.R.A.; Jurić, M.; Puig-Holzman, M.; Weisenburger, K.L. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries. Astron. J. 2017, 154, 250. [Google Scholar] [CrossRef]
- Shibahashi, H. The Effect of a Close Binary upon Stellar Pulsation. In IAU Colloq. 185: Radial and Nonradial Pulsationsn as Probes of Stellar Physics; Aerts, C., Bedding, T.R., Christensen-Dalsgaard, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2002; Volume 259, p. 82. [Google Scholar]
- Fuller, J.; Kurtz, D.W.; Handler, G.; Rappaport, S. Tidally trapped pulsations in binary stars. Mon. Not. R. Astron. Soc. 2020, 498, 5730–5744. [Google Scholar] [CrossRef]
- Handler, G.; Kurtz, D.W.; Rappaport, S.A.; Saio, H.; Fuller, J.; Jones, D.; Guo, Z.; Chowdhury, S.; Sowicka, P.; Kahraman Aliçavuş, F.; et al. Tidally trapped pulsations in a close binary star system discovered by TESS. Nat. Astron. 2020, 4, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, D.W.; Handler, G.; Rappaport, S.A.; Saio, H.; Fuller, J.; Jacobs, T.; Schmitt, A.; Jones, D.; Vanderburg, A.; LaCourse, D.; et al. The single-sided pulsator CO Camelopardalis. Mon. Not. R. Astron. Soc. 2020, 494, 5118–5133. [Google Scholar] [CrossRef]
- Lee, J.W. Tidally perturbed oblique pulsations in the hierarchical triple system V1031 Orionis. Publ. Astron. Soc. Jpn. 2021, 73, 809–816. [Google Scholar] [CrossRef]
- Rappaport, S.A.; Kurtz, D.W.; Handler, G.; Jones, D.; Nelson, L.A.; Saio, H.; Fuller, J.; Holdsworth, D.L.; Vanderburg, A.; Žák, J.; et al. A tidally tilted sectoral dipole pulsation mode in the eclipsing binary TIC 63328020. Mon. Not. R. Astron. Soc. 2021, 503, 254–269. [Google Scholar] [CrossRef]
- Kahraman Aliçavuş, F.; Handler, G.; Aliçavuş, F.; De Cat, P.; Bedding, T.R.; Lampens, P.; Ekinci, Ö.; Gümüs, D.; Leone, F. Mass transfer and tidally tilted pulsation in the Algol-type system TZ Dra. Mon. Not. R. Astron. Soc. 2022, 510, 1413–1424. [Google Scholar] [CrossRef]
- Lehmann, H.; Mkrtichian, D.E. The eclipsing binary star RZ Cas. I. First spectroscopic detection of rapid pulsations in an Algol system. Astron. Astrophys. 2004, 413, 293–299. [Google Scholar] [CrossRef]
- Lehmann, H.; Mkrtichian, D.E. The eclipsing binary star RZ Cassiopeiae. II. Spectroscopic monitoring in 2006. Astron. Astrophys. 2008, 480, 247–254. [Google Scholar] [CrossRef]
- Tkachenko, A.; Lehmann, H.; Mkrtichian, D.E. Spectroscopic modeling of oscillating Algol-type stars. I. RZ Cassiopeia. Astron. Astrophys. 2009, 504, 991–1001. [Google Scholar] [CrossRef]
- Wilson, R.E.; Van Hamme, W. Distances to Four Solar Neighborhood Eclipsing Binaries from Absolute Fluxes. Astrophys. J. 2009, 699, 118–132. [Google Scholar] [CrossRef]
- Lehmann, H.; Dervişoğlu, A.; Mkrtichian, D.E.; Pertermann, F.; Tkachenko, A.; Tsymbal, V. Spectroscopic long-term monitoring of RZ Cas. I. Basic stellar and system parameters. Astron. Astrophys. 2020, 644, A121. [Google Scholar] [CrossRef]
