Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287
Abstract
:1. Introduction
1.1. OJ 287 and Its BH Binary Central Engine Description
1.2. Multi-Wavelength Emission of OJ 287 and Previous and Ongoing Monitoring Campaigns
2. Accretion Disk in OJ 287
3. Anisotropically Expanding BH Impact Generated Bubbles
4. Possible Spectroscopic Implications of the Evolving BH Impact Generated Bubbles
5. Explaining Observed Gamma Ray Flares
6. Optical Multicolor Photometry at Minimum Light
7. The Radio Jet
8. On the Presence of Secondary BH Accretion Disk
9. Are There More OJ 287-like Systems?
10. Pulsar Timing Array Response to nHz GWs from OJ 287’s SMBH Binary Engine
11. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307. [Google Scholar] [CrossRef]
- Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. Binary Pairs of Supermassive Black Holes: Formation in Merging Galaxies. Astrophys. J. 1989, 343, 47. [Google Scholar] [CrossRef]
- Mikkola, S.; Valtonen, M.J. Evolution of binaries in the field of light particles and the problem of two black holes. Mon. Not. R. Astron. Soc. 1992, 259, 115. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.J. Triple black hole systems formed in mergers of galaxies. Mon. Not. R. Astron. Soc. 1996, 278, 186. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, G.D. The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background. New Astron. 1996, 1, 35. [Google Scholar] [CrossRef] [Green Version]
- Milosavljevic, M.; Merritt, D. Formation of Galactic Nuclei. Astrophys. J. 2001, 563, 34. [Google Scholar] [CrossRef] [Green Version]
- Volonteri, M.; Haardt, F.; Madau, P. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophys. J. 2003, 582, 559. [Google Scholar] [CrossRef]
- Sesana, A.; Haardt, F.; Madau, P.; Volonteri, M. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies. Astrophys. J. 2004, 611, 623. [Google Scholar] [CrossRef] [Green Version]
- Burke-Spolaor, S.; Blecha, L.; Bogdanovic, T.; Comerford, J.M.; Lazio, J.; Liu, X.; Maccarone, T.J.; Pesce, D.; Shen, Y.; Taylor, G. Supermassive Black Hole Pairs and Binaries. Sci. Next Gener. Very Large Array 2018, 517, 677. [Google Scholar]
- Burke-Spolaor, S.; Taylor, S.R.; Charisi, M.; Dolch, T.; Hazboun, J.S.; Holgado, A.M.; Kelley, L.Z.; Lazio, T.J.W.; Madison, D.R.; McMann, N.; et al. The astrophysics of nanohertz gravitational waves. Astron. Astrophys. Rev. 2019, 27, 5. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z.; Baker, P.T.; Blumer, H.; Becsy, B.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Chatterjee, S.; Chen, S.; Cordes, J.M.; et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. 2020, 905, L34. [Google Scholar] [CrossRef]
- Goncharov, B.; Shannon, R.M.; Reardon, D.J.; Hobbs, G.; Zic, A.; Bailes, M.; Curylo, M.; Dai, S.; Kerr, M.; Lower, M.E.; et al. On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. 2021, 917, L19. [Google Scholar] [CrossRef]
- Chen, S.; Caballero, R.N.; Guo, Y.J.; Chalumeau, A.; Liu, K.; Shaifullah, G.; Lee, K.J.; Babak, S.; Desvignes, G.; Parthasarathy, A.; et al. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search. Mon. Not. R. Astron. Soc. 2021, 508, 4970. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affelt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar]
- Xin, C.; Mingarelli, C.M.F.; Hazboun, J.S. Multimessenger Pulsar Timing Array Constraints on Supermassive Black Hole Binaries Traced by Periodic Light Curves. Astrophys. J. 2021, 915, 97. [Google Scholar] [CrossRef]
- Sillanpää, A.; Haarala, S.; Valtonen, M.J.; Sundelius, B.; Byrd, G.G. OJ 287: Binary Pair of Supermassive Black Holes. Astrophys. J. 1988, 325, 628. [Google Scholar] [CrossRef]
