Galaxies2013 1, 65-82; d0i:10.3390/galaxies1010065
: 9

galaxies

ISSN 2075-4434
www.mdpi.com/journal/galaxies
Article

Cosmological Observations in a Modified Theory of Gravity
(MOG)

John. W. Moffat 12 and Viktor T. Toth L*

I Perimeter Institute for Theoretical Physics, Waterloota®io N2L 2Y5, Canada;
E-Mail: jmoffat@perimeterinstitute.ca
2 Department of Physics and Astronomy, University of Watervaterloo, Ontario N2L 3G1, Canada

* Author to whom correspondence should be addressed; E-Mueith@vttoth.com;
Tel.: +1-519-569-7600; Fax: +1-519-569-7611.

Received: 10 May 2013 / Accepted: 15 June 2013 / Publishedu2® 2013

Abstract: Our Modified Gravity Theory (MOG) is a gravitational theorythout exotic dark
matter, based on an action principle. MOG has been usedssfallg to model astrophysical
phenomena, such as galaxy rotation curves, galaxy clusiese@s and lensing. MOG may
also be able to account for cosmological observations. \Wanas that the MOG point
source solution can be used to describe extended distrtsutif matter via an appropriately
modified Poisson equation. We use this result to model geation growth in MOG and find
that it agrees well with the observed matter power spectriuyonesent. As the resolution of
the power spectrum improves with increasing survey sizejelier, significant differences
emerge between the predictions of MOG and the standacdld dark matter £{-CDM)
model, as in the absence of exotic dark matter, oscillatibtize power spectrum in MOG are
not suppressed. We can also use MOG to model the acoustia gpaetrum of the cosmic
microwave background. A suitably adapted semi-analytiwatiel offers a first indication
that MOG may pass this test and correctly model the peak ad¢bastic spectrum.
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1. Introduction

The preferred model of cosmology today, thecold dark matter £-CDM) model, provides an
excellent fit to cosmological observations, but at a sulbstiasost: according to this model, about 95% of
the Universe is either invisible or undetectable, or pdgdibth [1]. This fact provides a strong incentive
to seek alternative explanations that can account for clugyioal observations without resorting to dark
matter or Einstein’s cosmological constant.

For gravitational theories designed to challenge tR€DM model, the bar is set increasingly
higher by recent discoveries. Not only do such theories havexplain successfully the velocity
dispersions, rotational curves and gravitational lensingalaxies and galaxy clusters, the theories must
also be in accord with cosmological observations, notahly,acoustic power spectrum of the cosmic
microwave background (CMB), the matter power spectrum &bges and the recent observation of the
luminosity-distance relationship of highsupernovae, which is seen as evidence for “dark energy”.

Modified gravity (MOG P]) has been used successfully to account for galaxy cluséssesJ], the
rotation curves of galaxiegl5], velocity dispersions of satellite galaxied pnd globular clustersy].

It was also used to offer an explanation for the Bullet Clu§8 without resorting to nonbaryonic
dark matter.

MOG may also be able to meet the challenge posed by cosmalagpservations. We investigate
two sets of observations in particular: the matter powecispe that describes the spatial distribution
of galaxies in the Universe and the acoustic spectrum of them&c microwave background
(CMB) radiation.

In the next section, we review the key features of MOG. Thiflbwed by sections presenting
detailed calculations for the galaxy power spectrum andattaistic power spectrum of the CMB. A
concluding section summarizes our results and maps ougfstaps.

2. Modified Gravity Theory

Modified gravity (MOG) is a fully relativistic theory of graation that is derived from a relativistic
action principle B] involving scalar, tensor and vector fields. MOG has evolasda result of
investigations of Nonsymmetric Gravity Theory (NG3]); and most recently, it has taken the form
of Scalar-Tensor-Vector Gravity (STVQR]). In the weak field approximation, STVG, NGT and
Metric-Skew-Tensor Gravity (MSTGLD]) produce similar results.