- Ohshima, O.; Narusawa, S.Y.; Akazawa, H.; Fujii, M.; Kawabata, T.; Ohkura, N. Detection of the delta Scuti Oscillation in RZ Cassiopeiae. Inf. Bull. Var. Stars 1998, 4581, 1. [Google Scholar]
- Ohshima, O.; Narusawa, S.Y.; Akazawa, H.; Arai, K.; Fujii, M.; Kawabata, T.; Morikawa, K.; Ohkura, N.; Takeuti, M. Short-Period Light Variation of an Eclipsing Binary System: RZ Cassiopeiae. Astron. J. 2001, 122, 418–424. [Google Scholar] [CrossRef]
- Mkrtichian, D.E.; Nazarenko, V. 3D-hydrodynamic simulations of mass transfer in Algols. Mon. Not. R. Astron. Soc. 2022; manuscript in preparation. [Google Scholar]
- Unno, W.; Kiguchi, M.; Kitamura, M. Mass Transfer and Anomalous Gravity Darkening in Semi-Detached Binary Systems. Publ. Astron. Soc. Jpn. 1994, 46, 613–619. [Google Scholar]
- Berdyugina, S.V.; Tuominen, I. Permanent active longitudes and activity cycles on RS CVn stars. Astron. Astrophys. 1998, 336, L25–L28. [Google Scholar]
- Berdyugina, S.V. Flip-flop cycles in solar and stellar activity. Highlights Astron. 2007, 14, 275–276. [Google Scholar] [CrossRef]
- Berdyugina, S.V.; Henry, G.W. Butterfly Diagram and Activity Cycles in HR 1099. Astrophys. J. 2007, 659, L157–L160. [Google Scholar] [CrossRef]
- Korhonen, H.; Järvinen, S.P. Active Longitudes and Flip-Flops in Binary Stars. In Binary Stars as Critical Tools & Tests in Contemporary Astrophysics; Hartkopf, W.I., Harmanec, P., Guinan, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 240, pp. 453–455. [Google Scholar] [CrossRef]
- Wilson, A.; Maskelyne, N. Observations on the Solar Spots. By Alexander Wilson, M.D. Professor of Practical Astronomy in the University of Glasgow. Communicated by the Rev. Nevil Maskelyne, Astronomer Royal. Philos. Trans. R. Soc. Lond. Ser. I 1774, 64, 1–30. [Google Scholar]
- Gokhale, M.H.; Zwaan, C. The Structure of Sunspots. I: Observational Constraints: Current Sheet Models. Sol. Phys. 1972, 26, 52–75. [Google Scholar] [CrossRef]
- Balthasar, H.; Woehl, H. On the Determination of Heliographic Positions and Rotation Velocities of Sunspots—Part Two—Systematic Effects Caused by the Wilson Depression. Sol. Phys. 1983, 88, 71–75. [Google Scholar] [CrossRef]
- Löptien, B.; Lagg, A.; van Noort, M.; Solanki, S.K. Measuring the Wilson depression of sunspots using the divergence-free condition of the magnetic field vector. Astron. Astrophys. 2018, 619, A42. [Google Scholar] [CrossRef] [Green Version]
System | TESS Name | Type | Sp | ||
---|---|---|---|---|---|
(days) | (c/d) | ||||
RZ Hor | 31653503 | 6.67999 | EB | F | 22.25 |
VX Hyi | 33834253 | 3.23220 | EA/SD | F4 | 9.06 |
VX Cet | 35743561 | 2.72076 | EA/SD | F7 | 21.70 |
IQ CMa | 37601240 | 0.73138 | EB | A8V | 17.90 |
GI Boo | 68032870 | 1.03349 | EB | A5 | 40.05 |
SX Lyn | 81038220 | 2.02249 | EA/SD | A2 | 31.00 |
SW Phe | 120414806 | 2.55310 | EA/SD | A5 | 39.90 |
HD 23692 | 121078334 | 0.92833 | EB | A4IV | 17.68 |
RY Ind | 126602778 | 0.71211 | EB | A5 | 17.27 |
SU For | 129764561 | 2.43461 | EA/SD | A2 | 25.24 |
