Particle Motion and Plasma Effects on Gravitational Weak Lensing in Lorentzian Wormhole Spacetime
Abstract
:1. Introduction
2. Wormhole Spacetime Metric and Geodesic Equation
Stable Circular Orbits
3. Weak-Field Lensing
3.1. Uniform Plasma
3.2. Non-Uniform Plasma
4. Conclusions
- The radii of photon orbit and ISCO were obtained in Lorentzian wormhole spacetime. We found that with increasing dimensionless wormhole parameter the radii of ISCO and photon sphere decreased, and consequently approached the central wormhole object.
- We analysed the behaviour of the effective potential, and clearly showed that as a consequence of the effect of , circular orbits shifted towards the central wormhole object.
- It is well-known that the optical properties of compact objects are very important in testing general relativity versus alternate theories of gravity. In fact, gravitational lensing effect plays the crucial determining role for astrophysical observations. With this motivation, we studied the deflection angle of the light propagation under the gravitational field of Lorentzian wormhole. Uniform and non-uniform (SIS) plasma cases were considered for gravitational weak lensing. We found that the influence of the plasma and on the gravitational lensing was noticeable. Namely, with increasing the deflection angle also increased, and this was also true when the plasma medium effect was taken into account. We found that the deflection angle for wormhole geometry was either as large as or slightly larger than the value for the Schwarzschild black hole case.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. (Virgo and LIGO Scientific Collaborations). Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. (Virgo and LIGO Scientific Collaborations). Properties of the Binary Black Hole Merger GW150914. Phys. Rev. Lett. 2016, 116, 241102. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. (Event Horizon Telescope Collaboration). First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. (Event Horizon Telescope Collaboration). First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. 2019, 875, L6. [Google Scholar] [CrossRef]
- Lacroix, T. Dynamical constraints on a dark matter spike at the Galactic centre from stellar orbits. Astron. Astrophys. 2018, 619, A46. [Google Scholar] [CrossRef]
- Nucita, A.A.; De Paolis, F.; Ingrosso, G.; Qadir, A.; Zakharov, A.F. Sgr A*: A Laboratory to Measure the Central Black Hole and Stellar Cluster Parameters. PASP 2007, 119, 349–359. [Google Scholar] [CrossRef]
- Ghez, A.M.; Salim, S.; Hornstein, S.D.; Tanner, A.; Lu, J.R.; Morris, M.; Becklin, E.E.; Duchêne, G. Stellar Orbits around the Galactic Center Black Hole. Astrophys. J. 2005, 620, 744–757. [Google Scholar] [CrossRef] [Green Version]
- Ghez, A.M.; Morris, M.; Becklin, E.E.; Tanner, A.; Kremenek, T. The accelerations of stars orbiting the Milky Way’s central black hole. Nature 2000, 407, 349–351. [Google Scholar] [CrossRef]
- Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Lorentzian Wormholes. From Einstein to Hawking; Springer: Cham, Switzerland, 1995. [Google Scholar]
- Bambi, C.; Stojkovic, D. Astrophysical Wormholes. Universe 2021, 7, 136. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. D 1935, 48, 73. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poisson, E.; Visser, M. Thin-shell wormholes: Linearization stability. Phys. Rev. D 1995, 52, 7318–7321. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Kar, S.; Dadhich, N. Traversable Wormholes with Arbitrarily Small Energy Condition Violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, F.S. Phantom energy traversable wormholes. Phys. Rev. D 2005, 71, 084011. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S. Stability of phantom wormholes. Phys. Rev. D 2005, 71, 124022. [Google Scholar] [CrossRef] [Green Version]
- Clement, G. Axisymmetric regular multiwormhole solutions in five-dimensional general relativity. Gen. Relativ. Gravit. 1984, 16, 477–489. [Google Scholar] [CrossRef]