2.1. Scalar-Tensor-Vector Gravity

Our Modified Gravity Theory is based on postulating the exise of a massive vector field,. The
choice of a massive vector field is motivated by our desirattoduce aepulsivemodification of the law
of gravitation at short range. The vector field is coupledrersally to matter. The theory, therefore, has
three constants: in addition to the gravitational constantve must also consider the coupling constant,
w, which determines the coupling strength betweendthéield and matter, and a further constapaf,
which arises as a result of considering a vector field of neno-mass and controls the coupling range.
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The theory promoteS, 1 andw to scalar fields; hence, they are allowed to run, resultirigerfollowing
action R,11]:

S:SG+S¢+SS+SM (1)
where:
11 '
Se = “16n 5(R+2A)\/—gdx (2)
1 1
Sy = — /w {ZB“”BW — §u2¢u¢>" + an(cb)} V=g d'z (3)
1 [1 V.GV,G V,.uV,u
_ I B 717 H [k _
=[5 {29 ( T V“W”w)
Va(@ V,
L Vo @

Here,S), is the “matter” action, while3,,, = 0,6, — 0,¢, andV,(¢), Vo (G), V,,(w) andV, (1) denote
the self-interaction potentials associated with the vefitdd and the three scalar fields. The symbol,
V., is used to denote covariant differentiation with respedthte metric,g*”, while the symbolsR,

A andg, represent the Ricci-scalar, the cosmological constamtlaa determinant of the metric tensor,
respectively. We define the Ricci tensor as:

_ e e a 1B e
Ry = 005, — 0,10, + 10,0, — 0,00, (5)
Our units are such that the speed of light: 1; we use the metric signatufe-, —, —, —).

The apparent “wrong” sign of th¥ ,wV*w term in the Lagrangian is of potential concern; however,
we found that in all the solutions (including numerical smos) considered to date,remains constant.
Keepingw as a dynamical scalar field (with the “wrong” sign in the Lagy&n) allowed us to develop
a parameter-free solutiod]], but we anticipate that the field may disappear from the theory, as it is
being further developed.

A direct numerical solution of the theory’s field equationsthe spatially homogeneous, isotropic
case (FLRW cosmology) yields an expanding Universe. Cimgogiconstant};, as one of the initial
parameters of the solution, the age of the Universe can hstadj to fit observation. As an alternative,
we also considered changing the overall sign of the kinetims inSy; this solution, which violates
several energy conditions, but keeps the energy depsipgsitive, is a “bouncing” cosmology (indeed,
a classical bouncing cosmology requires that some or ah®@Energy conditions be violated). In this
cosmology, the age of the Universe, since the bounce ancdetigtyl of the Universe at the time of the
bounce can be tuned by choosing an appropriate con$fanEither way, a solution in which the age of
the Universe is in agreement with observation can be obfaifbese solutions are a subject of further
study, which will be reported elsewhere.

2.2. Point Particles in a Spherically Symmetric Field

For a point particle moving in the spherically symmetricdief a gravitating source, a particularly
simple solution for the acceleration is obtainéd][

_GNM

2

r =

. [1+a—a(l+pr)e™] (6)
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where M is the source mass, while determines the strength of the “fifth force” interaction gnd
controls its range. In prior worky andy were considered free parameters that were fitted to data. Our
recent work 1] allows us to determine and as functions of the source makgk

M Goo
T VM + B (GN _1> )
and: D
H = \/—M (8)

This solution can be seen to satisfy the field equations insgiteerically symmetric case, either
numerically or by deriving an approximate solution analstiy [11]. The numerical values fob and
E are determined by matching the result against galaxy ootatirves 11]:

D ~ 6250 Mé/zkp(1 9
E ~ 25000 M}/ (10)

The value ofGG, >~ 20G y is set to ensure that at the horizon distance, the effedieagth of gravity is
about six timeg7y, eliminating the need for cold dark matter in cosmologi@tulations, as described
in the previous section.

2.3. The MOG Poisson Equation

The acceleration law [EquatioB){ is associated with the potential:

b =

1+«

G M {1 o«
r

6_}“":| = (I)N + (I)y (11)

where:
Goo M

,
is the Newtonian gravitational potential with,, = (1 + «)Gy as the gravitational constant and:

Dy = —

(12)

ams 13
S l4a Ty (13)

«

Py

is the Yukawa-potential. These potentials are associatéd the corresponding Poisson and
inhomogeneous Helmholtz equations, which are givershy [

V2®y(r) = 47Goop(r) (14)
(V* = 1)@y (r) = —dm——Ccp(r) (15)
Full solutions to these potentials are given by:
Dy (r) = —Go / PE) (16)
r— 1|
«

e HIr—F (T
Oy (r) = H——aGOO / 7p(r) A (17)

v — 1|
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These solutions can be verified against Equatidi® énd (3) by applying the delta function point
source densityy(r) = M§3(r).