- Sudou, H.; Iguchi, S.; Murata, Y.; Taniguchi, Y. Orbital Motion in the Radio Galaxy 3C 66B: Evidence for a Supermassive Black Hole Binary. Science 2003, 300, 1263. [Google Scholar] [CrossRef] [Green Version]
- Jenet, F.A.; Lommen, A.; Larson, S.L.; Wen, L. Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B. Astrophys. J. 2004, 606, 799. [Google Scholar] [CrossRef]
- Iguchi, S.; Okuda, T.; Sudou, H. A Very Close Binary Black Hole in a Giant Elliptical Galaxy 3C 66B and its Black Hole Merger. Astrophys. J. 2010, 724, L166. [Google Scholar] [CrossRef]
- Liu, F.K.; Li, S.; Komossa, S. A Milliparsec Supermassive Black Hole Binary Candidate in the Galaxy SDSS J120136.02+300305.5. Astrophys. J. 2014, 786, 103. [Google Scholar] [CrossRef]
- Graham, M.J.; Djorgovski, S.G.; Stern, D.; Glikman, E.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Larson, S.; Christensen, E. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 2015, 518, 74. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Thrane, E. Toward the Unambiguous Identification of Supermassive Binary Black Holes through Bayesian Inference. Astrophys. J. 2020, 900, 117. [Google Scholar] [CrossRef]
- Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A.M.; Graham, M.J.; Bellm, E.C.; Laher, R.R.; Marka, S. A population of short-period variable quasars from PTF as supermassive black hole binary candidates. Mon. Not. R. Astron. Soc. 2016, 463, 2145. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.-J.; Cui, W.; Thrane, E. The minimum and maximum gravitational-wave background from supermassive binary black holes. Mon. Not. R. Astron. Soc. 2019, 482, 2588. [Google Scholar] [CrossRef] [Green Version]
- Dey, L.; Gopakumar, A.; Valtonen, M.; Zola, S.; Susobhanan, A.; Hudec, R.; Pihajoki, P.; Pursimo, T.; Berdyugin, A.; Piirola, V.; et al. The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine. Universe 2019, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Li, D.; Zheng, Z.; Tsai, C.-W. Supermassive binary black hole evolution can be traced by a small SKA pulsar timing array. Phys. Rev. D 2020, 102, 023014. [Google Scholar] [CrossRef]
- Dickel, J.R.; Yang, K.S.; McVittie, G.C.; Swenson, G.W., Jr. A survey of the sky at 610.5 MHz. II. The region between declinations +15 and +22 degrees. Astron. J. 1967, 72, 757. [Google Scholar] [CrossRef]
- Hudec, R.; Basta, M.; Pihajoki, P.; Valtonen, M. The historical 1900 and 1913 outbursts of the binary blazar candidate OJ287. Astron. Astrophys. 2013, 559, 20. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.J.; Lehto, H.J.; Sillanpää, A.; Nilsson, K.; Mikkola, S.; Hudec, R.; Basta, M.; Teräsranta, H.; Haque, S.; Rampadarath, H. Predicting the Next Outbursts of OJ 287 in 2006–2010. Astrophys. J. 2006, 646, 36–48. [Google Scholar] [CrossRef]
- Dey, L.; Valtonen, M.J.; Gopakumar, A.; Zola, S.; Hudec, R.; Pihajoki, P.; Ciprini, S.; Matsumoto, K.; Sadakane, K.; Kidger, M.; et al. Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Astrophys. J. 2018, 866, 11. [Google Scholar] [CrossRef] [Green Version]
- Laine, S.; Dey, L.; Valtonen, M.; Gopakumar, A.; Zola, S.; Komossa, S.; Kidger, M.; Pihajoki, P.; Gomez, J.L.; Caton, D.; et al. Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287. Astrophys. J. Lett. 2020, 894, L1. [Google Scholar] [CrossRef]
- Kidger, M. Cosmological Enigmas: Pulsars, Quasars, and Other Deep-Space Questions; The Johns Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Smith, P.S.; Balonek, T.J.; Heckert, P.A.; Elston, R.; Schmidt, G.D. UBVRI field comparison stars for selected active quasars and BL Lacertae objects. Astron. J. 1985, 90, 1184–1187. [Google Scholar] [CrossRef]
- Sillanpää, A.; Teerikorpi, P.; Haarala, S.; Korhonen, T.; Efimov, I.S.; Shakhovskoi, N.M. Similar structures in the outbursts of OJ 287 in 1972 and 1983. Astron. Astrophys. 1985, 147, 67–70. [Google Scholar]