CH Ind | 139699256 | 5.9532 | EA | A9V | 8.85 |
RX Pic | 150443185 | 2.59365 | EB | A2/3V | 45.98 |
GK Eri | 156215585 | 2.95966 | EA | F0 | 9.13 |
GL Boo | 158016784 | 3.19738 | EA | - | 7.82 |
TY UMi | 159298033 | 1.72488 | EA | F0 | 18.04 |
V548 Cyg | 165310952 | 1.80523 | EA/SD | A1V+F7 | 7.59 |
CD-31 1621 | 166874908 | 2.18675 | EB | A3 | 28.88 |
RY Gru | 175405906 | 2.01063 | EA/SD | - | 18.22 |
V392 And | 176854066 | 4.04628 | EA | A2 | 9.53 |
HD29766 | 178996712 | 2.98240 | EA | A2mA8-F3 | 28.77 |
V Tuc | 181043970 | 0.87092 | EA/SD | A2IV | 58.79 |
HD26306 | 198037741 | 0.78003 | EA | A4V | 20.45 |
HD30204 | 200440270 | 1.07871 | EA | A2IV/V | 60.66 |
X Pic | 219373406 | 0.86190 | EA/SD | A2 | 50.33 |
AN Tuc | 231714000 | 5.46132 | EA/SD | A5III | 32.42 |
HD 160862 | 233195058 | 2.67932 | EA | A2 | 20.53 |
RR Dra | 233532554 | 2.83128 | EA/SD | A2 | 39.23 |
EQ Ori | 244250449 | 1.74605 | EA/SD | A0 | 38.22 |
Y Hyi | 262958558 | 3.53597 | EA/S | A6V | 47.30 |
GH Cet | 266735682 | 1.13524 | EA | A5 | 51.14 |
AI Dra | 274509791 | 1.19882 | EA/SD | A0V | 18.35 |
HD 54011 | 279569707 | 3.97936 | EA | A1/2A5 | 12.92 |
CD-70 152 | 280831485 | 14.14 | EA | F1 | 22.79 |
AK Dra | 289722957 | 2.21830 | EA | F3 | 22.78 |
W Vol | 300654002 | 2.75836 | EA | F1V | 19.39 |
TX Vol | 310308203 | 5.38837 | EA/D | A3 | 13.99 |
XZ UMa | 318217844 | 1.22230 | EA/SD | A5+F9 | 48.54 |
WZ Pic | 350443417 | 1.21669 | EB | A2mA7-A9 | 22.78 |
V706 And | 352077081 | 2.52094 | EA | A | 30.70 |
HD 33717 | 358335586 | 1.22041 | EA | A0V | 37.90 |
HD 43898 | 393387739 | 3.07031 | EA/D | A8/9V | 21.32 |
V707 And | 396134795 | 2.58863 | EA | F5V | 14.20 |
ES Ori | 397048159 | 1.60556 | EA/SD | A2V | 15.73 |
AX Vul | 406421379 | 2.02484 | EA | A1V | 75.55 |
V629 And | 428003183 | 0.7426 | EA | A | 22.70 |
V343 Lac | 430808126 | 6.47191 | EA/SD | A0V | 17.01 |
NN Cep | 434625997 | 2.05830 | EA | A5 | 8.28 |
TYC 683-640-1 | 450089997 | 2.46305 | EA | F | 13.87 |
UY Vir | 452734608 | 1.99445 | EA/D | A7V | 17.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkrtichian, D.; Gunsriviwat, K.; Lehmann, H.; Engelbrecht, C.; Tkachenko, A.; Nazarenko, V. Mass-Accreting Pulsating Components of Algols. Galaxies 2022, 10, 97. https://doi.org/10.3390/galaxies10050097
Mkrtichian D, Gunsriviwat K, Lehmann H, Engelbrecht C, Tkachenko A, Nazarenko V. Mass-Accreting Pulsating Components of Algols. Galaxies. 2022; 10(5):97. https://doi.org/10.3390/galaxies10050097
Chicago/Turabian StyleMkrtichian, David, Khemsinan Gunsriviwat, Holger Lehmann, Chris Engelbrecht, Andrew Tkachenko, and Victor Nazarenko. 2022. "Mass-Accreting Pulsating Components of Algols" Galaxies 10, no. 5: 97. https://doi.org/10.3390/galaxies10050097
APA StyleMkrtichian, D., Gunsriviwat, K., Lehmann, H., Engelbrecht, C., Tkachenko, A., & Nazarenko, V. (2022). Mass-Accreting Pulsating Components of Algols. Galaxies, 10(5), 97. https://doi.org/10.3390/galaxies10050097