Strictly speaking, Equationl{) is a valid solution only whenv is approximately constant. For
inhomogeneous matter distributions,is expected to vary as a function of matter density, and as
such, this naive application of the spherically symmetsiatic vacuum solution to model extended
distributions of matter breaks down. However, for smalitypdrations of a homogeneous background,
we expect Equatioril{) to remain valid; this expectation can be verified once gaimad (approximate)
solutions of the theory in the presence of matter becoméadnlai

Combining EquationX1) with Equations 14) and (L5) yields:

V20 = 4rGnp(r) + p* @y (r) (18)
—plr=%| (3
= 4nGnp(r) + ap’Gy / o) d*t

v — 7|

containing, in addition to the usual Newtonian term, a noalsource term on the right-hand side.

3. MOG and the Matter Power Spectrum

The distribution of mass in the Universe is not uniform. Daetavitational self-attraction, matter
tends to “clump” into ever denser concentrations, leavangd voids in between. In the early Universe,
this process is counteracted by pressure. The processhefwomplicated by the fact that in the early
Universe, the energy density of radiation was comparahtleaioof matter.

3.1. Density Fluctuations in Newtonian Gravity

To the first order, this process can be investigated usirtgnation theory. Taking an arbitrary initial
distribution, one can proceed to introduce small pertuobatin the density, velocity and acceleration
fields. These lead to a second-order differential equatiothie density perturbation that can be solved
analytically or numerically. This yields the transfer ftioo, which determines how an initial density
distribution evolves as a function of time in the presencenoéll perturbations.

3.1.1. Newtonian Theory of Small Fluctuations

In order to see how this theory can be developed for MOG, wet finss review how the density
perturbation equation is derived in the Newtonian case. t@atment follows closely the approach
presented by13]. We begin with three equations: the continuity equatitwe, Euler equation and the
Poisson equation.

op B

EJFV'(PV)— ; (19a)
ov 1

E + (V . V)V = —;Vp + g, (1%)

V.g=—4rGp. (1%)
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First, we perturlp, p, v andg. Spelled out in full, we get:
d(p + dp)

o TVl +dp)(v+0v)] =0 (20a)
Wjﬂ(vjtévyw(vjtév):—p+5pV(p+5p)+g+5g (20b)
V.- (g+dg) =—4nG(p+ dp) (20c)

Subtracting the original set of equations from the new shgi /(p+dp) = (p—dp)/[p* — (6p)?] =
1/p — 6p/p?, and eliminating second-order terms, we obtain:

o)
8—tp YV (3pv + pdv) =0 (21a)
O0v op 1
- . . = Lvyp— = 2
pr +(v-V)ov+ (ov-V)v pQVp pV5p+5g (21b)
V-og = —4rGdp (21c)
A further substitution can be made by observing that = (6p/dp)dp = c*5p, where

c2 = (Op/0p)adiavatic 1S the speed of sound. We can also eliminate terms by obsgtivat the original
(unperturbed) state is spatially homogeneous, h&hce- Vp = 0:

o)
a—f+v-v5p+5pvv+pv.5v=o (22a)
o) 2
8—: + (v V)ov + (0v - V)v = —%vap + g (220)
V.dg = —4nGop (22c)
Now, we note that = Hx, hence:
V.v=HV x=3H (23)
(0v-V)v=(0v-V)(Hx)=H(dv-V)x = Hov (24)
Therefore:
dép
E+v~V§p+3H§p+pV-5v:0 (253)
2
ag—tva(v~V)5v—|—H5v: —%V5p+5g (250)
Vg = —4nGdp (25¢c)

The next step is a change of spatial coordinates to coosirtaimoving with the Hubble flow:

x = a(t)q (26)

0 0
(a)q - (a)x + va (27)

This means:
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and:
Vq=aVy (28)

After this change of coordinates, our system of equationsioes:

