Why Masses of Binary Black Hole Mergers Are Overestimated? †
Abstract
:1. Introduction
2. Basic Relationship for Detected Frequencies
- (i)
- a Doppler component caused by the movement of the source or the observer with respect to its neighborhood,
- (ii)
- a cosmological component caused by the expansion of the universe,
- (iii)
- a gravitational component caused by the change of frequency of waves in a gravitational field.
3. Neglected Gravitational Redshift in Detections of Gravitational Waves
4. Other Arguments
5. Concluding Remarks
- (a)
- The key formula (2) possesses several essential drawbacks which are described in Section 2.
- (b)
- (c)
- No mechanism is known which would produce binary stellar black holes with masses greater than 50 solar masses, see Remark 1.
- (d)
- There is a large statistically significant mass gap between all known black hole mergers and binary neutron stars, see Remark 2.
- (e)
- Our hypothesis yields a more reliable size of the wave zone than in [4], see Remark 3.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Einstein, A. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Preußischen Akademie der Wissenschaften 1916, 1, 688–696. [Google Scholar]
- Einstein, A. Über Gravitationswellen. Sitzungsberichte der Preußischen Akademie der Wissenschafte 1918, 1, 154–167. [Google Scholar]
- Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 2014, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational wave from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Blanchet, L.; Damour, T.; Iyer, B.R.; Will, C.M.; Wiseman, A.G. Gravitational-radiation damping of compact binary systems to second post-Newtonian order. Phys. Rev. Lett. 1995, 74, 3515–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, C.; Flanagan, E.E. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D 1994, 49, 2658–2697. [Google Scholar] [CrossRef] [Green Version]
- Mroue, A.H.; Scheel, M.A.; Szilagyi, B.; Pfeiffer, H.P.; Boyle, M.; Hemberger, D.A.; Kidder, L.E.; Lovelace, G.; Ossokine, S.; Taylor, N.W.; et al. Catalog of 174 binary black hole simulations for gravitational wave astronomy. Phys. Rev. Lett. 2013, 111, 241104. [Google Scholar] [CrossRef] [PubMed]
- Centrella, J.; Baker, J.G.; Kelly, B.J.; van Meter, J.R. Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 2010, 82, 3069. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, H.P. Numerical simulations of compact object binaries. Class. Quantum Gravity 2012, 29, 124004. [Google Scholar] [CrossRef] [Green Version]
- Rektorys, K. Survey of Applicable Mathematics II; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Brandts, J.; Křížek, M.; Zhang, Z. Paradoxes in numerical calculations. Neural Netw. World 2016, 26, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Segeth, K. From measured data to their mathematical description by a function. Pokroky Mat. Fyz. Astronom. 2015, 60, 133–147. [Google Scholar]
- Available online: https://www.ligo.org (accessed on 28 January 2022).
- Available online: https://www.gw-openscience.org (accessed on 28 January 2022).
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- Scientific, L.I.G.O.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar]
- Abbott, B.P.; Bloemen, S.; Canizares, P.; Falcke, H.; Fender, R.P.; Ghosh, S.; Groot, P.; Hinderer, T.; Hörandel, J.R.; Jonker, P.G.; et al. Multi-messenger observation of a binary neutron star merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Klimenko, S.; Vedovato, G.; Drago, M.; Salemi, F.; Tiwari, V.; Prodi, G.A.; Lazzaro, C.; Ackley, K.; Tiwari, S.; Da Silva, C.F.; et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys. Rev. D 2016, 93, 042004. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://ned.ipac.caltech.edu/help/cosmology_calc.html (accessed on 28 January 2022).
- Křížek, M. Possible distribution of mass inside a black hole. Is there any upper limit on mass density? Astrophys. Space Sci. 2019, 364, 188. [Google Scholar] [CrossRef]
- Corral-Santana, J.M.; Casares, J.; Muñoz-Darias, T.; Bauer, F.E.; Martínez-Pais, I.G.; Russell, D.M. BlackCAT: A catalogue of stellar-mass black holes in X-ray transients. Astronom. Astrophys. 2016, 587, A61. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, T.; Diego, J.M.; Smoot, G. Reinterpreting low frequency LIGO/Virgo events as magnified stellar-mass black holes at cosmological distances. arXiv 2018, arXiv:1802.05273. [Google Scholar]
- Casares, J. Observational evidence for stellar-mass black holes. Proc. Int. Astron. Union 2006, 2, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; McClintock, J.E. Observational evidence for black holes. arXiv 2013, arXiv:1312.6698v2. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A binary black hole merger with a total mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.A.; Kochanek, C.S.; Stanek, K.Z.; Badenes, C.; Post, R.S.; Jayasinghe, T.; Latham, D.W.; Bieryla, A.; Esquerdo, G.A.; Berlind, P.; et al. A noninteracting low-mass black hole-giant star binary system. Science 2019, 366, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, S.; Cao, Z. Mass-redshift degeneracy for gravitational-wave sources in the vicinity of a supermassive black hole. arXiv 2017, arXiv:1703.10543v2. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Ten Lectures on Wavelets; CBMS Lecture Notes 61; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Meyer, Y. Wavelets. Algorithms & Applications; SIAM: Philadelphia, PA, USA, 1993. [Google Scholar]
- Creswell, J.; Von Hausegger, S.; Jackson, A.D.; Liu, H.; Naselsky, P. On the time lags of the LIGO signals. J. Cosmol. Astropart. Phys. 2017, 2017, 13. [Google Scholar] [CrossRef]
- Liu, H.; Jackson, A.D. Possible associated signal with GW150914 in the LIGO data. J. Cosmol. Astropart. Phys. 2016, 1610, 14. [Google Scholar] [CrossRef] [Green Version]
- Naselsky, P.; Jackson, A.D.; Liu, H. Understanding the LIGO GW150914 event. J. Cosmol. Astropart. Phys. 2016, 1608, 29. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H. Strange noise in gravitational-wave data sparks debate. Quanta Magazine, 30 June 2017; 6. [Google Scholar]
- Maggiore, M. Gravitational Waves, Vol. 2. Astrophysics and Cosmology; Oxford Scholarship Online: Oxford, UK, 2018. [Google Scholar]
- Rektorys, K. Survey of Applicable Mathematics I; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Schutz, B.F. Network of gravitational wave detectors and three figures of merit. Class. Quantum Gravity 2011, 28, 125023. [Google Scholar] [CrossRef] [Green Version]
R | 2r | 3r | 4r | 5r |
---|---|---|---|---|
z | 0.414 | 0.225 | 0.155 | 0.118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Křížek, M.; Somer, L. Why Masses of Binary Black Hole Mergers Are Overestimated? Galaxies 2022, 10, 52. https://doi.org/10.3390/galaxies10020052
Křížek M, Somer L. Why Masses of Binary Black Hole Mergers Are Overestimated? Galaxies. 2022; 10(2):52. https://doi.org/10.3390/galaxies10020052
Chicago/Turabian StyleKřížek, Michal, and Lawrence Somer. 2022. "Why Masses of Binary Black Hole Mergers Are Overestimated?" Galaxies 10, no. 2: 52. https://doi.org/10.3390/galaxies10020052
APA StyleKřížek, M., & Somer, L. (2022). Why Masses of Binary Black Hole Mergers Are Overestimated? Galaxies, 10(2), 52. https://doi.org/10.3390/galaxies10020052