- Sillanpää, A.; Takalo, L.O.; Pursimo, T.; Lehto, H.J.; Nilsson, K.; Teerikorpi, P.; Heinämäki, P.; Kidger, M.; de Diego, J.A.; Gonzalez-Perez, J.N.; et al. Confirmation of the 12-year optical outburst cycle in blazar OJ 287. Astron. Astrophys. 1996, 305, L17. [Google Scholar]
- Lehto, H.J.; Valtonen, M.J. OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J. 1996, 460, 207. [Google Scholar] [CrossRef]
- Valtonen, M.J. The OJ 287 binary model and the expected outburst in November 1995. In Proceedings of the Workshop on Two Years of Intensive Monitoring of OJ 287 and 3C 66A 1996, Oxford, UK, 11–14 September 1995. [Google Scholar]
- Sillanpää, A.; Takalo, L.O.; Pursimo, T.; Nilsson, K.; Heinämäki, P.; Katajainen, S.; Pietilä, H.; Hanski, M.; Rekola, R.; Kidger, M.; et al. Double-peak structure in the cyclic optical outbursts of blazar OJ 287. Astron. Astrophys. 1996, 315, L13–L16. [Google Scholar]
- Ivanov, P.B.; Igumenshchev, I.V.; Novikov, I.D. Hydrodynamics of Black Hole-Accretion Disk Collision. Astrophys. J. 1998, 507, 131–144. [Google Scholar] [CrossRef]
- Pihajoki, P. Black hole accretion disc impacts. Mon. Not. R. Astron. Soc. 2016, 457, 1145–1161. [Google Scholar] [CrossRef] [Green Version]
- Sundelius, B.; Wahde, M.; Lehto, H.J.; Valtonen, M.J. Long-time Brightness Variations of 0J287 in the Binary Black Hole Model. ASP-CS 1996, 110, 99. [Google Scholar]
- Sundelius, B.; Wahde, M.; Lehto, H.J.; Valtonen, M.J. A Numerical Simulation of the Brightness Variations of OJ 287. Astrophys. J. 1997, 484, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.J. New Orbit Solutions for the Precessing Binary Black Hole Model of OJ 287. Astrophys. J. 2007, 659, 1074–1081. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Nilsson, K.; Sillanpää, A.; Takalo, L.O.; Lehto, H.J.; Keel, W.C.; Haque, S.; Cornwall, D.; Mattingly, A. The 2005 November Outburst in OJ 287 and the Binary Black Hole Model. Astrophys. J. 2006, 643, L9–L12. [Google Scholar] [CrossRef]
- Valtonen, M.J. Sillanpää 2005–2010 Multiwavelength Campaing of OJ287. AcPol 2011, 51, 76. [Google Scholar]
- Valtonen, M.J.; Lehto, H.J.; Nilsson, K.; Heidt, J.; Takalo, L.O.; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G.; Pursimo, T.; et al. A massive binary black-hole system in OJ287 and a test of general relativity. Nature 2008, 452, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Valtonen, M.J.; Zola, S.; Ciprini, S.; Gopakumar, A.; Matsumoto, K.; Sadakane, K.; Kidger, M.; Gazeas, K.; Nilsson, K.; Berdyugin, A.; et al. (OJ287-15/16 Collaboration). Primary Black Hole Spin in OJ 287 as Determined by the General Relativity Centenary Flare. Astrophys. J. 2016, 819, L37. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Ciprini, S.; Lehto, H.J. On the masses of OJ287 black holes. Mon. Not. R. Astron. Soc. 2012, 427, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Kidger, M.; Zola, S.; Valtonen, M.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Tammi, J.; Liakos, A.; Poyner, G. Far-infrared photometry of OJ 287 with the Herschel Space Observatory. Astron. Astrophys. 2018, 610, A74. [Google Scholar] [CrossRef] [Green Version]
- Villata, M.; Raiteri, C.M.; Sillanpää, A.; Takalo, L.O. A beaming model for the OJ 287 periodic optical outbursts. Mon. Not. R. Astron. Soc. 1998, 293, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M. On the Geometrical Origin of Periodicity in Blazar-type Sources. Astrophys. J. 2004, 615, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Ciprini, S.; Perri, M.; Verreccha, F.; Valtonen, M. Fermi-LAT detection of hard spectrum and enhanced gamma-ray emission from the BL Lac object PKS 1717+177. Astronomer’s Telegr. 2015, 8401, 1. [Google Scholar]