1
@+3H5p+—pv-5v:0 (29a)
ot a
2
85—V+H§V: —&V5p+5g (2%)
ot ap
Vg = —4maGdp (29%)

Now is the time to introduce the fractional amplitude= o6p/p. Dividing Equation 29) with p,
we get:

P 1

5+§5+3H§+5V~5v:0 (30)

However, since = pya3/a® and, hencep/p = —3a/a, the second and third terms cancel out, to give:
—ad = Viv (31)
Taking the gradient of Equatio2%b) and using Equatior28c) to expressv - dg, we get:

. . 2
% (—ad) + H(—ad) = _%v%s — 47Gapd (32)

Spelling out the derivatives and dividing both sides withve obtain:
.. . 2
5+ 2Hs — %vza — 4nGps =0 (33)
For every Fourier mode, = 6, (t)e’®4 (such thatv?§ = —£26), this gives:
. . k2
Ok +2H O + <;—2—47TGp) o =0 (34)

The quantityk/a is called the co-moving wave number.

If £ is large, solutions to Equatio34) are dominated by an oscillatory term; for smialla growth
term predominates.

A solution to Equation34) tells us how a power spectrum evolves over time, as a fumaiache
wave number; it does not specify the initial power spectréior.this reason, solutions to Equatic@@l)
are typically written in the form of a transfer function:

_ 0k(z = 0)dp(z = 00)
Ok(z = 00)dp(z = 0)

T (k) (35)

If the initial power spectrum and the transfer function anewn, the power spectrum at a later time
can be calculated (without accounting for small effects) as

P(k) = T*(k)Po(k) (36)
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P(k) is a dimensioned quantity. It is possible to form the dimenlgiss power spectrum:
A (k) = AEPT? (k) Py(k) (37)

whereA is a normalization constant determined by observations fidtim often appears in the literature.
In the present work, however, we are usifgk) instead ofA (k).
The initial power spectrum is believed to be a scale invapawer spectrum:

Py(k) o< k™ (38)

wheren ~ 1. A recent estimatel] onn isn = 0.9630 0 1+.
3.1.2. Analytical Approximation

Equation 84) is not difficult to solve in principle. The solution can beitten as the sum of oscillatory
and growing terms. The usual physical interpretation i$ Wzen pressure is sufficient to counteract
gravitational attraction, this mechanism prevents thevgtof density fluctuations, and their energy is
dissipated instead in the form of sound waves. When the ypress low, however, the growth term
dominates, and fluctuations grow. Put into the context of x@aeding Universe, one can conclude
that in the early stages, when the Universe was hot and déresescillatory term had to dominate.
Later, the growth term took over, and the perturbation spett‘froze”, affected only by uniform
growth afterward.

In practice, several issues complicate the problem. Hingt,early Universe cannot be modeled
by matter alone; it contained a mix of matter and radiatiamd(gpossibly, neutrinos and cold dark
matter). To correctly describe this case, even using tleatiperturbation theory outlined in the previous
sections, one needs to resort to a system of coupled diffategquations describing the different
mediums. Second, if the perturbations are sufficientlynggrdinear theory may no longer be valid.
Third, other nonlinear effects, including Silk-dampirid], cannot be excluded, as their contribution
is significant (indeed, Silk damping at higher wave numbersnie of the reasons why a baryon-only
cosmological model based on Einstein’s theory of gravitthaut dark matter fails to account for the
matter power spectrum).

The authors of15] addressed all these issues when they developed a semtiealadolution to the
baryon transfer function. This solution reportedly yiegi®d results in the full range of < Q, < 1.
Furthermore, unlike other approximations and numericdiwswe codes, this approach keeps the
essential physics transparent, allowing us to adapt tmeuation to the MOG case.

