# Cosmological Observations in a Modified Theory of Gravity (MOG)

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modified Gravity Theory

#### 2.1. Scalar-Tensor-Vector Gravity

#### 2.2. Point Particles in a Spherically Symmetric Field

#### 2.3. The MOG Poisson Equation

## 3. MOG and the Matter Power Spectrum

#### 3.1. Density Fluctuations in Newtonian Gravity

#### 3.1.1. Newtonian Theory of Small Fluctuations

#### 3.1.2. Analytical Approximation

#### 3.2. Density Fluctuations in Modified Gravity

**Figure 1.**The matter power spectrum. Three models are compared against five data sets (see text): Λ-cold dark matter (Λ-CDM) (dashed blue line, ${\Omega}_{b}=0.035$, ${\Omega}_{c}=0.245$, ${\Omega}_{\Lambda}=0.72$, $H=71$ km/s/Mpc), a baryon-only model (dotted green line, ${\Omega}_{b}=0.035$, $H=71$ km/s/Mpc) and modified gravity (MOG) (solid red line, $\alpha =19$, $\mu =5$ h Mpc${}^{-1}$, ${\Omega}_{b}=0.035$, $H=71$ km/s/Mpc), Data points are colored light blue [Sloan Digital Sky Survey (SDSS) 2006], gold (SDSS 2004), pink [Two-degree-Field (2dF)], light green [UK Schmidt Telescope (UKST)] and dark blue (CfA).

#### 3.3. Discussion

**Figure 2.**The effect of window functions on the power spectrum is demonstrated by applying the SDSS luminous red galaxy survey window functions to the MOG prediction. Baryonic oscillations are greatly dampened in the resulting curve (solid red line). A normalized linear $\Lambda -$CDM estimate is also shown (thin blue line) for comparison.

## 4. MOG and the CMB

`CMBFAST`[22]. Unfortunately, such software packages cannot easily be adapted for use with MOG. Instead, at the present time, we opt to use the excellent semi-analytical approximation developed by [23]. While not as accurate as numerical software, it lends itself more easily to nontrivial modifications, as the physics remain evident in the equations.

#### 4.1. Semi-Analytical Estimation of CMB Anisotropies

#### 4.2. The MOG CMB Spectrum

**Figure 3.**MOG and the acoustic power spectrum. Calculated using ${\Omega}_{M}=0.3$, ${\Omega}_{b}=0.035$, ${H}_{0}=71$ km/s/Mpc. Also shown are the raw Wilkinson Microwave Anisotropy Probe (WMAP) three-year data set (light blue), binned averages with horizontal and vertical error bars provided by the WMAP project (red) and data from the Boomerang experiment (green).

#### 4.3. Discussion

## 5. Conclusions

`CMBFAST`[22] and its derivatives, are ill suited for this investigation, as it is difficult to disentangle the use of quantities proportional to $G\rho $ in gravitational vs. nongravitational contexts. Before embarking on what seems to be a formidable task, we turned to a semi-analytical approximation [23]. While many of the approximations employed by [23] are not physically motivated, but numerical fitting formulae, nonetheless, the role played by quantities proportional to $G\rho $ can be clearly discerned, and the formulae can be suitably adapted. While we recognize that this is not a conclusive result, we find it nonetheless encouraging that the CMB acoustic power spectrum was faithfully reproduced.