- MacPherson, E.; Ister, J.C.; Urry, M.; Coppi, P.; Bailyn, C.; Dincer, T. SMARTS Enhanced Optical & Infrared Activity in Blazar OJ 287. Astronomer’s Telegr. 2015, 8392, 1. [Google Scholar]
- Shappee, B.J.; Stanek, K.Z.; Holoien, T.W.-S.; Brown, J.S.; Kochanek, C.S.; Godoy-Rivera, D.; Basu, U.; Prieto, J.L.; Bersier, D.; Dong, S.; et al. Strong Optical Flare from Blazar OJ 287 Detected by ASAS-SN. Astronomer’s Telegr. 2015, 8372, 1. [Google Scholar]
- Pursimo, T.; Takalo, L.O.; Sillanpää, A.; Kidger, M.; Lehto, H.J.; Heidt, J.; Charles, P.A.; Aller, H.; Aller, M.; Beckmann, V.; et al. Intensive monitoring of OJ 287. Astron. Astrophys. Suppl. Ser. 2000, 146, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Villforth, C.; Nilsson, K.; Heidt, J.; Takalo, L.O.; Pursimo, T.; Berdyugin, A.; Lindfors, E.; Pasanen, M.; Winiarski, M.; Drozdz, M.; et al. Variability and stability in blazar jets on time-scales of years: Optical polarization monitoring of OJ 287 in 2005–2009. Mon. Not. R. Astron. Soc. 2010, 402, 2087–2111. [Google Scholar] [CrossRef]
- Pursimo, T.; Takalo, L.O.; Sillanpää, A.; Kidger, M.; Lehto, H.J.; Heidt, J.; Charles, P.A.; Aller, H.; Aller, M.; Beckmann, V.; et al. VizieR Online Data Catalog: Intensive monitoring of OJ 287 (Pursimo+, 2000). VizieR Online Data Catalog 2021, J/A+AS, 141–146. [Google Scholar]
- Valtonen, M.J.; Zola, S.; Jermak, H.; Ciprini, S.; Hudec, R.; Dey, L.; Gopakumar, A.; Reichart, D.; Caton, D.; Gazeas, K.; et al. Polarization and Spectral Energy Distribution in OJ 287 during the 2016/17 Outbursts. Galaxies 2017, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Zola, S.; Valtonen, M.J.; Bhatta, G.; Goyal, A.; Debski, B.; Baran, A.; Krzesinski, J.; Siwak, M.; Ciprini, S.; Gopakumar, A.; et al. A Search for QPOs in the Blazar OJ287: Preliminary Results from the 2015/2016 Observing Campaign. Galaxies 2016, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; et al. Bright Active Galactic Nuclei Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey. Astrophys. J. 2009, 700, 597–622. [Google Scholar] [CrossRef] [Green Version]
- D’Arcangelo, F.D.; Marscher, A.P.; Jorstad, S.; Smith, P.S.; Larionov, V.M.; Hagen-Thorn, V.A.; Williams, G.G.; Gear, W.K.; Clemens, D.P.; Sarcia, D.; et al. Synchronous Optical and Radio Polarization Variability in the Blazar OJ287. Astrophys. J. 2009, 697, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Sitko, M.L.; Junkkarinen, V.T. Continuum and line fluxes of OJ 287 at minimum light. Publ. Astron. Soc. Pac. 1985, 97, 1158–1162. [Google Scholar] [CrossRef]
- Nilsson, K.; Takalo, L.O.; Lehto, H.J.; Sillanpää, A. H-alpha moni-toring of OJ 287 in 2005–2008. Astron. Astrophys. 2010, 516, A60. [Google Scholar] [CrossRef] [Green Version]
- Padovani, P.; Giommi, P. The Connection between X-Ray– and Radio-selected BL Lacertae Objects. Astrophys. J. 1995, 444, 567. [Google Scholar] [CrossRef] [Green Version]
- Jorstad, S.G.; Marscher, A.P.; Lister, M.L.; Stirling, A.M.; Cawthorne, T.V.; Gear, W.K.; Gomez, J.L.; Stevens, J.A.; Smith, P.S.; Forster, J.R.; et al. Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array. Astron. J. 2005, 130, 1418–1465. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, S.S.; Algaba, J.-C.; Hodgson, J.; Kim, J.-Y.; Park, J.; Kino, M.; Kim, D.-W.; Kang, S.; Yoo, S.; et al. Interferometric Monitoring of Gamma-Ray Bright AGNs: OJ 287. Astrophys. J. 2020, 902, 104. [Google Scholar] [CrossRef]
- Gomez, J.L.; Traianou, E.; Krichbaum, T.P.; Lobanov, A.; Fuentes, A.; Lico, R.; Zhao, G.-Y.; Bruni, G.; Kovalev, Y.Y.; Lähteenmäki, A.; et al. Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron. V. Space and ground millimeter-VLBI imaging of OJ 287. arXiv 2021, arXiv:2111.11200. [Google Scholar]