In [15], the transfer function is written as the sum of a baryonient€l},, and a cold dark matter
term,T.:

T(k) = g—;Tb(/{Z) + g—m
where 2. represents the cold dark matter content of the Universévelt the critical density. As we
are investigating a cosmology with no cold dark matter, wergT,. The baryonic part of the transfer
function departs from the cold dark matter case on scalegpamble to, or smaller than, the sound
horizon. Consequently, the baryonic transfer functionrigten as:

T.(k) (39)

T k1.1 —(k/ksi) " in ks
Ty(k) = o(k,1,1) ape sin k5

T T (ks/5.2)2 " 1+ (By/ks)? | ks (40)
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with: Infe + 185:9)
~ n (e +1.86,4
To(k, o, Be) = In (e + 1.88.9) + Cg?
where:
o142 38
a1+ 69.9¢-08
and:

g = k02, (Q,h?) "

The sound horizon is calculated as:

,_ 2 |¢ ln\/1+Rd+\/Rd+Req
ke \| Req 1+ \/Req

The scale at the equalization epoch is calculated as:

koq = 7.46 x 1072Q),,h*O; 2

The transition from a radiation-dominated to a matter-dwted era happens at the redshift:

Zeq = 2500012,,h*0; 7

while the drag era is defined as:

(th2)0.251

— 1291
= 1+ 0.659(0,,h2)0528

[T+ b1(Q,h%)"™]

where:
by = 0.313(Q,,h*) " [1 4+ 0.607(€2,,,h*)*0™

and:
by = 0.238(€2,,h?)"2%

The baryon-to-photon density ratio at a given redshift Isudated as:
1000
R =31.5Q,,h*05 17—

The Silk damping scale is obtained using:

ksine = 1.6(Q5%)°% (2,,h%)° (1 + (10.4Q2,,h%) %]

The coefficients in the second term of the baryonic transfiection are written as:

1+ 2
= 2.0Tkeos(1 + Ry) 34 | — =4
= 20Thugs(1+ Ra) ¥F (529

Q0 Q0
By = 0.5+ Q—b + (3 - QQ—b) V(17.2Q,h%)2 + 1

where we used the function:

Fly)=vy [—6 1+y+(2+3y)lnw}

vi+y—1

73

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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A shifting of nodes in the baryonic transfer function is azated for by the quantity:

S

5(k) = (55)
[14 (Buoae/ks)*]
where:
Buode = 8.41(,,h?)%43? (56)
The symbol, ©,; = T/2.7, is the temperature of the CMB relative to 2.7 K, while

h = H/(100 km/s/Mpc). The wave numbek, is in units of Mpc'.

3.2. Density Fluctuations in Modified Gravity

We consider the MOG Poisson Equatidi8), established in Sectio?.3. As the initial unperturbed
distribution is assumed to be homogeneouss not a function ofr and can be taken outside the
integral sign:

(I)y(r) = GNOép/ |I‘ L /| €*H|1‘*r'\d3r/ (57)
—r
Varying p, we get:
V.-ig(r) = —4nGnop(r)
—/,LQGNaép/ e Tl By (58)
v — |

Accordingly, Equation33) now reads:

—pfr—r’|

. .2 /
0+ 2H6 — ?v%s —4AnGNpd — uzGNapéf Pr’ = (59)

v — |

The integral can be readily calculated. Assuming thatr’| runs from zero to the comoving wavelength,
a/k, we get:
w/2 2w a/k

—plr—r’|
¢ P = 2
v —r'|
00 0

A [1 = (1 + pa/k)e +e/¥]

= v (60)
Substituting into Equatiorb@), we get:
. . CQ
0+2H) — a—;v25 —A4AnG N pd
_ _ ﬂ —upa/k _
dnGya [1 (1 + £ ) e } 5 = 0 (61)
or:
2
6+ 2H — A ved) (62)

i {rva i (1) o) -
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This demonstrates how the effective gravitational coristan
Gus — Gy {1 ta [1 _ (1 + %) e*ﬂa/’“] } (63)

depends on the wave number.
UsingGeg, We can express the perturbation equation as:

. ) 2k2
5k -+ 2H5k + (;—2 - 47TGeffp) (Sk =0 (64)

As the wave numbef¥;, appears only in the source term,

2]€2
(CS— - 47TGeffp) )

a?

it is easy to see that any solution of Equati@d)(is also a solution of Equatior64), provided that: is
replaced by’ in accordance with the following prescription:

k? =k + 4nd® <M> A2 (65)

where); = /c2/G yp is the Jeans wavelength.