- Clément, G. Axisymmetric multiwormholes revisited. Gen. Relativ. Gravit. 2016, 48, 76. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh, M.R.; Zangeneh, M.K.; Lobo, F.S.N. Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D 2015, 91, 084004. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdizadeh, M.R.; Zangeneh, M.K.; Lobo, F.S.N. Higher-dimensional thin-shell wormholes in third-order Lovelock gravity. Phys. Rev. D 2015, 92, 044022. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Jamil, M.; Pavlovic, P.; Sossich, M. Cosmological wormholes in f (R ) theories of gravity. Phys. Rev. D 2016, 94, 044041. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Camci, U.; Capozziello, S.; Jamil, M. Scalar-tensor teleparallel wormholes by Noether symmetries. Phys. Rev. D 2016, 94, 084042. [Google Scholar] [CrossRef]
- Jusufi, K.; Banerjee, A.; Ghosh, S.G. Wormholes in 4D Einstein-Gauss-Bonnet gravity. Eur. Phys. J. C 2020, 80, 698. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Knoll, C.; Radu, E. Traversable Wormholes in Einstein-Dirac-Maxwell Theory. Phys. Rev. Lett. 2021, 126, 101102. [Google Scholar] [CrossRef]
- Tomikawa, Y.; Shiromizu, T.; Izumi, K. Wormhole on DGP brane. Phys. Rev. D 2014, 90, 126001. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Bambi, C. Distinguishing black holes and wormholes with orbiting hot spots. Phys. Rev. D 2014, 90, 024071. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with x-ray reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.C.; Stojkovic, D. Observing a wormhole. Phys. Rev. D 2019, 100, 083513. [Google Scholar] [CrossRef] [Green Version]
- Piotrovich, M.Y.; Krasnikov, S.V.; Buliga, S.D.; Natsvlishvili, T.M. Search for wormhole candidates in active galactic nuclei: Radiation from colliding accreting flows. Mon. Not. Roy. Astron. Soc. 2020, 498, 3684–3686. [Google Scholar] [CrossRef]
- De Falco, V.; De Laurentis, M.; Capozziello, S. Epicyclic frequencies in static and spherically symmetric wormhole geometries. arXiv 2016. [Google Scholar]
- Abdujabbarov, A.; Juraev, B.; Ahmedov, B.; Stuchlík, Z. Shadow of rotating wormhole in plasma environment. Astrophys. Space. Sci. 2016, 361, 226. [Google Scholar] [CrossRef]
- Narzilloev, B.; Malafarina, D.; Abdujabbarov, A.; Ahmedov, B.; Bambi, C. Particle motion around a static axially symmetric wormhole. arXiv 2021, arXiv:2105.09174. [Google Scholar]
- Nampalliwar, S.; Saurabh, K.; Jusufi, K.; Wu, Q.; Jamil, M.; Salucci, P. Modelling the Sgr A* Black Hole Immersed in a Dark Matter Spike. arXiv 2021, arXiv:2103.12439. [Google Scholar]
- Azreg-Aïnou, M. Confined-exotic-matter wormholes with no gluing effects—Imaging supermassive wormholes and black holes. JCAP 2015, 2015, 037. [Google Scholar] [CrossRef] [Green Version]
- Khodadi, M.; Allahyari, A.; Vagnozzi, S.; Mota, D.F. Black holes with scalar hair in light of the Event Horizon Telescope. JCAP 2020, 2020, 026. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Banerjee, A.; Sakallı, İ. Gravitational lensing by wormholes supported by electromagnetic, scalar, and quantum effects. Eur. Phys. J. Plus 2019, 134, 428. [Google Scholar] [CrossRef] [Green Version]
- Jusufi, K.; Ã-vgün, A. Gravitational lensing by rotating wormholes. Phy. Rev. D 2018, 97, 024042. [Google Scholar] [CrossRef] [Green Version]
- Schee, J.; Stuchlík, Z. Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes. JCAP 2015, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Shaymatov, S.; Malafarina, D.; Ahmedov, B. Effect of perfect fluid dark matter on particle motion around a static black hole immersed in an external magnetic field. arXiv 2020, arXiv:2004.06811. [Google Scholar]
- Shaymatov, S.; Vrba, J.; Malafarina, D.; Ahmedov, B.; Stuchlík, Z. Charged particle and epicyclic motions around 4 D Einstein-Gauss-Bonnet black hole immersed in an external magnetic field. Phys. Dark Universe 2020, 30, 100648. [Google Scholar] [CrossRef]
- Narzilloev, B.; Rayimbaev, J.; Shaymatov, S.; Abdujabbarov, A.; Ahmedov, B.; Bambi, C. Dynamics of test particles around a Bardeen black hole surrounded by perfect fluid dark matter. Phys. Rev. D 2020, 102, 104062. [Google Scholar] [CrossRef]
- Shaymatov, S.; Atamurotov, F. Geodesic Circular Orbits Sharing the Same Orbital Frequencies in the Black String Spacetime. Galaxies 2021, 9, 40. [Google Scholar] [CrossRef]