- Goddi, C.; Marti-Vidal, I.; Messias, H.; Bower, G.C.; Broderick, A.E.; Dexter, J.; Marrone, D.P.; Moscibrodzka, M.; Nagai, H.; Algaba, J.C.; et al. Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophys. J. Lett. 2021, 910, L14. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Krichbaum, T.P.; Marscher, A.P.; Jorstad, S.G.; Rani, B.; Marti-Vidal, I.; Bach, U.; Sanchez, S.; Bremer, M.; Lindqvist, M.; et al. Location of γ-ray emission and magnetic field strengths in OJ 287. Astron. Astrophys. 2017, 597, A80. [Google Scholar] [CrossRef] [Green Version]
- Agudo, I.; Marscher, A.P.; Jorstad, S.G.; Gomez, J.L.; Perucho, M.; Piner, P.G.; Rioja, M.; Dodson, R. Erratic Jet Wobbling in the BL Lacertae Object OJ287 Revealed by Sixteen Years of 7 mm VLBA Observations. Astrophys. J. 2011, 747, 63. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.J.; Pihajoki, P. A helical jet model for OJ287. Astron. Astrophys. 2013, 557, A28. [Google Scholar] [CrossRef]
- Dey, L.; Valtonen, M.J.; Gopakumar, A.; Lico, R.; Gomez, J.; Susobhanan, A.; Komossa, S.; Pihajoki, P. Explaining temporal variations in the jet PA of the blazar OJ 287 using its BBH central engine model. Mon. Not. R. Astron. Soc. 2021, 503, 4400–4412. [Google Scholar] [CrossRef]
- Shrader, C.R.; Hartman, R.C.; Webb, J.R. Probable detection of high-energy gamma-ray emission from OJ 287 during a major optical flare. Astron. Astrophys. Suppl. Ser. 1996, 120, 599–602. [Google Scholar]
- Agudo, I.; Jorstad, S.G.; Marscher, A.P.; Larionov, V.M.; Gomez, J.L.; Lähteenmäki, A.; Gurwell, M.; Smith, P.S.; Wiesemeyer, H.; Thum, C.; et al. Location of γ-ray Flare Emission in the Jet of the BL Lacertae Object OJ287 More than 14 pc from the Central Engine. Astrophys. J. 2011, 726, L13. [Google Scholar] [CrossRef]
- O’Brien, S.; For the VERITAS Collaboration. for the VERITAS Collaboration VERITAS detection of VHE emission from the optically bright quasar OJ 287. arXiv 2017, arXiv:1708.02160. [Google Scholar]
- Komossa, S.; Grupe, D.; Schartel, N.; Gallo, L.; Gomez, J.L.; Kollatschny, W.; Kriss, G.; Leighly, K.; Longinotti, A.L.; Parker, M.; et al. The Extremes of AGN Variability. IAUS New Front. Black Hole Astrophys. 2017, 324, 168–171. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Parker, M.L.; Valtonen, M.J.; Gómez, J.L.; Gopakumar, A.; Dey, L. The 2020 April-June super-outburst of OJ 287 and its long-term multiwavelength light curve with Swift: Binary supermassive black hole and jet activity. Mon. Not. R. Astron. Soc. 2020, 498, L35. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Gallo, L.C.; Gonzalez, A.; Yao, S.; Hollett, A.R.; Parker, M.L.; Ciprini, S. MOMO IV: The complete Swift X-ray and UV/optical light curve and characteristic variability of the blazar OJ 287 during the last two decades. Astrophys. J. 2021, 923, 51. [Google Scholar] [CrossRef]
- Madejski, G.M.; Schwartz, D.A. Studies of BL Lacertae Objects with the Einstein Observatory: The Soft X-Ray Spectra of OJ 287 and PKS 0735+178. Astrophys. J. 1988, 330, 776. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Parker, M.L.; Gómez, J.L.; Valtonen, M.J.; Nowak, M.A.; Jorstad, S.G.; Haggard, D.; Chandra, S.; Ciprini, S.; et al. X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005-2020). Mon. Not. R. Astron. Soc. 2021, 504, 5575. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G. The Megaparsec-scale X-ray Jet of The BL Lac Object OJ287. Astrophys. J. 2011, 729, 26. [Google Scholar] [CrossRef] [Green Version]
- Komossa, S.; Ciprini, S.; Dey, L.; Gallo, L.C.; Gomez, J.L.; Gonzalez, A.; Grupe, D.; Kraus, A.; Laine, S.; Parker, M.L.; et al. Supermassive Binary Black Holes and the Case of OJ 287. Publ. Astron. Obs. Belgrade 2021, 100, 29–42. Available online: https://publications.aob.rs/100/pdf/029-042.pdf (accessed on 15 November 2021).