This shifting of the wave number applies to the growth ternthef baryonic transfer functiorQ).
However, as the sound horizon scale is not affected by clsangie effective gravitational constant,
terms containing the produdts, must remain unchanged. Furthermore, the Silk damping soalkt
also change as a result of changing gravity; this changeoiggptional to the3/4th power ofG, as
demonstrated byl{] (cf. Equation (4.210) in14]; note thatQh? « G), thus:

, Geﬁ‘ 3/4
i = ke (66)
[note also Equatiorb(l)]. Using these considerations, we obtain the modified bagtansfer function:
, sinks | Tp(k',1,1) ap exp (—[k/kgy)t*)
T, (k) = ! 67
o) = =3 { 14 (ks/5.2)2 1+ (By/ks)? (67)

The effects of these changes can be summed up as followswAdloies ofk, the transfer function is
suppressed. At high values bf where the transfer function is usually suppressed by Sitkuing, the
effect of this suppression is reduced. The combined resthiit the tilt of the transfer function changes,
such that its peaks are now approximately in agreement \aiid jgbints, as seen in Figute

Data points shown in this figure come from several sourcesst Bnd foremost, the two data
releases of the Sloan Digital Sky Survey (SD38,17]) are presented. Additionally, data from the
Two-degree-Field (2dF) Galaxy Redshift Survedg]] UK Schmidt Telescope (UKST)1B], and
CfA130 [20] surveys are shown. Apart from normalization issues, tha @i@mm these surveys are
consistent in the range 6f01 A Mpc™! < k < 0.5 h Mpc~!'. Some surveys provide data points outside
this range, but they are not in agreement with each other.
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Figure 1. The matter power spectrum. Three models are compared afamsiata sets
(see text):A-cold dark matter £-CDM) (dashed blue line), = 0.035, Q. = 0.245,Q) =
0.72, H = 71 km/s/Mpc), a baryon-only model (dotted green lifg, = 0.035, H =
71 km/s/Mpc) and modified gravity (MOG) (solid red line,= 19, u = 5 h Mpc™!, ;, =
0.035, H = 71 km/s/Mpc), Data points are colored light blue [Sloan Dig&y Survey
(SDSS) 2006], gold (SDSS 2004), pink [Two-degree-Fieldj2dight green [UK Schmidt
Telescope (UKST)] and dark blue (CfA).
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10
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10
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3.3. Discussion

As a result of the combined effects of dampened structureithrat low values ot and reduced
Silk damping at high values of, the slope of the MOG transfer function differs significgnftlom
the slope of the baryonic transfer function and matchesettosith the observed values of the matter
power spectrum. On the other hand, the predictions of MOG &f@DM cosmology differ in
fundamental ways.

First, MOG predicts oscillations in the power spectrum,ahhére not smoothed out by dark matter.
These oscillations may be detectable in future galaxy ssgrieat utilize a large enough number of
galaxies and sufficiently narrow window functions in ordebe sensitive to such fluctuations. However,
the finite size of samples and the associated window funetised to produce presently available power
spectra mask any such oscillations. To illustrate this, piad the same window function to the MOG
prediction, which resulted in a smoothed curve, seen inrgigu A x> comparison actually suggests
that MOG offers a better fity¢;o = 0.03, x3cpy = 0.09 per degree of freedom), although we must be
cautious: the\-CDM approximation we used is not necessarily the best aqymiation available, and the
MOG result is dependent on the validity of the analysis presskin this section, which was developed
without the benefit of an interior solution.
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Figure 2. The effect of window functions on the power spectrum is destrated by
applying the SDSS luminous red galaxy survey window fumdito the MOG prediction.
Baryonic oscillations are greatly dampened in the resgltarve (solid red line). A
normalized linea’\—CDM estimate is also shown (thin blue line) for comparison.

{
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Second, MOG predicts a dampened power spectrum at both InighHosv values ofk relative
to A-CDM. Observations at sufficiently high values bfmay not be practical, as we are entering
sub-galactic length scales. Low values fofare a different matter: as accurate three-dimensional
information becomes available on ever more distant gadaypewer spectrum observations are likely
to be extended in this direction.

In the present work, we made no attempt to account for theilpbigsof a non-zero neutrino mass
and its effects on the power spectrum. Given the uncerésimithe semi-analytical approximations that
we utilized, such an attempt would not have been very fruitfuture numerical work, however, must
take into account the possibility of a non-negligible cdmition of neutrinos to the matter density.