## Acknowledgments

## Conflict of Interest

## References

- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.; et al. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys. J. Suppl. Ser.
**2009**, 180, 330–376. [Google Scholar] [CrossRef] - Moffat, J.W. Scalar-tensor-vector gravity theory. J. Cosmol. Astropart. Phys.
**2006**, 03, 004:1–004:18. [Google Scholar] [CrossRef] - Brownstein, J.R.; Moffat, J.W. Galaxy cluster masses without non-baryonic dark matter. Mon. Not. R. Astron. Soc.
**2006**, 367, 527–540. [Google Scholar] [CrossRef] - Brownstein, J.R.; Moffat, J.W. Galaxy rotation curves without nonbaryonic dark matter. Astrophys. J.
**2006**, 636, 721–741. [Google Scholar] [CrossRef] - Brownstein, J.R. Modified Gravity and the Phantom of Dark Matter. Ph.D. Thesis, Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada, 1 August 2009. [Google Scholar]
- Moffat, J.W.; Toth, V.T. Testing modified gravity with motion of satellites around galaxies. ArXiv E-Prints, 2007; arXiv:0708.1264. [Google Scholar]
- Moffat, J.W.; Toth, V.T. Testing modified gravity with globular cluster velocity dispersions. Astrophys. J.
**2008**, 680, 1158–1161. [Google Scholar] [CrossRef] - Brownstein, J.R.; Moffat, J.W. The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter. Mon. Not. R. Astron. Soc.
**2007**, 382, 29–47. [Google Scholar] [CrossRef] - Moffat, J.W. A new nonsymmetric gravitational theory. Phys. Lett. B
**1995**, 355, 447–452. [Google Scholar] [CrossRef] - Moffat, J.W. Gravitational theory, galaxy rotation curves and cosmology without dark matter. J. Cosmol. Astropart. Phys.
**2005**, 05, 003:1–003:28. [Google Scholar] [CrossRef] - Moffat, J.W.; Toth, V.T. Fundamental parameter-free solutions in Modified Gravity. Class. Quant. Grav.
**2009**, 26, 085002:1–085002:19. [Google Scholar] [CrossRef] - Moffat, J.W.; Toth, V.T. The bending of light and lensing in modified gravity. Mon. Not. R. Astron. Soc.
**2009**, 397, 1885–1992. [Google Scholar] [CrossRef] - Weinberg, S. Gravitation and Cosmology; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Padmanabhan, T. Structure Formation in the Universe; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Eisenstein, D.J.; Hu, W. Baryonic features in the matter transfer function. Astrophys. J.
**1998**, 496, 605–614. [Google Scholar] [CrossRef] - Tegmark, M.; Eisenstein, D.J.; Strauss, M.A.; Weinberg, D.H.; Blanton, M.R.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Hamilton, A.J.S.; Knapp, G.R.; et al. Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D
**2006**, 74, 123507:1–123507:34. [Google Scholar] [CrossRef] - Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey. Astrophys. J.
**2004**, 606, 702–740. [Google Scholar] [CrossRef] - Cole, S.; Percival, W.J.; Peacock, J.A.; Norberg, P.; Baugh, C.M.; Frenk, C.S.; Baldry, I.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc.
**2005**, 362, 505–534. [Google Scholar] [CrossRef] [Green Version] - Hoyle, F.; Baugh, C.M.; Shanks, T.; Ratcliffe, A. The Durham/UKST Galaxy Redshift Survey—VI. Power spectrum analysis of clustering. Mon. Not. R. Astron. Soc.
**1999**, 309, 659–671. [Google Scholar] [CrossRef] - Park, C.; Vogeley, M.S.; Geller, M.J.; Huchra, J.P. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey. Astrophys. J.
**1994**, 431, 569–585. [Google Scholar] [CrossRef] - Jones, W.C.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Cabella, P.; Contaldi, C.R.; Crill, B.P.; de Bernardis, P.; et al. A measurement of the angular power spectrum of the CMB temperature anisotropy from the 2003 flight of BOOMERANG. Astrophys. J.
**2006**, 647, 823–832. [Google Scholar] [CrossRef] [Green Version] - Seljak, U.; Zaldarriaga, M. A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophys. J.
**1996**, 469, 437–444. [Google Scholar] [CrossRef] - Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zahn, O.; Zaldarriaga, M. Probing the Friedmann Equation during recombination with future cosmic microwave background experiments. Phys. Rev. D
**2003**, 67, 063002:1–063002:11. [Google Scholar] [CrossRef]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Moffat, J.W.; Toth, V.T.
Cosmological Observations in a Modified Theory of Gravity (MOG). *Galaxies* **2013**, *1*, 65-82.
https://doi.org/10.3390/galaxies1010065

**AMA Style**

Moffat JW, Toth VT.
Cosmological Observations in a Modified Theory of Gravity (MOG). *Galaxies*. 2013; 1(1):65-82.
https://doi.org/10.3390/galaxies1010065

**Chicago/Turabian Style**

Moffat, John. W., and Viktor T. Toth.
2013. "Cosmological Observations in a Modified Theory of Gravity (MOG)" *Galaxies* 1, no. 1: 65-82.
https://doi.org/10.3390/galaxies1010065