- Komossa, S.; Grupe, D.; Kraus, A.; Gallo, L.C.; Gonzalez, A.G.; Parker, M.L.; Valtonen, M.J.; Hollett, A.R.; Bach, U.; Gomez, J.L.; et al. Project MOMO: Multiwavelength Observations and Modeling of OJ 287. Universe 2021, 7, 261. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Zola, S.; Pihajoki, P.; Enestam, S.; Lehto, H.J.; Dey, L.; Gopakumar, A.; Drozdz, M.; Ogloza, W.; Zejmo, M.; et al. Accretion Disk Parameters Determined from the Great 2015 Flare of OJ 287. Astrophys. J. 2019, 882, 88. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Lehto, H.J.; Takalo, L.O.; Sillanpää, A. Testing the 1995 Binary Black Hole Model of OJ287. Astrophys. J. 2011, 729, 33. [Google Scholar] [CrossRef]
- Pihajoki, P.; Valtonen, M.; Ciprini, S. Short time-scale periodicity in OJ 287. Mon. Not. R. Astron. Soc. 2013, 434, 3122–3129. [Google Scholar] [CrossRef]
- Takalo, L.O.; Kidger, M.; de Diego, J.A.; Sillanpää, A.; Piirola, V.; Teräsranta, H. A sudden fade of OJ 287. Astron. Astrophys. Suppl. Ser. 1990, 83, 459. [Google Scholar]
- Valtonen, M.J.; Zola, S.; Ciprini, S.; Kidger, T.; Pursimo, T.; Gopakumar, A.; Matsumoto, K.; Sadakane, K.; Caton, D.B.; Nilsson, K.; et al. Host galaxy magnitude of OJ287 from its colours at minimum light. Mon. Not. R. Astron. Soc. 2021; Submitted. [Google Scholar]
- Nilsson, K.; Kotilainen, J.; Valtonen, M.; Gomez, J.L.; Castro-Tirado, A.J.; Gopakumar, A.; Jeong, S.; Kidger, M.; Komossa, S.; Mathur, S.; et al. The Host Galaxy of OJ 287 Revealed by Optical and Near-infrared Imaging. Astrophys. J. 2020, 904, 102. [Google Scholar] [CrossRef]
- Sandage, A. Absolute Magnitudes of E and so Galaxies in the Virgo and Coma Clusters as a Function of U-B Color. Astrophys. J. 1972, 176, 21. [Google Scholar] [CrossRef]
- Graham, A.; Scott, N. The M BH-L spheroid Relation at High and Low Masses, the Quadratic Growth of Black Holes, and Intermediate-mass Black Hole Candidates. Astrophys. J. 2013, 764, 151. [Google Scholar] [CrossRef] [Green Version]
- De Vaucouleurs, G.; De Vaucouleurs, A. Photometry of Intergalactic Matter in the Coma Cluster. Astrophys. Lett. 1970, 5, 219. [Google Scholar]
- Läsker, R.; Ferrarese, L.; van de Ven, G. Supermassive Black Holes and Their Host Galaxies. II. The Correlation with Near-infrared Luminosity Revisited. Astrophys. J. 2014, 780, 70. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Ho, L.C.; Peng, C.Y.; Li, Z.-Y.; Barth, A.J. The Carnegie-Irvine Galaxy Survey. III. The Three-component Structure of Nearby Elliptical Galaxies. Astrophys. J. 2013, 766, 47. [Google Scholar] [CrossRef] [Green Version]
- Yanny, B.; Jannuzi, B.T.; Impey, C. Hubble Space Telescope Imaging of the BL Lacertae Object OJ 287. Astrophys. J. 1997, 484, L113–L116. [Google Scholar] [CrossRef] [Green Version]
- Saglia, R.P.; Opitsch, M.; Erwin, P.; Thomas, J.; Beifiori, A.; Fabricius, M.; Mazzalay, X.; Nowak, N.; Rusli, S.P.; Bender, R. The SINFONI Black Hole Survey: The Black Hole Fundamental Plane Revisited and the Paths of (Co)evolution of Supermassive Black Holes and Bulges. Astrophys. J. 2016, 818, 47. [Google Scholar] [CrossRef] [Green Version]
- Portinari, L.; Kotilainen, J.; Falomo, R.; Decarli, R. On the cosmological evolution of the black hole-host galaxy relation in quasars. Mon. Not. R. Astron. Soc. 2012, 420, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Hovatta, T.; Valtaoja, E.; Tornikoski, M.; Lähteenmäki, A. Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies. Astron. Astrophys. 2009, 494, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Pietilä, H.; Takalo, L.O.; Tosti, G.; Benitez, E.; Chiattelli, B.; Corradi, R.L.M.; Cox, G.; de Diego, J.A.; de Francesco, G.; Dultzin-Hacyan, D.; et al. OJ 287 and the predicted fade of 1998. Astron. Astrophys. 1999, 345, 760–768. [Google Scholar]