4. MOG and the CMB

The cosmic microwave background (CMB) is highly isotropstiowing only small temperature
fluctuations as a function of sky direction. These fluctuadiare not uniformly random; they show
a distinct dependence on angular size, as has been denedstydhe measurements of the Boomerang
experiment 21] and the Wilkinson Microwave Anisotropy Probe (WMAH]).

The angular power spectrum of the CMB can be calculated inrigtyaof ways. The preferred
method is to use numerical software, suchCMBFAST [22]. Unfortunately, such software packages
cannot easily be adapted for use with MOG. Instead, at the&eptdime, we opt to use the excellent
semi-analytical approximation developed 2g]. While not as accurate as numerical software, it lends
itself more easily to nontrivial modifications, as the plegsiemain evident in the equations.

What justifies the use of this semi-analytical approacheddlt that the phenomenology of MOG.
dark matter can be understood easily. Collisionless calkl aeatter interacts with normal matter only
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through gravity. In the late Universe, the ratio of cold dar&ttervs. baryonic matter varies significantly
from region to region; this is why the results of the previ@@stion are nontrivial and significant.
However, in the early Universe (recombination era), theverse was still largely homogeneous, and
cold dark matter effectively acted as a “gravity enhancats: effects can be mimicked by simply
increasing the effective gravitational constant.

This may seem surprising in view of studies that have plat@ent constraints on the variability of
G. For example, after substitutirlg — A\2G in the Friedmann equation, the authors 24][have shown
that\ is constrained to be 10% or better by WMAP data. At first siths seems inconsistent with our
assertion that MOG, witld-.s > G, can successfully mimic the effects of dark matter on the CMB
acoustic spectrum. Yet, that this is the case, as can be fseea writes down the Friedmann equation

after incorporating\:
8T

H? ~ EAQGp
The full form of the substitution rule, therefore,i& — \?Gp. In MOG, we substituté&; — Gz and
p — pp (N0 CDM component), butzp)acom = (Gesrps)moa; hence\ = 1.

This discussion leads to a simple substitution rule that pplieable when the Universe is
approximately homogeneous. When a quantity contairfihgppears in an equation describing a
gravitational interaction(z.z must be used. However, when a quantity liRgis used to describe a
nongravitational effect, the Newtonian value@®@f; must be retained.

Our choice to use Mukhanov’s semianalytical approximaieomotivated by the fact that these
substitutions can be made in the formulae in a straightfoh&ad unambiguous manner.

4.1. Semi-Analytical Estimation of CMB Anisotropies

In [23], we find a calculation of the correlation functiafi(/), wherel is the multipole number of the
acoustic power spectrum of the CMB using the solution:
c(1) 100
—— = —(O0+N 68
[C(l)]lowl 9 ( ) ( )
wherel > 1, O denotes the oscillating part of the spectrum, while the osciHating part is written as
the sum of three parts:

N=N,+N,+N; (69)
These, in turn, are expressed as:
[P — 022(l/lf)03 — 2'6]267(””)2

Ny = 0.063¢2 70
! s 1+0.65(1/1)14 (70)
- 0.037 [P —0.22(1/1,)°3 + L7 (71)
(14 &)1/2 1+0.65(1/1,)14
0.55 2
0033 [P —0.5(/1,)"% +2.2] )2 (72)

Ao 1+ 20L)
The oscillating part of the spectrum is written as:

O = w2 [T
ol

X [Al cos (ﬁl + %) + Ay cos (Zﬁl + Z)] (73)
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where: (P—078) 43
o — U. — . l(l;2fl72)l2
Ay =0.1¢ Trov o (74)
and: e
A, — 0.14(0.5 +0.36P) (75)

T+

The parameters that occur in these expressions are as $olfowst, the baryon density parameter:
£ =17 (Qh3s) , (76)

where(), ~ 0.035 is the baryon content of the Universe at present relativéaeoctitical density and
hzs = H/(75 km/s/Mpc). The growth term of the transfer function is represented by:

Q*O'Ogl

n e —
2001/, 12,

(77)

where(?,, ~ 0.3 is the total matter content (baryonic matter, neutrinos emid dark matter). The
free-streaming and Silk damping scales are determinepecésely, by:

11/2
[y = 1300 |1+ 7.8 x 1072 (2,12, 1} (.00 (78)
71
L= 0.7 (79)
110566 | 0.8 (th%)m
1+¢€ £(14¢) |:1+(1+%th%5)—1/2:|

Lastly, the location of the acoustic peaks is determinedbyparameter:
p=0.015(1 + 0.13¢) (8, h3)°10 (80)

Note that we slightly adjusted the coefficients of Equati¢én® and @0), which improved the fit
noticeably, while remaining fully consistent with Mukharsderivation.