- Shaymatov, S.; Narzilloev, B.; Abdujabbarov, A.; Bambi, C. Charged particle motion around a magnetized Reissner-Nordström black hole. Phys. Rev. D 2021, 103, 124066. [Google Scholar] [CrossRef]
- Düztaş, K.; Jamil, M.; Shaymatov, S.; Ahmedov, B. Testing Cosmic Censorship Conjecture for Extremal and Near-extremal (2+1)-dimensional MTZ Black Holes. Class. Quantum Grav. 2020, 37, 175005. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational lensing in a non-uniform plasma. Mon. Not. R. Astron. Soc. 2010, 404, 1790–1800. [Google Scholar] [CrossRef] [Green Version]
- Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. ‘On Gravitational Lensing in the Presence of a Plasma’. Gravit. Cosmol. 2012, 18, 117. [Google Scholar] [CrossRef]
- Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Gravitational lensing in plasma: Relativistic images at homogeneous plasma. Phys. Rev. D 2013, 87, 124009. [Google Scholar] [CrossRef] [Green Version]
- Morozova, V.S.; Ahmedov, B.J.; Tursunov, A.A. Gravitational lensing by a rotating massive object in a plasma. Astrophys. Space Sci. 2013, 346, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Babar, G.Z.; Atamurotov, F.; Ul Islam, S.; Ghosh, S.G. Particle acceleration around rotating Einstein-Born-Infeld black hole and plasma effect on gravitational lensing. Phys. Rev. D 2021, 103, 084057. [Google Scholar] [CrossRef]
- Hakimov, A.; Atamurotov, F. ‘Gravitational lensing by a non-Schwarzschild black hole in a plasma’. Astrophys. Space. Sci. 2016, 361, 112. [Google Scholar] [CrossRef]
- Babar, G.Z.; Babar, A.Z.; Atamurotov, F. Optical properties of Kerr–Newman spacetime in the presence of plasma. Eur. Phys. J. C 2020, 80, 761. [Google Scholar] [CrossRef]
- Benavides-Gallego, C.; Abdujabbarov, A.; Bambi, C. ‘Gravitational lensing for a boosted Kerr black hole in the presence of plasma’. Eur. Phys. J. C 2018, 78, 694. [Google Scholar] [CrossRef]
- Abdujabbarov, A.; Ahmedov, B.; Dadhich, N.; Atamurotov, F. ‘Optical properties of a braneworld black hole: Gravitational lensing and retrolensing’. Phys. Rev. D. 2017, 96, 084017. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Saavedra, J.; Vásquez, Y.; González, P.A. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phy. Rev. D 2018, 97, 124024. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.U.; Kumar, R.; Ghosh, S.G. Gravitational lensing by black holes in the 4D Einstein-Gauss-Bonnet gravity. JCAP 2020, 2020, 030. [Google Scholar] [CrossRef]
- Atamurotov, F.; Shaymatov, S.; Sheoran, P.; Siwach, S. Charged black hole in 4D Einstein-Gauss-Bonnet gravity: Particle motion, plasma effect on weak gravitational lensing and centre-of-mass energy. arXiv 2021, arXiv:2105.02214. [Google Scholar]
- Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D 2018, 97, 124016. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D. 2007, 76, 024016. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Babar, G.Z.; Atamurotov, F.; Babar, A.Z. Gravitational lensing in 4-D Einstein-Gauss-Bonnet gravity in the presence of plasma. Phys. Dark Universe 2021, 32, 100798. [Google Scholar] [CrossRef]
- Atamurotov, F.; Abdujabbarov, A.; Rayimbaev, J. ‘Weak gravitational lensing Schwarzschild-MOG black hole in plasma’. Eur. Phys. J. C 2021, 81, 118. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atamurotov, F.; Shaymatov, S.; Ahmedov, B. Particle Motion and Plasma Effects on Gravitational Weak Lensing in Lorentzian Wormhole Spacetime. Galaxies 2021, 9, 54. https://doi.org/10.3390/galaxies9030054
Atamurotov F, Shaymatov S, Ahmedov B. Particle Motion and Plasma Effects on Gravitational Weak Lensing in Lorentzian Wormhole Spacetime. Galaxies. 2021; 9(3):54. https://doi.org/10.3390/galaxies9030054
Chicago/Turabian StyleAtamurotov, Farruh, Sanjar Shaymatov, and Bobomurat Ahmedov. 2021. "Particle Motion and Plasma Effects on Gravitational Weak Lensing in Lorentzian Wormhole Spacetime" Galaxies 9, no. 3: 54. https://doi.org/10.3390/galaxies9030054
APA StyleAtamurotov, F., Shaymatov, S., & Ahmedov, B. (2021). Particle Motion and Plasma Effects on Gravitational Weak Lensing in Lorentzian Wormhole Spacetime. Galaxies, 9(3), 54. https://doi.org/10.3390/galaxies9030054