- Valtonen, M.J.; Gopakumar, A.; Mikkola, S.; Wiik, K.; Lehto, H.J. Black hole binary OJ287 as a testing platform for general relativity. arXiv 2012, arXiv:1208.4524. [Google Scholar] [CrossRef]
- Savolainen, T.; Homan, D.C.; Hovatta, T.; Kadler, M.; Kovalev, Y.Y.; Lister, M.L.; Ros, E.; Zensus, J.A. Relativistic beaming and gamma-ray brightness of blazars. Astron. Astrophys. 2010, 512, A24. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Wiik, K. Optical polarization angle and VLBI jet direction in the binary black hole model of OJ287. Mon. Not. R. Astron. Soc. 2012, 421, 1861–1867. [Google Scholar] [CrossRef] [Green Version]
- Heinzeller, D.; Duschl, W.J. On the Eddington limit in accretion discs. Mon. Not. R. Astron. Soc. 2007, 374, 1146–1154. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Abramowicz, M.A. Electromagnetic extraction of rotational energy from disc-fed black holes: The strength of the Blandford-Znajek process. Mon. Not. R. Astron. Soc. 1997, 292, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-Y.; Zhang, X.; Xiong, D.; Yu, X. Black Hole Mass, Jet Power, and Accretion in AGNs. Astron. J. 2015, 150, 8. [Google Scholar] [CrossRef] [Green Version]
- Valtaoja, E.; Lehto, H.; Teerikorpi, P.; Korhonen, T.; Valtonen, M.; Teräsranta, H.; Salonen, E.; Urpo, S.; Tiuri, M.; Piirola, V.; et al. A 15.7-min periodicity in OJ287. Nature 1985, 314, 148–149. [Google Scholar] [CrossRef]
- Pihajoki, P.; Valtonen, M.; Zola, S.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Koziel-Wierzbowska, D.; Provencal, J.; Nilsson, K.; et al. Precursor Flares in OJ 287. Astrophys. J. 2013, 764, 5. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.J.; Mikkola, S.; Merritt, D.; Gopakumar, A.; Lehto, H.J.; Hyvönen, T.; Rampadarath, H.; Saunders, R.; Basta, M.; Hudec, R. Measuring the Spin of the Primary Black Hole in OJ287. Astrophys. J. 2010, 709, 725. [Google Scholar] [CrossRef]
- Krolik, J.H.; Volonteri, M.; Dubois, Y.; Devriendt, J. Population Estimates for Electromagnetically Distinguishable Supermassive Binary Black Holes. Astrophys. J. 2019, 879, 110. [Google Scholar] [CrossRef]
- Komossa, S.; Zensus, J.A. Compact object mergers: Observations of supermassive binary black holes and stellar tidal disruption events. IAUS Star Clust. Black Holes Galaxies Across Cosm. Time 2016, 312, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Boetzel, Y.; Gopakumar, A.; Jetzer, P.; de Vittori, L. Fourier domain gravitational waveforms for precessing eccentric binaries. Phys. Rev. D 2018, 98, 104043. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Gopakumar, A.; Iyer, B.R. Phasing of gravitational waves from inspiralling eccentric binaries. Phys. Rev. D 2004, 70, 064028. [Google Scholar] [CrossRef] [Green Version]
- Susobhanan, A.; Gopakumar, A.; Hobbs, G.; Taylor, S.R. Pulsar timing array signals induced by black hole binaries in relativistic eccentric orbits. Phys. Rev. D 2020, 101, 043022. [Google Scholar] [CrossRef] [Green Version]
- Dey, L.; Susobhanan, A.; Gopakumar, A.; Valtonen, M. Pulsar Timing Array Signals Due to Inspiralling Spinning Massive Black Hole Binaries in Relativistic Eccentric Orbits. In preparation.