4.2. The MOG CMB Spectrum

The semi-analytical approximation presented in the prevgection can be adapted to the MOG case
by making two important observations.

First, in all expressions involving the value of Mukhano$Zs (which includes contributions from
baryonic matter and cold dark matter using Newton’s gréeitel constant), we need to u€g, ~ 0.3
(which includes baryonic matter only, using the runningreadf the gravitational constarit.g ~ 6G y).
Second, we notice that the value ©@f in Equation 76) does not depend on the effective value of the
gravitational constant, as this value is a function of theespof sound, which depends on the (baryonic)
matter density, regardless of gravitation. In other wofds,~ 0.035 is calculated using Newton’s
gravitational constant.

After we modify Mukhanov’'s semi-analytical formulation kgking these considerations into
account, we obtain the fit to the acoustic power spectrum shiowigure3.
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Figure 3. MOG and the acoustic power spectrum. Calculated uSipg= 0.3, €, =
0.035, Hy = 71 km/s/Mpc. Also shown are the raw Wilkinson Microwave Anisqy Probe
(WMAP) three-year data set (light blue), binned averageb thorizontal and vertical error
bars provided by the WMAP project (red) and data from the Bexamg experiment (green).
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4.3. Discussion

As Figure 3 demonstrates, to the extent that Mukhanov’s formulatioapplicable to MOG, the
theory achieves agreement with the observed acoustic peetrum. This result was obtained without
fine-tuning or parameter fitting. The MOG constgmtwas assumed to be equal to the inverse of the
radius of the visible Universe. Thereafter, the valueva$ fixed if we wish to ensur@,, ~ 0.3. This
was sufficient to achieve consistency with the data.

5. Conclusions

In this paper, we demonstrated how MOG can account for kegnotzgyical observations using a
minimum number of free parameters. We applied the MOG paiatce solution in a suitably modified
form of the Poisson equation and re-derived the equatiosgwéture growth. We found that the result
is in agreement with presently available observationa.dat

Notably, we also found that as the available data sets growize, a significant and, likely,
irreconcilable disagreement emerges between the predsctof MOG and those of théd-CDM
concordance model. IN-CDM, the presence of collisionless exotic dark matter $etada significant
dampening of the baryonic oscillations in the matter povpercgum: unit oscillations are suppressed
and appear only as a slight modulation of the power specttwshater wavelengths. In contrast, unit
oscillations arenot suppressed in MOG. Presently, these oscillations are reot, sly because the
resolution of the data is not high enough: when we apply tipeapiate bin sizes and window functions
to a simulated data set, the resulting curve is nearly smadsdlhgalaxy surveys grow in size, however,
bin sizes will get smaller and, if MOG is correct, the unitilations will emerge in the data.
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We also investigated the acoustic power spectrum of the icasimerowave background using MOG.
Existing software codes, notably the progr@vBFAST [22] and its derivatives, are ill suited for this
investigation, as it is difficult to disentangle the use o&njities proportional t@-p in gravitationalvs.
nongravitational contexts. Before embarking on what senise a formidable task, we turned to a
semi-analytical approximation28]. While many of the approximations employed bg23] are
not physically motivated, but numerical fitting formulagnetheless, the role played by quantities
proportional toGp can be clearly discerned, and the formulae can be suitaldptad. While we
recognize that this is not a conclusive result, we find it nloeless encouraging that the CMB acoustic
power spectrum was faithfully reproduced.

In conclusion, we have demonstrated that cosmologicalreatens of the matter power spectrum
and the CMB acoustic spectrum do not trivially rule out MOGagsossible alternative to the standard
A-CDM model of cosmology.
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