- Anholm, M.; Ballmer, S.; Creighton, J.D.E.; Price, L.R.; Siemens, X. Optimal strategies for gravitational wave stochastic background searches in pulsar timing data. Phys. Rev. D 2009, 79, 084030. [Google Scholar] [CrossRef] [Green Version]
- Königsdörffer, C.; Gopakumar, A. Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction. Phys. Rev. D 2005, 71, 024039. [Google Scholar] [CrossRef] [Green Version]
- Perera, B.B.P.; DeCesar, M.E.; Demorest, P.B.; Kerr, M.; Lentati, L.; Nice, D.C.; Oslowski, S.; Ransom, S.M.; Keith, M.J.; Arzoumanian, Z.; et al. The International Pulsar Timing Array: Second data release. Mon. Not. R. Astron. Soc. 2019, 490, 4666–4687. [Google Scholar] [CrossRef]
- Oikonomou, F.; Murase, K.; Padovani, P.; Resconi, E.; Mészáros, P. High-energy neutrino flux from individual blazar flares. Mon. Not. R. Astron. Soc. 2019, 489, 4347. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar]
Impact Time | Time of Flare | (AU) | Delay (yr) | Flare | |
---|---|---|---|---|---|
1971.11 | 1971.13 | 2860 | 0.34 | 0.72 | 1971.83 |
1972.71 | 1972.93 | 3930 | 0.20 | 1.66 | 1974.37 |
1982.83 | 1982.96 | 3160 | 0.30 | 0.81 | 1983.74 |
1984.07 | 1984.12 | 3250 | 0.28 | 0.91 | 1984.98 |
1994.48 | 1994.59 | 3610 | 0.23 | 1.31 | 1995.79 |
1995.82 | 1995.84 | 2940 | 0.33 | 0.76 | 1996.58 |
2005.11 | 2005.74 | 4360 | 0.16 | 2.31 | 2007.42 |
2007.68 | 2007.69 | 2740 | 0.36 | 0.65 | 2008.33 |
2013.48 | 2015.87 | 5000 | 0.12 | 3.52 | 2016.80 |
2019.56 | 2019.57 | 2740 | 0.36 | 0.65 | 2021.21 |
2021.92 | 2022.55 | 4360 | 0.16 | 2.31 | 2024.23 |
2031.40 | 2031.41 | 2900 | 0.33 | 0.74 | 2032.14 |
Time | Telescope | Strong Lines? | Secondary Line |
---|---|---|---|
2005.26 | VLT | no | (8059) |
2005.89 | VLT | no | (8092) |
2006.25 | VLT | no | (8059) |
2006.93 | VLT | no | (8637) |
2007.26 | VLT | no | (9405) |
2008.01 | VLT | no | [7418] |
2008.27 | VLT | no | [7787] |
2010.12 | NOT | no | 6438 |
2010.81 | NOT | no | 6494 |
2010.88 | NOT | no | 6499 |
2011.01 | NOT | no | 6506 |
2011.05 | NOT | no | 6508 |
2011.11 | NOT | no | 6512 |
2011.31 | NOT | no | 6521 |
2011.35 | NOT | no | 6522 |
2011.75 | NOT | no | 6538 |
2011.88 | NOT | no | 6542 |
2012.14 | NOT | no | 6549 |
2012.99 | NOT | no | 6564 |
2013.18 | NOT | no | 6566 |
2015.94 | Rozhen | no | (8273) |
2016.26 | Rozhen | no | (8300) |
2021.82 | NOT | no | 6708 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valtonen, M.J.; Dey, L.; Gopakumar, A.; Zola, S.; Komossa, S.; Pursimo, T.; Gomez, J.L.; Hudec, R.; Jermak, H.; Berdyugin, A.V. Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287. Galaxies 2022, 10, 1. https://doi.org/10.3390/galaxies10010001
Valtonen MJ, Dey L, Gopakumar A, Zola S, Komossa S, Pursimo T, Gomez JL, Hudec R, Jermak H, Berdyugin AV. Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287. Galaxies. 2022; 10(1):1. https://doi.org/10.3390/galaxies10010001
Chicago/Turabian StyleValtonen, Mauri J., Lankeswar Dey, Achamveedu Gopakumar, Staszek Zola, S. Komossa, Tapio Pursimo, Jose L. Gomez, Rene Hudec, Helen Jermak, and Andrei V. Berdyugin. 2022. "Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287" Galaxies 10, no. 1: 1. https://doi.org/10.3390/galaxies10010001
APA StyleValtonen, M. J., Dey, L., Gopakumar, A., Zola, S., Komossa, S., Pursimo, T., Gomez, J. L., Hudec, R., Jermak, H., & Berdyugin, A. V. (2022). Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287. Galaxies, 10(1), 1. https://doi.org/10.3390/galaxies10010001